OUTLINE 2

- **II. Cell Differentiation**
 - A. What do we know?
 - **B.** The developmental landscape model
 - C. Two hypotheses for how cells become differentiated
 - **1. Nuclear alteration**
 - 2. Nuclear differentiation
 - **D.** Experimental evidence
 - **1. Seward totipotency in carrots**
 - 2. Gurdon nuclear transplantation in toads

Your TAs

Eric Raab: <u>gonoles33@aol.com</u> Nicole Stevens: nms02f@garnet.fsu.edu

You

Class Fr: 9 So: 147 Jr: 57 Sr: 27

Major Bio: 128 Ex. Phys: 56 Biochem: 16 Chem: 10 Psych: 9

Career

Medicine: 95 Allied Health: 48 Research: 21 Vet med: 12 Other: 6 Undecided: 58 ?

?

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTimeTM and a TIFE (Uncompressed) decompressor

Outline of Lecture 1

I. THE CENTRAL DOGMA A. DNA structure B. DNA Replication C. Chromosomes 1. Prokaryotic 2. Eukaryotic D. RNA Structure

E. Transcription
1. Summary
2. Prokaryotes
3. Eukaryotes

F. Translation

- 1. The genetic code
- 2. Summary of translation

Fig. 17.4

The Genetic Code

Codon - 3 base sequence that codes for one amino acid or is a signal.

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Fig. 17.13

Transfer RNA (tRNA)

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

syright © Pearson Education, Inc., publishing as Benjamin Cummings.

Fig. 17.12

Translation of mRNA into protein

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Fig. 17.25

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Muscle

Intestinal

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Nerve

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

OUTLINE 2

- **II.** Cell Differentiation
 - A. What do we know?
 - **B.** The developmental landscape model
 - C. Two hypotheses for how cells become differentiated
 - **1. Nuclear alteration**
 - 2. Nuclear differentiation
 - **D.** Experimental evidence
 - **1. Seward's totipotent carrots**
 - 2. Gurdon nuclear transplantation in toads

Waddington's Developmental Landscape

Undifferentiated cell

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

muscle lung brain skin

Nuclear Alteration

Which One?

Fig. 21.5

Seward's carrot experiment

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Nuclear transplantation

Frog embryo or Frog egg cell tadpole (larva) νυ Nucleus Intestinal cell Nucleus \bigcirc Transplantation Nucleus of nucleus destroyed Eight-cell embryo Tadpole

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Fig. 21.6

Dolly and "mom"

Noah - an endangered guar

Issues related to totipotency

OUTLINE 3

- **III.** Control of Gene Expression in Prokaryotes
 - A. Regulatory proteins
 - **B.** The operon model
 - C. Examples
 - 1. the lac operon (substrate induction)
 - 2. the tryp operon (end product repression)
 - 3. the lac operon (positive control)