FSU Biology - Faculty Research Interests - Microbiology, Virology, and Immunology

Microbiology, Virology, and Immunology

  • Jonathan H. Dennis
    The biology of chromatin involved in the innate immune response.

  • Aswanth Francis
    Structure-function studies of virus cell biology. We use live-cell imaging and cryo-EM to uncover mechanisms of virus transport, virus disassembly, nuclear pore interactions and virus compartmentalization inside the nucleus of living cells

  • Kathryn M. Jones
    I study the symbiotic interaction of nitrogen-fixing rhizobial bacteria with legume host plants: 1)How bacteria manipulate their environment during host plant invasion such that the plant not only permits entry, but provides an invasion pathway for them; 2)Why the interactions of specific strains of Sinorhizobium with particular Medicago truncatula plant ecotypes are more productive than others; 3)How plants direct resources to productive symbionts at the expense of unproductive ones (cheaters).

  • Darin R Rokyta
    I study the genetics of adaptation, primarily in the context of the coevolution between venomous animals and their prey. My research group studies the venoms of snakes, scorpions, centipedes, and spiders, and we are interested in how the genetics of traits influence their evolutionary trajectories.

  • M. Elizabeth Stroupe
    The Stroupe laboratory uses cryogenic electron microscopy and X-ray crystallography to discover fundamental mechanisms in ribosome biogenesis and sulfur metabolism.

  • Hengli Tang
    Virus-host cell interactions; Stem cell-based models for viral infections; Cell biology of flavivirus replication.

  • Ken Taylor
    Virus-host cell interactions; Stem cell-based models for viral infections; Cell biology of flavivirus replication.

  • Qian Yin
    Structural and mechanistic studies on proteins and protein assemblies in innate immunity, inflammation, host-pathogen interactions, membrane trafficking, and autophagy.

  • Fanxiu Zhu
    Kaposi's sarcoma-associated herpesvirus (KSHV); viral evasion of the host innate immune responses; viral modulation of the host kinase signaling pathways; role and assembly of KSHV tegument proteins.

The Microbiology, Virology, and Immunology group has widely ranging research interests. Microbiology studies are focuses on rhizobial/plant symbiotic interactions. Specifically, how do plants respond to rhizobial determinants to facilitate invasion by the rhizobium? Such studies can reveal fundamental insights into how bacteria invade and survive within eukaryotic cells, and modulate regulatory and signaling pathways to induce host cell morphological changes and differentiation. Several viruses are currently under investigation. Studies of hepatitis C virus (HCV) replication use cell culture models to show that this human pathogen has developed strategies to hijack resources from the host for its own reproduction. Interventions of these strategies may result in novel therapies that help circumvent drug resistance. Studies on Kaposi's sarcoma associated herpesvirus (KSHV), a human DNA tumor virus associated with several human malignancies, including Kaposi's sarcoma, are focused on the viral proteins that are localized in the tegument layer, a space between capsid and envelope in the virus particle. This research explores mechanisms by which the virus evades innate immune response and investigates how viral proteins are selectively assembled into the tegument. Research on the human immunodeficiency virus (HIV-1) is focused on the structural characterization of the virus, especially the envelope (Env) spike residing to the viral surface. These spikes foster viral fusion with target T-helpers cells and macrophages and are the targets for neutralizing antibodies. Several molecular forms of Env are being considered as vaccine candidates. Cryoelectron tomography microscopy is used to generate 3-D images of viruses and its components and can also be used to visualize antibodies attached to the Env spikes. Several diverse areas of immunology are being explored including immune resistance to the viruses listed above, the allergic response to foods, and the structure and immunochemistry of antibodies.