FSU Biology - Faculty Research Interests - Population Biology and Ecological Genetics

Department of Biological Science

at Florida State University

Population Biology and Ecological Genetics

  • Scott Burgess
    My research combines ecological and evolutionary principles to study the population biology of coastal marine invertebrates. Topics studied include larval dispersal, population connectivity, population dynamics, life history evolution, adaptive phenotypic plasticity, maternal effects, and local adaptation. I typically use some combination of field and laboratory experiments, field surveys, and mathematical modeling.

  • David Houle
    I am an evolutionary geneticist, studying the relationship between genomic and phenotypic variation. Now that we have genomes, we need a comparably thorough understanding of phenomes to understand the selection that acts on genetic variation. Our models are the appendages of fruit flies, where we exploit genomic variation, direct manipulation of genes and experimental evolution to understand how the developmental system shapes variation, and ultimately the ability of complex systems to evolve.

  • Kimberly A. Hughes
    Why are organisms are so genetically diverse? This is the broad question on which my lab focuses. In particular, we want to understand how variation is maintained in traits that are under strong natural selection: life history traits, sexually selected traits, and other traits closely tied to fitness. We use a variety of approaches to investigate these issues ranging from field experiments to genomic analyses.

  • Brian D. Inouye
    I am a quantitative population and community ecologist, mostly working with plants and insects. I am interested in how variation among individuals (in traits, stages, and spatial locations) affects population dynamics and species interactions. Projects in the lab include work on spatial neighborhood effects on plants and insects, tritrophic interactions among plants-seed predators-parasitoids, mathematical models of communities, and phenological responses to climate change. I am Associate EIC for Ecological Monographs.

  • Don R. Levitan
    I am interested in the ecology and evolution of marine invertebrates. My work examines the interactions between ecological processes, natural and sexual selection, and molecular evolution. I am particularly interested in how sperm availability and population density influence the evolution of gamete traits and reproductive behavior and the cascading effects of this selection on reproductive isolation and speciation. I enjoy integrating field experiments and molecular studies with theory.

  • Sophie J. McCoy
    I am a community ecologist with broad interests in ecology, evolution, physiology, and environmental chemistry. My research focuses on macroalgal populations, intertidal communities, and links between biology, environmental conditions and water chemistry. I use a combination of field and laboratory methods to understand natural variability in marine populations, responses of species and communities to climate change and pollution.

  • Darin R Rokyta
    Molecular and statistical properties of adaptive evolution.

  • Scott Steppan
    My research is focused on understanding the origin of biological diversity. I reconstruct phylogenies of highly diverse groups like rodents and bivalves and use those phylogenies to explore biogeography, morphological evolution, rates of diversification, and how patterns of correlations among traits themselves evolve,

  • Joseph Travis
    I am interested in how and why the features of animals vary from one population to another. This variation, whether in behavior, life history, or morphology, represents the earliest stage in the adaptive generation of biodiversity. In some cases, this variation can promote ecological differences between localities, which illustrates the interplay of evolution and ecology.

  • Nora Underwood
    I study the ecology and evolution of plant-insect interactions, with a focus on how genotypic and phenotypic variation among individuals affects the long-term spatial and temporal dynamics of populations and communities. I work in both natural and agricultural systems, and use a combination of greenhouse and field experiments and mathematical modeling.

  • Alice A. Winn
    I am interested in how plants adapt to environments that vary in time and space, and how this contributes to patterns of phenotypic variation within and among individuals and populations. Major topics of research in my lab include the ecology and evolution of phenotypic plasticity, processes that promote or inhibit local adaptation, and the evolution of plant mating systems.

  • Janie L. Wulff
    Mutualisms, life history and morphological strategies, predator defenses, and biogeography of clonal marine invertebrates, especially sponges.

Research in population biology and ecological genetics emphasizes population-level characteristics of single species and reproduction and survival rates in those populations. The work can be primarily ecological, evolutionary, or both. For example, comparisons of populations of the least killifish include ecological (how numbers are limited or regulated) and evolutionary (how genetic differences among populations are maintained) components. By seeking environmental correlates of varying survival rates among populations of endangered red-cockaded woodpeckers, another researcher hopes to eventually be able to test alternative management practices.

Research in ecological genetics is more evolutionary. Examples include the study of the evolution of phenotypic plasticity in leaf shapes, mechanisms of speciation and hybridization in corals, and the role of natural selection and mutation in maintaining the genetic variation found in populations of fruit flies. Various techniques (e.g. phylogenetic analyses of DNA sequences and morphological data, comparative analyses of multivariate patterns of covariation) are also being use to clarify large-scale patterns in biological diversity. These are just a few examples of the broad range of interests among this group of biologists.