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Introduction 

What can we know about a biological molecule, given its nucleotide or amino acid sequence?  How does it fit into 
a particular system in some organism?  What is its role in some network?  We may be able to learn about it by 
searching for particular patterns within it that may reflect some function, such as the many motifs ascribed to 
catalytic activity; we can look at its overall content and composition, such as do several of the gene finding 
algorithms; we can map its restriction enzyme or protease cut sites; and on and on.  However, what about 
comparisons with other sequences?  Is this worthwhile?  Yes, naturally it is: inference through homology is 
fundamental to all the biological sciences.  We can learn a tremendous amount by comparing and aligning our 
sequence against others. 

Furthermore, the power and sensitivity of sequence based computational methods dramatically increase with the 

addition of more data.  More data yields stronger analyses — if done carefully!  Otherwise, it can confound the 
issue.  The patterns of conservation become ever clearer by comparing the conserved portions of sequences 
amongst a larger and larger dataset.  Those areas most resistant to change are most important to the molecule, 
and to the system that molecule interacts with.  The basic assumption is that those portions of sequence of crucial 
structural and functional value are most constrained against evolutionary change.  They will not tolerate many 
mutations.  Not that mutation does not occur in these regions, just that most mutation in the area is lethal, so we 
never see it.  Other areas of sequence are able to drift more readily, being less subject to this evolutionary 
pressure.  Therefore, sequences end up a mosaic of quickly and slowly changing regions over evolutionary time. 

However, in order to learn anything by comparing sequences, we need to know how to compare them.  We can 
use those constrained portions as ‘anchors’ to create a sequence alignment allowing comparison, but this brings 
up the alignment problem and ‘similarity.’  It is easy to see that sequences are aligned when they have identical 
symbols at identical positions, but what happens when symbols are not identical, or the sequences are not the 
same length.  How can we know when the most similar portions of our sequences are aligned, when is an 
alignment optimal, and does optimal mean biologically correct? 

A ‘brute force,’ naïve approach just won’t work.  Even without considering the introduction of gaps, the 
computation required to compare all possible alignments between just two sequences requires time proportional 
to the product of the lengths of the two sequences.  Therefore, if two sequences are approximately the same 
length (N), this is a N2 problem.  The calculation would have to repeated 2N times to examine the possibility of 
gaps at each possible position within the sequences, now a N4N problem.  Waterman (1989) pointed out that using 
this naïve approach to align two sequences, each 300 symbols long, would require1088 comparisons, more than 

the number of elementary particles estimated to exist in the universe, and clearly impossible to solve!  Part of the 
solution to this problem is the dynamic programming algorithm, as applied to sequence alignment, and this will be 
reviewed next. 
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Dynamic programming 

Dynamic programming is a widely applied computer science technique, often used in many disciplines whenever 
optimal substructure solutions can provide an optimal overall solution.  Let’s begin with an overview of sequence 
alignment dynamic programming with just two sequences.  I’ll use an incredibly oversimplified example first: we’ll 
consider matching symbols to be worth one point, and will not consider gapping at all.  The solution occurs in two 
stages.  The first begins very much like dot matrix methods; the second is totally different.  Instead of calculating 
the ‘score matrix’ on the fly, as is often taught as one proceeds through the graph, I like to completely fill in an 
original ‘match matrix’ first, and then add points to those positions that produce favorable alignments next.  I also 
like to illustrate the process working through the cells, many authors prefer to work through the edges; they are 
equivalent.  Points are added based on a “looking-back-over-your-left-shoulder” algorithm rule where the only 

allowable trace-back is diagonally behind and above.  The illustration follows below in Table 1. 



4 

Table 1.  Dynamic programming without gap costs. 

a) The completed match matrix using one point for 
matching and zero points for mismatching: 

 S C A T S 

A 0 0 1 0 0 

C 0 1 0 0 0 

T 0 0 0 1 0 

S 1 0 0 0 1 

b) Now begin to add points based on the best path 
through the matrix, always working diagonally, left 
to right and top to bottom.  Keep track of those 
best paths.  The second row is completed here: 

 S C A T S 

A 0 0 1 0 0 

C 0 1 0 0+1 0+1 

T 0 0 0 1 0 

S 1 0 0 0 1 

c) Continue adding points based on the best previous 
path through the matrix. The third row is 
completed here: 

 S C A T S 

A 0 0 1 0 0 

C 0 1 0 1 1 

T 0 0 0+1 1+1 0+1 

S 1 0 0 0 1 

 

d) The score matrix is now complete: 

 S C A T S 

A 0 0 1 0 0 

C 0 1 0 1 1 

T 0 0 1 2 1 

S 1 0 0+1 0+1 1+2 

e) Now pick the bottom, right-most, highest score 
in the matrix and work your way back through 
it, in the opposite direction as you arrived.  
This is called the trace-back stage, and the 
matrix is now referred to as the path graph.  In 
this case that highest score is in the right-hand 
corner, but it need not be: 

 S C A T S 

A 0 0 1 0 0 

C 0 1 0 1 1 

T 0 0 1 2 1 

S 1 0 1 1 3  

f) Only the best tracebacks are now shown in 
outline characters.  They are both optimal 
alignments: 

 S C A T S 

A 0 0 1 0 0 

C 0 1 0 1 1 

T 0 0 1 2 1 

S 1 0 1 1 3 
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Here are the two alignments from the above path graph (f).  They both have a score of three, the three matches 
found by the algorithm, and the highest score in the bottom row of the solved matrix: 

SCATS SCA.TS 
 | ||   | || 
AC.TS ..ACTS 

Most software will arbitrarily (based on some internal rule) choose one of these to report as optimal.  Some 
programs offer a HighRoad/LowRoad option to help explore this solution space. 

The next example will be slightly more difficult.  Unlike the previous example without gap penalties, I will now 
impose a very simple gap penalty function.  Matching symbols will still be worth one point, non-matching symbols 
will still be worth zero points, but we will penalize the scoring scheme by subtracting one point for every gap 
inserted, unless they are at the beginning or end of the sequence.  In other words, end gaps will not be penalized; 
therefore, both sequences do not have to begin or end at the same point in the alignment. 

This zero penalty end-weighting scheme is the default for most alignment programs, but can often be changed 

with a program option, if desired.  However, the linear gap function described here, and used in the example 
below, is a much simpler gap penalty function than normally used in alignment programs.  Normally (Gotoh, 1982) 
an ‘affine,’ function is used, the standard ‘y = mx + b’ equation for a line that does not cross the X,Y origin, where 
‘b,’ the Y intercept, describes how much initial penalty is imposed for creating each new gap: 

total penalty = ( [ length of gap ] * [ gap extension penalty ] ) + gap opening penalty 

To run most alignment programs with the type of simple linear DNA gap penalty used in my example below, you 
would have to designate a gap ‘creation’ or ‘opening’ penalty of zero, and a gap ‘extension’ penalty of whatever 
counts in that particular program as an identical base match for DNA sequences. 

My example uses two random sequences that fit the TATA promoter region consensus of eukaryotes and of 
bacteria.  The most conserved bases within the consensus are capitalized by convention.  The eukaryote 
promoter sequence is along the X-axis, and the bacterial sequence is along the Y-axis in the following example.  
The solution illustration begins in the left panel in Table 2 below. 
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Table 2. Dynamic programming with a constant, linear 
gap cost. 

a) First complete a match matrix using one point for 
matching and zero points for mismatching between 
bases, just like in the previous example: 

 c T A T A t A a g g 
c 1 0 0 0 0 0 0 0 0 0 
g 0 0 0 0 0 0 0 0 1 1 
T 0 1 0 1 0 1 0 0 0 0 
A 0 0 1 0 1 0 1 1 0 0 
t 0 1 0 1 0 1 0 0 0 0 
A 0 0 1 0 1 0 1 1 0 0 
a 0 0 1 0 1 0 1 1 0 0 
T 0 1 0 1 0 1 0 0 0 0 

b) Now add and subtract points based on the best path 
through the matrix, working diagonally, left to right and 
top to bottom, just as before.  However, when you have 
to jump a box to make the path, subtract one point per 
box jumped, except at the beginning or end of the 
alignment, so that end gaps are not penalized.  Fill in all 
additions and subtractions, calculate the sums and 
differences as you go, and keep track of the best paths.  

The score matrix is shown with all calculations below: 

 c T A T A t A a g g 
c 1 0 0 0 0 0 0 0 0 0 

g 0 0+1
=1 

0+0
-0 
=0 

0+0
-0 
=0 

0+0
-0 
=0 

0+0
-0 
=0 

0+0
-0 
=0 

0+0
-0 
=0 

1+0
-0 
=1 

1+0
=1 

T 0 
1+1
-1 
=1 

0+1
=1 

1+0 
or+
1-1 
=1 

0+0
-0 
=0 

1+0
-0 
=1 

0+0
-0 
=0 

0+0
-0 
=0 

0+0
-0 
=0 

0+1
=1 

A 0 
0+0
-0 
=0 

1+1
=2 

0+1
=1 

1+1
=2 

0+1
-1 
=0 

1+1
=2 

1+1
-1 
=1 

0+0
-0 
=0 

0+0
-0 
=0 

t 0 
1+0
-0 
=1 

0+1
-1 
=0 

1+2
=3 

0+1
=1 

1+2
=3 

0+2
-1 
=1 

0+2
=2 

0+1
=1 

0+0
-0 
=0 

A 0 
0+0
-0 
=0 

1+1
=2 

0+2
-1 
=1 

1+3
=4 

0+3
-1 
=2 

1+3
=4 

1+3
-1 
=3 

0+2
=2 

0+1
=1 

a 0 
0+0
-0 
=0 

1+0
-0 
=1 

0+2
=2 

1+3
-1 
=3 

0+4
=4 

1+4
-1 
=4 

1+4
=5 

0+3
=3 

0+2
=2 

T 0 
1+0
-0 
=1 

0+0
-0 
=0 

1+1
=2 

0+2
=2 

1+3
=4 

0+4
=4 

0+4
=4 

0+5
=5 

0+5
-1 
=4 

c) Clean up the score matrix next.  I’ll only 
show the totals in each cell in the matrix 
shown below.  All best paths are highlighted: 

 c T A T A t A a g g 
c 1 0 0 0 0 0 0 0 0 0 
g 0 1 0 0 0 0 0 0 1 1 
T 0 1 1 1 0 1 0 0 0 1 
A 0 0 2 1 2 0 2 1 0 0 
t 0 1 0 3 1 3 1 2 1 0 
A 0 0 2 1 4 2 4 3 2 1 
a 0 0 1 2 3 4 4 5 3 2 
T 0 1 0 2 2 4 4 4 5 4 

d) Finally, convert the score matrix into a trace-
back path graph by picking the bottom-most, 
furthest right and highest scoring coordinate.  
Then choose the trace-back route that got 
you there, to connect the cells all the way 
back to the beginning using the same ‘over-
your-left-shoulder’ rule.  The two best trace-
back routes are now highlighted with outline 
font in the trace-back matrix below: 

 c T A T A t A a g g 
c 1 0 0 0 0 0 0 0 0 0 
g 0 1 0 0 0 0 0 0 1 1 
T 0 1 1 1 0 1 0 0 0 1 
A 0 0 2 1 2 0 2 1 0 0 
t 0 1 0 3 1 3 1 2 1 0 
A 0 0 2 1 4 2 4 3 2 1 
a 0 0 1 2 3 4 4 5 3 2 
T 0 1 0 2 2 4 4 4 5 4 
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not optimized or normalized in any manner.  Quality scores mean a lot more but are difficult to interpret.  At least 
they take the length of similarity, all of the necessary gaps introduced, and the matching of symbols all into 
account, but quality scores are only relevant within the context of a particular comparison or search.  The quality 
ratio is the metric optimized by dynamic programming divided by the length of the shorter sequence.  As such it 
represents a fairer comparison metric, but it also is relative to the particular scoring matrix and gap penalties used 
in the procedure. 

A traditional way of deciding alignment significance relies on an old statistics trick — Monte Carlo simulations.  
This type of significance estimation has implicit statistical problems; however, few practical alternatives exist for 
just comparing two sequences, and they are fast and easy.  Monte Carlo randomization options in dynamic 
programming alignment algorithms compare an actual score, in this case the quality score of an alignment, 
against the distribution of scores of alignments of a randomized sequence.  These options randomize your 
sequence at least 100 times after the initial alignment and then generate the jumbled alignment scores and a 
standard deviation based on their distribution.  Comparing the mean of the randomized sequence alignment 
scores to the original score using a ‘Z score’ calculation can help you decide significance.  An old ‘rule-of-thumb’ 
is if the actual score is much more than three standard deviations above the mean of the randomized scores, the 
analysis may be significant; if it is much more than five, than it probably is significant; and if it is above nine, than 
it definitely is significant.  Many Z scores measure this distance from the mean using a simplistic Monte Carlo 
model assuming a normal Gaussian distribution, in spite of the fact that ‘sequence-space’ actually follows an 
‘extreme value distribution;’ however, this simplistic approximation estimates significance quite well: 

Z score =  [ ( actual score ) - ( mean of randomized scores ) ]  
           ( standard deviation of randomized score distribution ) 

When the two TATA sequences from the previous dynamic programming example are compared to one another 
using the same scoring parameters as before, but incorporating a Monte Carlo Z score calculation, their similarity 
is found to be not at all significant.  The mean score based on 100 randomizations was 41.8 +/- a standard 
deviation of 7.4.  Plugged into the formula:  ( 50 – 41.8 ) / 7.4 = 1.11, i.e. there is no significance to the match in 
spite of 75% identity!  Composition can make a huge difference — the similarity is merely a reflection of the 
relative abundance of A’s and T’s in the sequences! 

The FastA (Pearson and Lipman, 1988, and Pearson, 1998), BLAST (Altschul, et al., 1990, and Altschul, et al., 
1997), Profile (Gribskov, et al., 1987), and HMMer (Eddy, 1998) search algorithms, all use a similar approach but 
base their statistics on the distance of the query matches from the actual, or a simulated, extreme value 
distribution from the rest of the, ‘insignificantly similar,’ members of the database being searched.  For alignments 
without gaps, the math generalizes such that the Expectation value E relates to a particular score S through the 
function E = Kmne−λs (Karlin and Altschul, 1990, and see http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-

1.html).  In a database search m is the length of the query and n is the size of the database in residues.  K and λ 

are supplied by statistical theory, dependent on the scoring system and the background amino acid frequencies, 
and calculated from actual or simulated database alignment distributions.  Expectation values are printed in 
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scientific notation and the smaller the number, i.e. the closer it is to 0, the more significant the match.  Expectation 
values show us how often we should expect a particular alignment to occur merely by chance alone in a search of 
that size database.  In other words, in order to assess whether a given alignment constitutes evidence for 
homology, it helps to know how strong an alignment can be expected from chance alone.  Rough, conservative 
guidelines to Z scores and Expectation values from a typical protein search follow in Table 3. 

Table 3. Rough, conservative guidelines to Z scores and Expectation values from a typical protein search. 

~Z score ~E value Inference 
≤3 ≥0.1 little, if any, evidence for homology, but impossible to disprove! 
≅5 ≅10-2 probably homologous, but may be due to convergent evolution 
≥10 ≤10-3 definitely homologous 

Be very careful with any guidelines such as these, though, because they are entirely dependent on both the size 
and content of the database being searched as well as how often you perform the search!  Think about it: the 
odds are way different for rolling dice depending on how many dice you roll, whether they are ‘loaded’ or not, and 
how often you try. 

Another very powerful empirical method of determining significance is to repeat a database search with the entry 
in question.  If that entry finds more significant ‘hits’ with the same sorts of sequences as the original search, then 
the entry in question is undoubtedly homologous to the original entry.  That is, homology is transient.  If it finds 
entirely different types of sequences, then it probably is not.  Modular proteins with distinctly separate domains 
confuse issues considerably, but the principles remain the same, and can be explained through domain swapping 
and other examples of non-vertical transmission.  And, finally, the ‘gold-standard’ of homology is shared structural 
folds — if you can demonstrate that two proteins have the same structural fold, then, regardless of similarity, at 
least that particular domain is homologous between the two. 

Scoring matrices 

However, what about protein sequences — conservative replacements and similarities, as opposed to identities?  
This is certainly an additional complication.  Particular amino acids are very much alike, structurally, chemically, 
and genetically.  How can we take advantage of amino acid similarity of in our alignments?  People have been 
struggling with this problem since the late 1960’s.  Dayhoff (Schwartz and Dayhoff, 1979) unambiguously aligned 
closely related protein datasets (no more than 15% difference, and in particular cytochrome c) available at that 
point in time and noticed that certain residues, if they mutate at all, are prone to change into certain other 
residues.  As it works out, these propensities for change fell into the same categories that chemists had known for 
years — those same chemical and structural classes mentioned above — conserved through the evolutionary 
constraints of natural selection.  Dayhoff’s empirical observation quantified these changes.  Based on the multiple 
sequence alignments that she created and the empirical amino acid frequencies within those alignments, the 
assumption that estimated mutation rates in closely related proteins can be extrapolated to more distant 
relationships, and matrix and logarithmic mathematics, she was able to empirically specify the relative 
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probabilities at which different residues mutated into other residues through evolutionary history, as appropriate 
within some level of divergence between the sequences considered.  This is the basis of the famous PAM 
(corrupted acronym of ‘accepted point mutation’) 250 (meaning that the matrix has been multiplied by itself 250 
times) log odds matrix. 

Since Dayhoff’s time other biomathematicians (esp. see Henikoff and Henikoff’s [1992] BLOSUM series of 
matrices, and for a somewhat controversial matrix see Gonnet et al. [1992]) have created matrices regarded more 
accurate than Dayhoff’s original, but the concept remains the same.  Furthermore, Dayhoff’s original PAM 250 
matrix remains a classic as historically the most widely used amino acid substitution matrix.  Collectively these 
types of matrices are known as symbol comparison tables, log odds matrices, and substitution or scoring 
matrices, and they are fundamental to all sequence comparison techniques. 

The default amino acid scoring matrix for most protein similarity comparison programs is now the BLOSUM62 
table (Henikoff and Henikoff, 1992).  The “62” refers to the minimum level of identity within the ungapped 
sequence blocks that went into the creation of the matrix.  Lower BLOSUM numbers are more appropriate for 
more divergent datasets.  The BLOSUM62 matrix follows below in Table 4; values whose magnitude is ≥ ±4 are 

drawn in shadowed characters to make them easier to recognize. 

Table 4.  The BLOSUM62 amino acid scoring matrix. 

  A  B  C  D  E  F  G  H  I  K  L  M  N  P  Q  R  S  T  V  W  X  Y  Z 
A  4 4 -2  0 -2 -1 -2  0 -2 -1 -1 -1 -1 -2 -1 -1 -1  1  0  0 -3 -1 -2 -1 
B -2  6 6 -3  6 6  2 -3 -1 -1 -3 -1 -- 44 -3  1 -1  0 -2  0 -1 -3 -- 44 -1 -3  2 
C  0 -3  9 9 -3 -- 44 -2 -3 -3 -1 -3 -1 -1 -3 -3 -3 -3 -1 -1 -1 -2 -1 -2 -- 44 
D -2  6 6 -3  6 6  2 -3 -1 -1 -3 -1 -- 44 -3  1 -1  0 -2  0 -1 -3 -- 44 -1 -3  2 
E -1  2 -- 44  2  5 5 -3 -2  0 -3  1 -3 -2  0 -1  2  0  0 -1 -2 -3 -1 -2  5 5 
F -2 -3 -2 -3 -3  6 6 -3 -1  0 -3  0  0 -3 -- 44 -3 -3 -2 -2 -1  1 -1  3 -- 33 
G  0 -1 -3 -1 -2 -3  6 6 -2 -- 44 -2 -- 44 -3  0 -2 -2 -2  0 -2 -3 -2 -1 -3 -2 
H -2 -1 -3 -1  0 -1 -2  8 8 -3 -1 -3 -2  1 -2  0  0 -1 -2 -3 -2 -1  2  0 
I -1 -3 -1 -3 -3  0 -- 44 -3  4 4 -3  2  1 -3 -3 -3 -3 -2 -1  3 -3 -1 -1 -3 
K -1 -1 -3 -1  1 -3 -2 -1 -3  5 5 -2 -1  0 -1  1  2  0 -1 -2 -3 -1 -2 1 
L -1 -- 44 -1 -- 44 -3  0 -- 44 -3  2 -2  4 4  2 -3 -3 -2 -2 -2 -1  1 -2 -1 -1 -3 
M -1 -3 -1 -3 -2  0 -3 -2  1 -1  2  5 5 -2 -2  0 -1 -1 -1  1 -1 -1 -1 -2 
N -2  1 -3  1  0 -3  0  1 -3  0 -3 -2  6 6 -2  0  0  1  0 -3 -- 44 -1 -2  0 
P -1 -1 -3 -1 -1 -- 44 -2 -2 -3 -1 -3 -2 -2  7 7 -1 -2 -1 -1 -2 -- 44 -1 -3 -1 
Q -1  0 -3  0  2 -3 -2  0 -3 1 -2  0  0 -1  5 5  1  0 -1 -2 -2 -1 -1  2 
R -1 -2 -3 -2  0 -3 -2  0 -3 2 -2 -1  0 -2  1  5 5 -1 -1 -3 -3 -1 -2  0 
S  1  0 -1  0  0 -2  0 -1 -2  0 -2 -1  1 -1  0 -1  4 4  1 -2 -3 -1 -2  0 
T  0 -1 -1 -1 -1 -2 -2 -2 -1 -1 -1 -1  0 -1 -1 -1  1  5 5  0 -2 -1 -2 -1 
V  0 -3 -1 -3 -2 -1 -3 -3  3 -2  1  1 -3 -2 -2 -3 -2  0  4 4 -3 -1 -1 -2 
W -3 -- 44 -2 -- 44 -3  1 -2 -2 -3 -3 -2 -1 -- 44 -- 44 -2 -3 -3 -2 -3 1111   -1  2 -3 
X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
Y -2 -3 -2 -3 -2  3 -3  2 -1 -2 -1 -1 -2 -3 -1 -2 -2 -2 -1  2 -1  7 7 -2 
Z -1  2 -- 44  2  5 5 -3 -2  0 -3  1 -3 -2  0 -1  2  0  0 -1 -2 -3 -1 -2  5 5 

Notice that positive identity values range from 4 to 11, and negative values for rare substitutions go as low as -4.  
The most conserved residue is tryptophan with an identity score of 11; cysteine is next with a score of 9; histidine 
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gets 8; both proline and tyrosine get scores of 7.  These residues get the highest scores because of two biological 
factors: they are very important to the structure and function of proteins, and they are the rarest amino acids found 
in nature.  Also check out the hydrophobic substitution triumvirate — isoleucine, leucine, valine, and to a lesser 
extent methionine — all easily swap places.  So, rather than using the zero/one match function that we used in 
the previous dynamic programming examples, protein sequence alignments use the match function provided by 
an amino acid scoring matrix.  The concept of similarity becomes very important with some amino acids being 
way ‘more similar’ than others! 

Multiple sequence dynamic programming 

Dynamic programming reduces the pairwise alignment problem’s complexity to order N2.  But how do you work 
with more than just two sequences at a time?  It becomes a much harder problem.  You could manually align your 
sequence data with an editor, but some type of an automated solution is desirable, at least as a starting point to 
manual alignment.  However, solving the dynamic programming algorithm for more than just two sequences 
rapidly becomes intractable.  Dynamic programming’s complexity, and hence its computational requirements, 
increases exponentially with the number of sequences in the dataset being compared (complexity=[sequence 

length]number of sequences).  Mathematically this is an N-dimensional matrix, quite complex indeed.  Pairwise 

dynamic programming solves a two-dimensional matrix, and the complexity of the solution is equal to the length of 
the longest sequence squared.  Well, a three-member standard dynamic programming sequence comparison 
would be a matrix with three axes, the length of the longest sequence cubed, and so forth.  You can at least draw 
a three-dimensional matrix, but more than that becomes impossible to even visualize.  It quickly boggles the mind! 

Several different heuristics have been employed over the years to simplify the complexity of the problem.  One 
program, MSA (Gupta et al. 1995), attempts to simultaneously solve the N-dimensional matrix recursion using a 
bounding box trick.  However, the algorithm’s complexity precludes its use in most situations, except with very 
small datasets.  One way to simultaneously solve the algorithm and yet reduce its complexity is to restrict the 
search space to only the most conserved ‘local’ portions of all the sequences involved.  This approach is used by 
the program PIMA (Smith and Smith, 1995).  MSA and PIMA are both available through the Internet at several 
bioinformatics servers (in particular see the Baylor College of Medicine’s Search Launcher at 
http://searchlauncher.bcm.tmc.edu/), or they can be installed on your own machine. 

How the algorithms work 

Most implementations of automated multiple alignment modify dynamic programming by establishing a pairwise 
order in which to build the alignment.  This heuristic modification is known as pairwise, progressive dynamic 
programming.  Originally attributed to Feng and Doolittle (1987), this variation of the dynamic programming 
algorithm generates a global alignment, but restricts its search space at any one time to a local neighborhood of 

the full length of only two sequences.  Consider a group of sequences.  First all are compared to each other, 
pairwise, using some quick variation of standard dynamic programming.  This establishes an order for the set, 
most to least similar, a ‘guide-tree’ if you will.  Subgroups are clustered together similarly.  The algorithm then 
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takes the top two, most similar sequences, and aligns them.  Then it creates a quasi-consensus of those two and 
aligns that to the third sequence.  Next create the same sort of quasi-consensus of the first three sequences and 
align that to the forth most similar.  The way that the program makes and uses this ‘consensus’ sequence is one 
of the big differences between the various implementations.  This process, all using standard, pairwise dynamic 
programming, continues until it has worked its way through all of the sequences and/or sets of clusters, to 
complete  the full multiple sequence alignment. 

The pairwise, progressive solution is implemented in several programs.  Perhaps the most popular is Higgins’ and 
Thompson’s ClustalW (1994) and its multi-platform, graphical user interface ClustalX (Thompson, et al., 1997).  
This program made the first major advances over the basic Feng and Doolittle algorithm by incorporating variable 
sequence weighting, dynamically varying gap penalties and substitution matrices, and a neighbor-joining (NJ, 
Saitou and Nei, 1987) guide-tree.  The programs can be downloaded from the ClustalX homesite, ftp://ftp-
igbmc.u-strasbg.fr/pub/ClustalX/, to install on your own machine, or they can be run through the World Wide Web 
(WWW) at several sites.  ClustalX is available for most windowing Operating Systems: most UNIX flavors, 
Microsoft Windows, and Macintosh.  Complete documentation comes with the program and is accessed through a 
“Help” menu.  The GCG program PileUp implements a similar method, but without the later innovations, and 
ClustalW is now included in the GCG package as well. 

Several more variations on the theme have come along in recent years.  T-Coffee (Tree-based Consistency 
Objective Function For alignment Evaluation [Notredame, et al., 2000]) was one of the first after ClustalW, and it 
has gained much favor.  It will be presented in further detail in this chapter’s final section.  Its biggest innovation is 

the use of a preprocessed, weighted library of all the pairwise global alignments between the sequences in your 
dataset plus the ten best local alignments associated with each pair of sequences.  This helps build the NJ guide-
tree and the progressive alignment both.  Furthermore, the library is used to assure consistency and help prevent 
errors, by allowing ‘forward-thinking’ to see whether the overall alignment will be better one way or another after 
particular segments are aligned one way or another.  Notredame (2006) makes the apt analogy of school 
schedules:  everybody, students, teachers and administrators, with some folk being more important than others, 
i.e. the weighting factor, puts the schedule they desire in a big pile, i.e. T-Coffee’s library, with the trick being to 
best fit all the schedules to one academic calendar, so that everybody is happiest, i.e. T-Coffee’s final multiple 
sequence alignment.  T-Coffee is one of the most accurate multiple sequence alignment methods available 
because of this rationale, but it is not the fastest. 

Muscle (Edgar, 2004) is another relatively new multiple sequence alignment program.  It is incredibly fast, yet 
nearly as accurate as T-Coffee.  Muscle is an iterative method that uses weighted log-expectation profile scoring 
along with a slew of optimizations.  It proceeds in three stages: draft progressive using k-mer counting, improved 
progressive using a revised tree from the previous iteration, and refinement by sequential deletion of each tree 
edge with subsequent profile realignment.  Another fairly new program, MAFFT (Katoh, et al., 2005), can be run in 
either fast, approximate mode, using a Fast Fourier Transformation, where its capability to handle large datasets 
and its speed is similar to Muscle; or in a slow, iteratively refined, optimized mode, where its results and 
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capabilities are similar to T-Coffee.  Perhaps the most accurate new multiple sequence alignment program is 
ProbCons (Do, et al., 2005).  It uses Hidden Markov Model (HMM) techniques and posterior probability matrices 
that compare random pairwise alignments to expected pairwise alignments.  Probability consistency 
transformation is used to reestimate the scores, and a guide-tree is then constructed, which is used to compute 
the alignment, which is then iteratively refined.  These methods and more are all tied into T-Coffee as external 
modules, as long as they are all installed on your system. 

Coding DNA issues 

All of these alignment algorithms, pairwise, multiple, and database similarity searching, are far more sensitive at 
the amino acid level than at the DNA level.  Twenty match symbols are just much easier to align then only four; 
the signal to noise ratio is so much better.  And, the concept of similarity applies to amino acids, but generally not 
to nucleotides.  Furthermore, many DNA base changes (especially third position changes) do not change the 
encoded protein.  All of these factors drastically increase the ‘noise’ level of DNA; typically giving protein searches 
a much greater ‘look-back’ time, at least doubling it.  Therefore, database searching and sequence alignment 
should always be done on a protein level, unless you are dealing with noncoding DNA, or if the sequences are so 
similar as to not cause any problems.  Therefore, usually, if dealing with coding sequences, translate the DNA to 
its protein counterpart, before performing multiple sequence alignment. 

Even if you are dealing with very similar coding sequences, where the DNA can be directly aligned, it is often best 
to align the DNA along with its corresponding proteins.  In addition to the much more easily achieved alignment, 
this also insures that alignment gaps are not placed within codons.  Phylogenetic analysis can then be performed 

on the DNA rather than on the proteins.  This is especially important when dealing with datasets that are quite 
similar, since the proteins may not reflect many differences hidden in the DNA.  Furthermore, many people prefer 
to run phylogenetic analyses on DNA rather than protein regardless of how similar they are — the multiple 
substitution models have a long and well-accepted history, and yet are far simpler.  In fact, some phylogenetic 
inference algorithms do not even take advantage of amino acid similarity when dealing with protein sequences; 
they only count identities, though many others can use PAM style models.  However, the more diverged a dataset 
becomes, the more random third and eventually first codon positions become, which introduces noise (error) into 
the analysis.  Therefore, often third positions and sometimes first positions are masked out of datasets.  Just like 
in most of computational molecular biology, one is always balancing signal against noise.  Too much noise or too 
little signal, both degrade the analysis to the point of nonsense. 

Several scripts and programs, as well as some Web servers, can perform this sort of codon-based alignment, but 
they can be a bit tricky to run.  Examples include mrtrans (Pearson, 1990) (also available in EMBOSS [Rice, et al., 
2000] as tranalign and in BioPerl [Stajich et al., 2000] as aa_to_dna_aln), transAlign (Bininda-Emonds, 2005), 
RevTrans (Wernersson and Pedersen, 2003), protal2dna (Letondal and Schuerer, [Pasteur Institute and in 
BioPerl]), and PAL2NAL (Suyama, et al., 2006).  Dedicated sequence analysis editors, such as GCG’s SeqLab  
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(based on Smith’s Genetic Data Environment [GDE], 1994), can also be used for this in a manual process.  The 
logic to this manual paired protein and DNA codon alignment approach follows: 

1) The easy case is where you can align the DNA directly.  If the DNA sequences are directly alignable 
because they are quite similar, then use whatever automated tool you want to create your DNA alignment 
and load it into your multiple sequence editor.  Next use your editor’s align translation function to create 
aligned corresponding protein sequences.  Select the region to translate based on the CDS reference in 
each DNA sequence’s annotation.  Be careful of CDS entries that do not begin at position 1 — the 
GenBank CDS feature annotation “/codon_start=” identifies which position the translation begins within 
the first codon listed for each gene.  You may also have to trim sequences down to just the relevant gene 
or exons, especially if they’re genomic.  Group each protein to its corresponding DNA sequence, if the 
option is available, so that subsequent manipulations will keep them together. 

2) The way more difficult case is where you need to use the protein sequences to create the alignment 
because the DNA is not directly alignable.  In this case you need to create the protein sequence 
alignment first, and then load their corresponding DNA sequences into the editor.  You can find the DNA 
sequence accession codes in the annotation of the protein sequence entries.  Next translate the 
unaligned DNA sequences into new protein sequences with the align translation function and group these 
to their corresponding DNA sequences, just as above.  However, this time the DNA along with their 
translated sequences are not aligned as a set, just the other protein set is aligned.  Also, group all of the 
aligned protein dataset together, separately from the DNA/aligned translation set.  Now comes the manual 

part; slide the original aligned protein sequence set apart to match the codons of the DNA along with its 
aligned translation, inserting gaps in whichever set need them to recreate the alignment.  Merge the 
newly aligned sequences into the existing alignment group as you go, and then start on the next one.  It 
sounds difficult, but since you’re matching up two identical protein sequences, the DNA translation and 
the original aligned protein, it’s really not too bad. 

Multiple sequence alignment is much more difficult if you are forced to align nucleotides because the region does 
not code for a protein.  Automated methods may be able to help as a starting point, but they are certainly not 
guaranteed to come up with a biologically correct alignment.  The resulting alignment will probably have to be 
extensively edited, if it works at all.  Success will largely depend on the similarity of the nucleotide dataset. 

Reliability? 

One liability of most global progressive, pairwise methods is they are entirely dependent on the order in which the 
sequences are aligned.  Fortunately ordering them from most similar to least similar usually makes biological 
sense and works quite well.  However, the techniques are very sensitive to the substitution matrix and gap 
penalties specified.  Some programs allow ‘fine-tuning’ areas of an alignment by realignment with different scoring 
matrices and/or gap penalties; this can be extremely helpful.  However, any automated multiple sequence 
alignment program should be thought of as only a tool to offer a starting alignment that can be improved upon, not 
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the ‘end-all-to-meet-all’ solution, guaranteed to provide the ‘one-true’ answer.  Although, in this post-genomics 
era, when having to deal with Giga bases of data, it does make sense to start with the ‘best’ solution possible.  
This is the premise of using a very accurate multiple sequence alignment package, such as T-Coffee (Notredame, 
et al., 2000). 

Regardless of the program used to create an alignment, always use comparative approaches to help assure its 
reliability.  After the program has offered its best guess, try to improve it further.  Think about it — a sequence 
alignment is a statement of positional homology — it is a hypothesis of evolutionary history.  It establishes the 
explicit homologous correspondence of each individual sequence position, each column in the alignment.  
Therefore, insure that you have prepared a good one — be sure that it makes sense — devote considerable time 
and energy toward developing the best alignment possible. 

Editing alignments to insure that all columns are truly homologous should be encouraged.  Dedicated sequence 
alignment editing software such as GCG’s SeqLab (1982–2007), Jalview (Clamp, et al., 2004), Se-Al (Rambaut, 
1996), and SeaView (Galtier, et al., 1996) are great for this, but any editor will do, as long as the sequences end 
up properly formatted afterwards.  Use your understanding of the system to help guide your judgment.  Look for 
conserved functional sites and other motifs — they should all line up.  Searches of the PROSITE Database of 
protein families and domains (Bairoch, 1992) for catalogued structural, regulatory, and enzymatic consensus 
patterns or ‘signatures’ in your dataset can help, as can de novo motif discovery tools like the MEME (Bailey and 
Elkan, 1994), MotifSearch (Bailey and Gribskov, 1998) program pair. 

Make subjective decisions.  Is it good enough; do things line up the way that they should?  Assure that known 

enzymatic, regulatory, and structural elements all align.  Look for columns of strongly conserved residues such as 
tryptophans, cysteines, and histidines; important structural amino acids such as prolines, tyrosines and 
phenylanines; and those conserved isoleucine, leucine, valine substitutions.  If, after all else, you decide that you 
just can’t align some region, or an entire sequence, then get rid of it.  Another alternative is to use the mask 
function available in some programs.  Cutting an entire sequence out of an alignment may leave columns of gaps 
across the entire alignment that will need to be removed.  The extreme amino- and carboxy-termini (5’ and 3’ in 
DNA) seldom align nicely; they are often jagged and uncertain, and should probably be excluded.  The results of 
subsequent analyses are absolutely dependent upon the quality of your alignment assessment. 

Researchers have successfully used the conservation of co-varying sites in ribosomal and other structural RNA 
alignments to assist in alignment refinement.  That is, as one base in a stem structure changes the corresponding 
Watson-Crick paired base will change in a corresponding manner.  This principle has guided the assembly of 
rRNA structural alignments at the Ribosomal Database Project at Michigan State University (Cole, et al. 2007, 
http://rdp.cme.msu.edu/) and at the University of Gent, Belgium, at the European Ribosomal RNA database 
(Wuyts, et al. 2004, http://www.psb.ugent.be/rRNA/). 

Be sure an alignment makes biological sense — align things that make sense to align!  Beware of comparing 
‘apples and oranges.’  Be particularly suspect of sequence datasets found through text-based database searches 
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such as Entrez (NCBI) and GCG’s LookUp (based on the Sequence Retrieval System [SRS] of Etzold and Argos 
[1993]).  For example, don’t try to align receptors and/or activators with their namesake proteins.  Be wary of 
trying to align genomic sequences with cDNA when working with DNA; the introns will cause all sorts of 
headaches.  Similarly, aligning mature and precursor proteins, or alternate splicing forms, from the same 
organism and locus, doesn’t make evolutionary sense, as one is not evolved from the other, rather one is the 
other.  Watch for redundant sequences; there are tons of them in the databases.  If creating alignments for 
phylogenetic inference, either make paralogous comparisons (i.e. evolution via gene duplication) to ascertain 
gene phylogenies within one organism, or orthologous (within one ancestral loci) comparisons to ascertain gene 
phylogenies between organisms (which should imply organismal phylogenies).  Try not to mix them up without 
complete data representation. Otherwise, confusion can mislead interpretation, especially if the sequences’ 
nomenclature is inconsistent.  These are all easy mistakes to make; try your best to avoid them. 

Remember the old adage “garbage in — garbage out!”  Some general guidelines to remember (Olsen, 1992) 
include the following: 

• If the homology of a region is in doubt, then throw it out. 
• Avoid the most diverged parts of molecules; they are the greatest source of systematic error. 
• Do not include sequences that are more diverged than necessary for the analysis at hand. 

Complications 

Sequence data format is a huge problem in computational molecular biology.  The major databases all have their 
own distinct format, plus many of the different programs and packages require their own.  Clustal (Higgins, et al., 

1992) has a specific format associated with it.  The FastA database similarity-searching package (Pearson and 
Lipman, 1988) uses a very basic sequence format.  The National Center for Biotechnology Information (NCBI) 
uses a library standard called ASN.1 (Abstract Syntax Notation One), plus it provides GenBank flatfile format for 
all sequence data.  GCG uses three sequence formats: Single Sequence Format (SSF), Multiple Sequence 
Format (MSF), and SeqLab’s Rich Sequence Format (RSF) that contains both sequence data and annotation.  
PAUP* (Phylogenetic Analysis Using Parsimony [and other methods, pronounced “pop star”] Swofford, 1989-
2007), MrBayes (Ronquist and Huelsenbeck, 2003), and many other phylogenetic analysis packages, have a 
required format called the NEXUS file.  The PAUP* interface in the GCG Package, PAUPSearch, generates 
NEXUS format directly from GCG alignments.  Even PHYLIP  (PHYLogeny Inference Package, Felsenstein, 
1980-2007) has its own unique input data format.  Format standards have been argued over for years, such as 
using XML for everything, but until everybody agrees, which is not likely to happen, it just won’t happen.  
Fortunately several freeware programs are available to convert formats back and forth between the required 
standards, but it all can get quite confusing.  BioPerl’s SeqIO system (Stajich, 2002) and ReadSeq (Gilbert, 1990) 
are two of the best.  T-Coffee (Notredame, et al., 2000) comes with one built in named “seq_reformat.” 

Alignment gaps are another problem.  Different program suites may use different symbols to represent them.  
Most programs use hyphens, “-”; the GCG Package uses periods, “.”, for interior gaps, and tildes, “~”, for 
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placeholder gaps.  Furthermore, not all gaps in sequences should be interpreted as deletions.  Interior gaps are 
probably okay to represent this way, as regardless of whether a deletion, insertion or a duplication event created 
the gap, logically they are treated the same by the algorithm.  These are known as ‘indels.’  However, end gaps 
should not be represented as indels, because a lack of information before or beyond the length of any given 
sequence may not be due to a deletion or insertion event.  It may have nothing to do with the particular stretch 
being analyzed at all.  It just may not have been sequenced!  These gaps are just placeholders for the sequence.  
Therefore, it is safest to manually edit an alignment to change leading and trailing gap symbols to “x”’s which 
mean “unknown amino acid,” or “n”’s which mean “unknown base,” or “?”’s which is supported by many programs, 
but not all, and means “unknown residue or indel.”  This will assure that the programs don’t make incorrect 
assumptions about your sequences. 

Applicability? 

Now that we understand some of the principles and problems of multiple sequence alignment, what’s so great 
about doing it anyway; why would anyone want to bother?  Multiple sequence alignments are: 

• very useful in the development of PCR primers and hybridization probes; 
• great for producing annotated, publication quality, graphics and illustrations; 
• invaluable in structure/function studies through homology inference; 
• essential for building HMM profiles for remote homology similarity searching and alignment; and 
• required for molecular evolutionary phylogenetic inference programs, e.g. PAUP*, MrBayes, and PHYLIP. 

A multiple sequence alignment is useful for probe and primer design by allowing you to visualize the most 

conserved regions of an alignment.  This technique is invaluable for designing phylogenetic specific probes as it 
clearly localizes areas of high conservation and high variability in an alignment.  Depending on the dataset that 
you analyze, any level of phylogenetic specificity can be achieved.  Pick areas of high variability in the overall 
dataset that correspond to areas of high conversation in phylogenetic category subset datasets to differentiate 
between universal and phylo-specific potential probe sequences.  After localizing general target areas on the 
sequence, you can then use any of several primer discovery programs, such as GCG’s Prime, or MIT’s Primer3 
(Rozen and Skaletsky, 2000), or the commercial Oligo program (National Biosciences, Inc.), to find the best 
primers within those regions, and to test those potential probes for common PCR conditions and problems.  See 
my workshop tutorial illustrating this technique using GCG and SeqLab at 
http://bio.fsu.edu/~stevet/PrimerDesign.pdf if you are interested.  The technique is illustrated in Figure 1 below 
where I identify potential primer locations that should differentiate between the major capsid protein genes (L1) of 
the highly carcinogenic Human Papillomavirus (HPV) Type 16 strains from the rest of the Type 16 relatives. 
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Figure 1.  A phylogram of the HPV type assemblage most closely related to Type16 based on the L1 major capsid 

protein, and the corresponding GCG PlotSimlarity traces.  The ellipses denote potential areas in which to localize 
PCR primers within the gene that would differentiate the Type 16 clade from it’s closest relatives.  These are 
areas of high L1 conservation in the Type 16 clade (the red, dashed line) that correspond to areas of much 
weaker conservation in the other clades (the blue, solid line). 

Graphics prepared from multiple sequence alignments can dramatically illustrate functional and structural 
conservation.  These can take many forms of all or portions of an alignment — shaded or colored boxes or letters 
for each residue (e.g. BoxShade by Hofmann and Baron at EMBnet.org, and the various PostScript output options 
in GCG’s SeqLab), cartoon representations (e.g. WebLogos [Schneider and Stephens, 19900] and GCG’s 
SeqLab graphical feature representation), running line graphs of overall similarity (as seen above with GCG’s 
PlotSimilarity and as displayed by ClustalX), overlays of attributes, various consensus representations, etc. — all 
can be printed with high-resolution equipment, usually in color or gray tones.  These can make a big difference in 
a poster or manuscript presentation.  Figure 2 shows a multiple sequence alignment of the most conserved 
portion of the HMG DNA-binding domain from several paralogous members of the human HMG-box superfamily. 
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Figure 2.  A GCG SeqLab PostScript graphic of the most conserved portion of the HMG-box DNA binding domain 
from a collection of paralogous human HMG-box protein sequences. 

Conserved regions of an alignment are important.  In addition to the conservation of primary sequence, structure 
and function is also conserved in these crucial regions.  In fact, recognizable structural conservation between true 
homologues extends way beyond statistically significant sequence similarity.  An oft-cited example is in the serine 
protease superfamily.  S. griseus protease A demonstrates remarkably little sequence similarity when compared 
to the rest of the superfamily (Expectation values E()≥101.8 in a typical search) yet its three-dimensional structure 

clearly shows its allegiance to the serine proteases (RMSD of less than 3 Å with most of the family) (Pearson, 
W.R., personal communication).  These principles are the premise of ‘homology modeling’ and it works 
remarkably well.  An automated homology modeling tool is even available on the ExPASy server in Switzerland.  
Supported by the Swiss Institute of Bioinformatics (SIB) and GlaxoSmithKline, Swiss-Model 
(http://swissmodel.expasy.org//SWISS-MODEL.html, see Guex, et al. [1999]) has dramatically changed the 
homology modeling process.  It is a relatively painless way to get a theoretical model of a protein structure.  While 

not always successful, the minimal amount of effort involved in making the attempt makes it an excellent time 
investment.  It won’t always generate a homology model for your sequence, depending on how similar the closest 
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sequence with an experimentally solved structure is to it; however, it is a very reasonable first approach and will 
often lead to remarkably accurate representations.  I submitted a Giardia lamblia Elongation Factor 1α sequence 

to Swiss-Model in “First Approach mode.”  The results were e-mailed back to me in less than five minutes.  Figure 
3 displays a RasMac (http://www.umass.edu/microbio/rasmol/ [see e.g. Sayle and Milner-White, 1995]) “Strands” 
graphic of the Giardia EF-1α structural model from Swiss-Model superimposed over the eight most similar solved 

structural templates. 

 

Figure 3.  A RasMac representation of the Swiss-Model Giardia EF-1α structure superimposed over the eight 

most similar solved structures. 

Profiles are a position specific scoring matrix (PSSM) description of an alignment or a portion of an alignment.  
Gap insertion is penalized more heavily in conserved areas of the alignment than it is in variable regions, and the 
more highly conserved a residue is, the more important it becomes.  Profiles are created from an existing 
alignment of related sequences, and then they are used to search for remote sequence similarities and/or to build 
larger multiple sequence alignments.  Originally described by Gribskov (1987), and then automated by NCBI’s 
PSI-BLAST (Altschul, et al., 1997), later refinements have added more statistical rigor (see e.g. Eddy’s Hidden 
Markov Model profiles [1996 and 1998]).  The original Gribskov style profiles require a lot of time and skill to 

prepare and validate, and they are heuristics based.  An excess of subjectivity, and a lack of formal statistical rigor 
also contribute as drawbacks.  Eddy’s HMMer (pronounced “hammer”) package uses Hidden Markov modeling, 
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with a formal probabilistic basis and consistent gap insertion theory, to overcome these limitations.  The HMMer 
package can build and manipulate HMMer profiles and profile databases, search sequences against HMMer 
profile databases and visa versa, and easily create multiple sequence alignments using HMMer profiles as a 
‘seed.’  This ability to easily create larger and larger multiple sequence alignments is incredibly powerful and way 
faster than starting all over each time you want to add another sequence to an alignment.  The ‘take-home’ 
message is HMMer profiles are much easier to build than traditional profiles, and they do not need to have nearly 
as many sequences in their alignments in order to be effective.  Furthermore, they offer a statistical rigor not 
available in Gribskov profiles, plus they have all the sensitivity of any profile technique.  In effect, they are like the 
‘old-fashioned’ profiles pumped up on steroids!  One big difference between HMMer profiles and others is when 
the profile is built you need to specify the type of eventual alignment it will be used with, rather than when the 
alignment is built.  The HMMer profile will either be used for global or local alignment, and it will occur multiply or 
singly on a given sequence.  All profile techniques are tremendously powerful; they can provide the most 
sensitive, albeit extremely computationally intensive, database similarity search possible. 

Finally, we can use multiple sequence alignments to infer phylogeny.  Based on the assertion of homologous 
positions in an alignment, many, many different methods can estimate the most reasonable evolutionary tree for 
that alignment.  A few of the packages that incorporate these methods were mentioned earlier in the 
complications sections with regard to format issues: PAUP* (Swofford, 1989-2007), MrBayes (Ronquist and 
Huelsenbeck, 2003), and PHYLIP (Felsenstein, 1980-2007).  This is a huge, complicated, and highly contentious 
field of study.  (See the Woods Hole Marine Biological Laboratory’s excellent summer short course, the Workshop 
on Molecular Evolution, at http://workshop.molecularevolution.org/.)  However, always remember that regardless 
of the algorithm used, any form of parsimony, all of the distance methods, all maximum likelihood techniques, and 
even all types of Bayesian phylogenetic inference, they all make the absolute validity of your input alignment 
matrix their first and most critical assumption (but see Lunter, et al., 2005). 

Therefore, the accuracy of your multiple sequence alignment is the most important factor in inferring reliable 
phylogenies; your interpretations are utterly dependent on its quality.  Structural alignments are the ‘gold-
standard,’ but the luxury of having homologous solved structures is not always available.  In fact, many experts 
recommend not using any questionable portions of sequence data at all.  These highly saturated regions have the 
property known as  ‘homoplasy.’  This is a region of a sequence alignment where so many multiple substitutions 
have occurred at homologous sites that it is impossible to know if those sites are properly aligned, and thus, 
impossible to ascertain relationships based on those sites.  Phylogenetic inference algorithms’ primary 
assumption is most violated in these regions, and this phenomenon increasingly confounds evolutionary 
reconstruction as divergence between the members of a dataset increases.  Because of this, only analyze those 
sequences and those portions or your alignment that assuredly do align.  If any sequences or portions are in 
doubt, exclude them.  This usually means trimming down or masking the alignment’s terminal ends and may 
require internal trimming or masking as well.  These decisions are somewhat subjective by nature, experience 
helps, and some software, such as ASaturA (Van de Peer, et al., 2002) and T-Coffee (Notredame, et al. 2000), 
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has the ability to evaluate the quality of particular regions of your alignment as well.  Biocomputing is always a 
delicate balance — signal against noise — and sometimes it can be quite the balancing act! 

The T-Coffee shop 

I call this section the T-Coffee shop because T-Coffee (Notredame, et al. 2000) is much more than merely a 
program for doing multiple sequence alignment.  Much like a Starbucks® coffee shop offers many different flavors 

and types of coffee drinks, the T-Coffee command line offers an entire suite of multiple sequence alignment tools.  
Notredame (2006) has done a very good job of providing documentation with the package’s distribution.  In 
particular be sure to read the entire Tutorial and FAQ.  It’s quite good (albeit with some English language 
mistakes and confusions), and I can’t do it justice in my description here.  Therefore, I will attempt to distil out the 
most vital portions of the documentation, and illustrate a subset of T-Coffee’s potential in a ‘bare-bones’ manner, 

just enough to get a novice user started in exploring the package. 

As mentioned in the algorithm section, T-Coffee is one of the most accurate multiple sequence alignment tools 
around, and it does this in its default mode.  It achieves its accuracy by producing the multiple sequence 
alignment that has the highest consistency level with a library of preprocessed, global and local pairwise 
alignments.  However, it can do much more than that.  In addition to merely aligning a sequence dataset, it can 
combine preexisting alignments, evaluate the consistency of alignments, extract a series of motifs to create a 
local alignment, perform all sorts of data manipulation and format operations, and with SAP (Structure Alignment 
Program, Taylor, 1999) installed it can even use structural information to make the most accurate protein 
alignment possible. 

T-Coffee’s “seq_reformat” tool can perform standard data reformatting operations and change the appearance of 
your alignment, but it is incredible, as well, for extracting or combining subsets of your data based on sequence 
names, patterns, coordinates in the alignment, and/or level of consensus.   It even has the ability to translate DNA 
sequences into their corresponding protein sequences, or to generate DNA alignments based on the 
corresponding protein alignment, either using the actual DNA sequences (ala mrtrans and relatives) or using a 
random back-translation procedure.  Furthermore, “seq_reformat” can read phylogenetic trees in Newick format to 
compare two trees or to prune tips off of a tree.  Another practical utility in T-Coffee is “extract_from_pdb;” it allows 
you to download either the three-dimensional coordinates or the FastA format sequence of structures held at the 
PDB (Protein Data Bank, http://www.rcsb.org/pdb/, Berman, et al., 2003) using UNIX’s “wget” command.  There is 
little that cannot be done with the T-Coffee utility tools when it comes to data organization and manipulation.  One 

of my favorites is using it to remove sequences that are, or are nearly, redundant.  Pages 11 through 25 of 
Notredame’s tutorial cover all these operations very well, and I encourage you to work through the examples 
there; I will not take the space to review them here. 

Okay, how do we begin?  I’m making the presumption that you already have T-Coffee installed on either your own 
computer or on a server that you have access to.  If this is not the case, then refer to Notredame’s (2006) 
Technical Documentation, and either install it yourself, or get a local systems administrator to do it for you.  I’m 
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using version 5.05 here.  I’ll be consistent in my command syntax in these examples, but realize that the 
Notredame’s tutorial mixes up command syntax a bit, freely replacing equal signs and commas with spaces in 
some examples and not in others, and T-Coffee doesn’t mind.  Let’s first look at T-Coffee’s default mode.  Issue 
the following command to see all of T-Coffee’s default parameter settings: 

Prompt% t_coffee -help 

The list is huge; scroll back to skim over the entire thing.  Notice the “–seq” parameter usage: “List of sequences 
in any acceptable format.”  T-Coffee will accept several input formats, but it works most reliably if you have your 
input files in FastA format.  If I have a file containing unaligned sequences in FastA format named “unaligned.fa,” 
then the following command will run T-Coffee without any options or parameter specifications: 

Prompt% t_coffee unaligned.fa 

This will produce a screen trace of the program’s progress; an output alignment named “unaligned.aln” in Clustal 
Aln format; another alignment file named “unaligned.html” in HTML format for Web browsers, with columns color-
coded based on reliability; and a file named “unaligned.dnd,” that contains the Newick format tree used to guide 

the alignment.  If you have your dataset spread around in more than one file, then you can use the “–seq” option 
followed by a comma-delimited list of input files.  This option will also strip the gaps out of any input file that might 
already be an alignment.  And if you don’t like Clustal Aln format, use the “–output” option.  Here I’ll use it to 
generate a FastA format output alignment file named “unaligned1.fasta_aln” from two FastA input files (T-Coffee 
uses the first file’s primary name to identify the output file).  The only output alignment file produced this way is in 
FastA format: 

Prompt% t_coffee -seq=unaligned1.fa,unaligned2.fa -output=fasta_aln 

The T-Coffee “–output” option supports alignment formats with the following identifiers: “msf_aln” (for GCG MSF), 
“pir_aln” (for PIR), “fasta_aln” (for FastA), “phylip” (for PHYLIP), as well as its default “clustalw_aln” and “html”.  
You can produce output files in more than one format by comma separating the identifiers.  So, you can’t get 
directly to NEXUS format, but PAUP* has the ability to import GCG MSF, PIR, or PHYLIP format with the 
ToNEXUS command.  Plus, if you don’t like T-Coffee’s default output file naming convention, you can use the “–
outfile” option to specify any name you might want. 

Alignment parameters 

As in nearly all sequence alignment programs, the substitution matrix and the gap penalties are very important run 
parameters.  In most cases the T-Coffee matrix defaults, the BLOSUM62 and 50 matrices for its global and local 

pairwise alignment steps, respectively, will work just fine.  And, in fact, T-Coffee only uses these matrices in its 
first pass through your dataset, when it builds its consistency library.  It replaces the usual BLOSUM style matrix 
when building its final multiple sequence alignment with the optimal position specific scores of all the potential 
pairwise matings in its library.  Regardless, using the optional “–matrix=blosum30mt” flag (or blosum40mt or 
blosum45mt depending on your data’s level of divergence) is a great idea, whenever dealing with sequences that 
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are quite dissimilar.  Furthermore, gap penalties can be messed with, if you really want to, but the default gap 
opening penalty of -50 and gap extension penalty of zero, changed through the “–gapopen” and “–gapext” options 
are, as Notredame (2006) says, only “cosmetic,” changing the final alignment’s appearance by changing how 
residues slide around in ‘unalignable’ regions, since all the ‘alignable’ regions are found from the previously built 
library.  It’s much more complicated if you want to change how the library alignments are built, and I don’t suggest 
messing with it.  If you insist, the parameters are specified through the “–method” option, and two methods build 
the pairwise alignment library by default (several others are available by option for special cases): a global, 
“slow_pair,” one, and a local, “lalign_id_pair,” one.  To change their respective default behaviors a combination of 
“MATRIX” specification and “GOP” and “GEP” parameters are used.  The defaults for the global library alignments 
are a “GOP” of -10 with a “GEP” of -1; and for the local alignment library a “GOP” of -10, with a “GEP” of -4.   For 
instance, if I have a really lousy dataset, with barely discernible homology, and with no structural homologues at 
all, then perhaps using a combination of parameters such as the following would produce a more accurate and 
more pleasing looking multiple sequence alignment: 

Prompt% t_coffee -seq=lousydata.fa -matrix=blosum30mt 
-gapopen=-100 -gapext=0 -output=fasta_aln,clustalw_aln,html 
-method=slow_pair@EP@GOP@-5@GEP@-1,lalign_id_pair@EP@GOP@-5@GEP@-4 

Notice the bizarre syntax: the at sign, “@,” is used as a method parameter separator, and “EP” stands for “Extra 
Parameter.”  This command would run both the global and local library builds with the BLOSUM30 matrix, would 
double the ‘cosmetic’ gap opening penalty, would cut the penalties in half for opening a gap in both the gloabal 
and local library alignments, and would keep all the extension penalties at their default levels.  Additionally it 
would produce output alignments in FastA, ClustalW, and HTML formats.  If you wanted to use different 
substitution matrices for the different methods, then you would add e.g. “MATRIX@blosum45mt” after “@EP@” 
and before “@GOP@ for the appropriate method.  But, will this actually produce a ‘better’ alignment? 

Quality 

This brings up the heart of T-Coffee: consistency.  T-Coffee’s method relies on reconciling its internal pairwise 
alignment library as best as it can with its eventual multiple sequence alignment; the more these agree, the more 
consistent is the alignment and, we assume, the more accurate.  This premise allows us to use T-Coffee to 
evaluate and compare alignments.  The easiest way to see how accurate T-Coffee ‘thinks’ its alignment is, is to 
look at the “SCORE” it receives in its ClustalW or HTML format output.  The higher this score value is, the more 

closely the alignment overall agrees with the internal pairwise alignment library.  Notredame (2006) says that 
values above 40 are “usually pretty good.”  Every T-Coffee ClustalW and HTML format output alignment has this 
value associated with it.  However, what if you don’t have the right output format, or you want to see how the 
output from some other alignment program ranks, or you are interested in how different alignments compare to 
each other, or you are interested in what portions of an alignment are good and what portions are bad?  T-Coffee 
can do all of this. 
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I’ll discuss methods that do not rely on structure first.  Structural methods will follow where I discuss T-Coffee’s 
ability to integrate sequence and structure.  T-Coffee’s CORE index is the local consistency level of each position 
within your alignment.  All T-Coffee HTML format output alignments represent this index with color-coding, plus 
there are specific score output file options.  Position colors range across the spectrum from blue, to green, to 
yellow, to orange, and finally red, corresponding to an increase in consistency level from none to absolute.  These 
colors correspond to local consistency values of 0 through 9.  To test a preexisting alignment with the CORE 
index use the “–infile” specification for your alignment, the “–evaluate” (replaces the deprecated “–score” flag, and 
in default mode equivalent to “–special_mode=evaluate”) option, and minimally specify HTML output format: 

Prompt% t_coffee -infile=lousydata.fasta_aln -evaluate -output=html 

Notice we need to use “–infile” rather than “–seq” in order to run T-Coffee in this manner.  There are even ways to 
automatically filter unreliable columns from your alignment based on the CORE index; however, the various 
commands’ syntax are quite complicated, and I refer you to page 45 of Notredame’s (2006) tutorial. 

Comparing alignments 

T-Coffee has several ways to compare existing alignments of the same sequences beyond just looking at their 
consistency scores.  The “aln_compare” module is one of the more powerful, and can tell you how different two 
alignments are.  It needs to be launched with the “–other_pg” option, which tells T-Coffee that you want to use an 

external module.  This option must be the first parameter on the command line after “t_coffee.”  “aln_compare” 
supports several further options that can help with visualization.  Here the “aln_compare” module is used to 
analyze the difference between two existing alignments with the “–al1” and “–al2” options to produce an output 
screen trace of the first alignment where all residues with less than 50% of their pairing partners in the other 
alignment are represented as an “x:” 

Prompt% t_coffee -other_pg=aln_compare -al1=trial1.fasta_aln  
-al2=trial2.fasta_aln -output_aln -output_aln_threshold 50  
-output_aln_modif x 

The same command without the “–output_align” parameters will produce a summary statistic of the percentage of 
similarity between the two alignments counting the sum of all pairs of residues in those alignments.  Type the 

command without any parameters to see all that “aln_compare” offers: 

Prompt% t_coffee -other_pg=aln_compare  

All of T-Coffee’s built in external modules support this help syntax, versus its standard “–help” option. 

Another way to compare alignments is to turn one into T-Coffee’s library and leave the other an alignment.  You 
need to use the “–aln” option to do this.  This option tells T-Coffee to use the specified input alignment file to build 
its library.  The following command will show how well the alignment “somedata1.fasta_aln” agrees with the library 
produced from the alignment “somedata2.fasta_aln:” 

Prompt% t_coffee -infile=somedata1.fasta_aln -aln=somedata2.fasta_aln  
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-evaluate -output=html 

The HTML alignment output will highlight those residues that are in agreement or not between the two input 
alignments using T-Coffee’s standard CORE index coloring scheme. 

Combining alignments 

Again, there’s a slew of ways to combine alignments with T-Coffee.  One neat way is to not really worry how 
alignments compare and just turn them all into a T-Coffee library so that they will combine together yielding one 
optimal alignment that best agrees with all the input alignments.  They do not even need to all have the same 
sequences to do this.  Turn the three specified alignments into a library and produce an output alignment in 
Clustal Aln, FastA, and HTML format with the command below: 

Prompt% t_coffee -aln=one.fasta_aln,two.fasta_aln,three.fasta_aln  
-output=clustal_aln,fasta_aln,html 

And, of course, you could easily add some unaligned input sequences to the mix with the “–seq” option as well. 

As discussed in this chapter under multiple sequence alignment applications, profiles are a very powerful 
technique for building larger and larger alignments.  T-Coffee can deal with profiles in several ways, though they 
are not quite the same sort of profile as, for instance, Gribskov (et al., 1987) or Eddy (1998) envisioned.  T-Coffee 
defines profiles as multiple sequence alignment matrices that will not have their gaps removed, rather than a true 
PSSM where residues receive higher weights in more conserved regions.  Regardless, T-Coffee can take as 
many different profiles and sequences as you want to specify, and combine them all into one alignment (given 
that it is biologically correct to attempt to align them): 

Prompt% t_coffee -profile=one.fasta_aln,two.fasta_aln,three.fasta_aln  
-seq=lousydata.fa,evenworsedata.fa -output=clustal_aln,fasta_aln,html 

This command will feed three alignments to T-Coffee such that the sequences within them will not have their gaps 
removed, it will add more gaps to reconcile those three alignments, and it will add two more sequences to the 
resulting alignment in the most consistent manner. 

And to get the most accurate profile alignment add “–profile_comparison=full,” which runs the profile alignment in 
a slower, more exact mode “on a library that includes every possible pair of sequences between the two profiles,” 
as opposed to the above command, which “vectorizes” the multiple sequence alignments designated as profiles 
(Notredame, 2006). 

Combining methods 

T-Coffee has a special ‘Meta’ mode named M-Coffee (Wallace, et al., 2006).  This gives T-Coffee an incredible 
amount of power.  M-Coffee is amazing for those situations where you just don’t know what alignment tools to 
trust, and you don’t want to have to build and test a bunch of alternatives.  It automatically runs up to eight 
different multiple alignment programs (by default, more external methods can be added) on your data, and 
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combines the best parts of each, to come up with one, most consistent, consensus alignment.  Your system 
needs to have ClustalW (Thompson, et al., 1994), POA (Lee, et al., 2002), Muscle (Edgar, 2004), ProbCons (Do, 
et al., 2005), MAFFT (Katoh, et al., 2005), Dialign-T (Subramanian, et al., 2005), PCMA (Pei, et al., 2003), and T-
Coffee (Notredame, et al. 2000) all installed for this to work.  If I want to see how M-Coffee handles that lousy data 
FastA format file I have, then I would issue the following command to run M-Coffee in its default mode: 

Prompt% t_coffee -seq=lousydata.fa -special_mode=mcoffee 
-output=clustal_aln,fasta_aln,html 

The output Clustal and HTML format files will list the alignment’s overall score as a percentage of consistency 
between all the methods.  The HTML format will additionally provide T-Coffee’s usual color-coded position 
consistencies.  Or, If you prefer some methods to others, you can select particular methods to combine with the “–
method” option, with syntax like the following: 

Prompt% t_coffee -seq=lousydata.fa -method=t_coffee_msa,mafft_msa,muscle_msa 
-output=fasta_aln,html 

Here’s some general guidelines as to which of T-Coffee’s integrated external multiple sequence alignment 
methods are best in which situations (based on Notredame, 2006, and Edgar and Bataoglou, 2006): 

clustalw_msa neither the fastest nor the most accurate, but a reasonable ‘industry-standard.’ 
probcons_msa uses consistency and Bayesian inference to provide ultra-accurate, but very slow runs. 
muscle_msa very, very fast for large datasets, especially; uses weighted log-expectation scoring. 
mafft_msa  in fast mode (FFT-NS-i) screaming quick on large datasets, but not incredibly accurate; 

in slow mode (L-INS-i) very accurate but quite slow, especially with large datasets. 
pcma_msa combines ClustalW and T-Coffee strategies. 
poa_msa very accurate local alignments using partial order graphs. 
dialignt_msa accurate local, segment-based, progressive alignment. 

Pick and choose among the most appropriate methods and let M-Coffee combine the best aspects of each. 

Local multiple sequence alignments 

If you know the coordinates of some predefined sequence pattern in one sequence, you can use T-Coffee’s 

mocca routine (Multiple OCCurrences Analysis, Notredame, 2001) to find all the occurrences of similar patterns in 
other sequences and assemble a local multiple sequence alignment of them.  Mocca is a perl script that launches 
T-Coffee, computes a T-Coffee library from the input sequences, and then prompts you with an interactive menu 
to extract the homologous motifs and assemble the alignment.  It is designed to find and align motifs of 30% and 
greater identity that are at least 30 amino acids long.  The interactive menu can be confusing, so I recommend 
that you place the sequence with your identified motif first in the dataset, and specify the beginning and the length 
of your motif on the command line, rather than in the menu.  I’ll use mocca here to prepare a local sequence 
alignment of the motifs in a dataset named “motifdata.fa,” where I know the first occurrence of the motif is at 
absolute position 35 and runs for 65 residues in my first sequence of the dataset: 
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Prompt% t_coffee -other_pg=mocca motifdata.fa -start=35 -len=65 

You cannot use the “–seq” option with mocca to specify your input file in this command.  Specifying your motif 
coordinates is also a bit tricky, since all the input sequences have their gaps removed (if it was an alignment) and 
are then concatenated together.  That’s why it’s easiest if you put your known motif sequence first.  After mocca 
computes the optimal local alignment with your motif it pauses and displays its menu.  Type a capital “X” to exit 
the program and write the default Clustal Aln and HTML alignment files. 

The ‘gold-standard:’ creating structure based alignments 

As mentioned earlier, you need to minimally have SAP (Taylor, 1999) installed on your system for T-Coffee’s 
structure based alignment mode to actually use structural information.  And, even better yet, have the FUGUE 
package (Shi, et al., 2001) installed as well.  Additionally you need “wget” on your system, to access PDB files 
over the Internet, but most all UNIX/Linux installations should include this utility.  T-Coffee uses a special mode 
named 3DCoffee (O’Sullivan, et al., 2004) to create structure-based alignments.  By default 3DCoffee uses four 
methods to create the T-Coffee consistency library, if you specify an input sequence dataset: the standard T-
Coffee global “slow_pair” and local “lalign_id_pair,” SAP’s “sap_pair,” and FUGUE’s “fugue_pair.”  If I have a 
dataset that includes some PDB structures, and those sequences are named using PDB’s identifier with a chain 
name  (e.g. 1EFTA for chain A of the Thermus aquaticus elongation factor Tu structure, Kjeldgaard, 1993), then 

the following command will produce the most consistent alignment of them based on all available structural pairs 
and T-Coffee’s usual pairs: 

Prompt% t_coffee -seq=elongation.fa -special_mode=3dcoffee 

You’ll get three output files by default with this command: “elongation.aln,” “elongation.html,” and “elongation.dnd”.  
The alignment files will have T-Coffee’s standard reliability index.  If you specify your input dataset is already an 
alignment, then the local “lalign_id_pair” will not be used, and the alignment will be turned directly into T-Coffee’s 
library along with the SAP and FUGUE pairs: 

Prompt% t_coffee -aln=elongation.fasta_aln -special_mode=3dcoffee 

These 3DCoffee analyses will even produce output alignments if you don’t have SAP or FUGUE installed, but 
they will report error warnings for every pair, and, naturally, no structural information will be used in the production 
of the alignment.  If you don’t like the warning messages, just specify the particular methods you have available, 
e.g: 

Prompt% t_coffee -aln=elongation.fasta_aln -method=sap_pair,slow_pair 

A nice trick is to combine two existing, related, but only distantly so, alignments with 3DCoffee, if they both have 
at least one sequence whose structure has been solved, and they follow proper naming conventions.  Suppose I 
have one alignment of elongation factor Tu sequences containing the sequence for the solved structure for 
Thermus aquaticus, and another alignment of elongation factor 1α sequences containing the sequence of the 

solved human structure.  Do this analysis with the “–profile” input specification: 
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Prompt% t_coffee -profile=elongation1a.fasta_aln,elongationtu.fasta_aln 
-special_mode=3dcoffee 

The output alignment will combine the two existing alignments in the most consistent manner with the structural 
alignment of the human and Thermus aquaticus sequences. 

Using structure to evaluate alignments 

Your existing alignment needs to have at least two members with solved structures in order to evaluate it using T-
Coffee’s structural method, and, as above, those sequences need to be named according to their PDB identifiers 
as well as their chain.  T-Coffee uses a special version of Root Mean Square Distance Deviation analysis not 
dependent on specific α carbon backbone superpositioning called iRMSD (the “i” stands for intra-catener, 

Armougom, et al., 2006) for structural alignment evaluation.  It also reports a normalized NiRMSD not dependent 
on the alignment’s length, and it reports an older measure, APDB, not as powerful as iRSMD, based on the 
fraction of residue pairs with ‘correct’ structural alignments.  The smaller the iRMSD Å numbers are, the bigger the 
APDB percent will be, and the better the alignment corresponds to structural ‘reality.’  As with the other integrated 
external methods in the T-Coffee package, iRMSD is launched with the “–other_pg” option.  Specify your 
alignment’s file name with the “–aln” option, and specify an output file with the “–apdb_outfile” option, otherwise 
the output will just scroll to screen.  Optionally generate an HTML alignment output as well with “–outfile”: 

Prompt% t_coffee -other_pg=irmsd -aln=elongation.fasta_aln 
-apdb_outfile=irmsd.out -outfile=irmsd 

The summary statistics at the end of the output file are the most telling: 

#TOTAL for the Full MSA 
        TOTAL     EVALUATED:  81.58 %   
        TOTAL     APDB:       78.25 %   
        TOTAL     iRMSD:       0.75 Angs 
        TOTAL     NiRMSD:      0.93 Angs 
 
# EVALUATED: Fraction of Pairwise Columns Evaluated 
# APDB:      Fraction of Correct Columns according to APDB 
# iRMDS:     Average iRMSD over all evaluated columns 
# NiRMDS:    iRMSD*MIN(L1,L2)/Number Evaluated Columns 
# Main Parameter: -maximum_distance 10.00 Angstrom 
# Undefined values are set to -1 and indicate LOW Alignment Quality 
# Results Produced with T-COFFEE (Version_5.05) 
# T-COFFEE is available from http://www.tcoffee.org 

My elongation factor 1α/Tu alignment is pretty darn good with an overall NiRSMD of less than 1 Å and an APDB 

statistic of 78%.  The old T-Coffee external method specification “–other_pg=apdb” produces the same output.  
The optional HTML output shows which residues in the solved structures (only) are in agreement with the 
structural alignment using the APDB coloring scheme where blue corresponds to 0% and red corresponds to 
100% (get iRSMD coloring with “–color_mode=irmsd”). 
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Special situations 

Even though T-Coffee is great for so many things, its default run parameters are far from ideal for some special 
situations.  It doesn’t work very well for huge datasets, that is anything with over about 100 sequences, it doesn’t 
particularly like DNA/RNA alignments, and it has some problems with jumping over huge gaps like you would see 
when aligning splicing variants or cDNA to genomic DNA containing introns.  Fortunately there are ways around 
each one of these scenarios, and most all multiple sequence alignment programs have trouble with the same 
situations as well. 

Let’s start with real large alignments.  Both Muscle and MAFFT (in fast mode) are more appropriate for datasets 
with more than around 100 sequences; however, T-Coffee does have a special mode that will at least allow it to 
estimate an approximate alignment with such datasets.  This should work when your dataset has an overall 
identity of 40% or more: 

Prompt% t_coffee -seq=hugedata.fa -special_mode=quickaln 

The resulting alignment should be about as accurate as one built with ClustalW.  For datasets with between 50 
and 100 sequences T-Coffee automatically switches to another heuristic mode named DPA (double progressive 
alignment). 

Naturally DNA and RNA alignments are way harder for T-Coffee to perform.  The rationale for this phenomenon is 

explained in the introduction, and it confounds every single multiple sequence alignment program around.  DNA is 
just really hard to align unless the sequences are 90% or so identical.  One way to help T-Coffee with an 
alignment that must be built using DNA or RNA, because the locus does not code for proteins, is to specify that 
the sequences are DNA with the “–type” option: 

Prompt% t_coffee -seq=DNAdata.fa -type=dna 

T-Coffee should detect this sequence type automatically, but it can’t hurt to declare it up front.  When T-Coffee 
realizes that it is working with DNA it uses specific DNA optimized methods to build its library, “slow_pair4dna” 
and “lalign_id_pair4dna.”  These methods have lower built-in gap penalties and use a DNA specific scoring 
matrix.  And if your DNA is a particularly noisy coding locus, but you just can’t figure out the translation, because it 
is so noisy, then T-Coffee’s special “cdna_fast_pair” method takes potential amino acid similarity considering 
frameshifts into account, and may help: 

Prompt% t_coffee -seq=noisy_cDNAdata.fa -method=cdna_fast_pair 

You may want to try this when aligning cDNAs to genomic DNA as well, in order to jump over the introns.  If the 

results look good, you can even use T-Coffee’s external “seq_reformat” module to translate it to the appropriate 
protein translation in spite of how noisy the original DNA sequences were: 

Prompt% t_coffee -other_pg=seq_reformat -in=noisy_cDNAdata.fasta_aln 
-action=+clean_cdna,+translate > noisy_pep.fasta_aln 
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Notice that “seq_reformat” does not support “–outfile;” you need to use UNIX “>” output redirection.  
“+clean_cdna” is a small HMM that tries to maximize the appropriate frame choice at every point in the sequences 
to best match the alignment of all the other sequences, and “+translate,” obviously, does the translation. 

 T-Coffee is actually pretty good at jumping over big gaps in protein sequence alignments, such as can be present 
when trying to align various protein splicing variants.  It achieves this by relying heavily on the local, pairwise 
knowledge gained in its internal “lalgn_id_pair” method.  If you can’t find the alignment using default parameters, 
try to restrict your method to the local pair library only: 

Prompt% t_coffee -seq=splicingvariant.fa -method=lalgn_id_pair 

Another trick that can work well with EST sequences is to increase the default ktuple size from 2 to 5, along with 
specifying the “cfasta_pair_wise” “dp_mode” option: 

Prompt% t_coffee -seq=EST.fa -dp_mode=cfasta_pair_wise -ktuple=5 

This should use a “checked” (Notredame, 2006) version of the FastA algorithm with a word size of five to create 
T-Coffee’s consistency library.  A DNA alignment can be produced much faster this way than with other methods 

given sufficient similarity, but difficult regions will end up less accurate.  Try mixing and matching the various 
methods most appropriate for your data to come up with your ‘most satisfying’ multiple sequence alignment. 

T-Coffee servers and Expresso 

Finally, if all this command line stuff just bewilders you, there are several T-Coffee Web servers around, e.g. the 
primary one at http://www.tcoffee.org/; they just can’t do all the things that can be done in the package from the 
command line.  T-Coffee Web servers do, however, offer “Regular” and “Advanced” modes.  Furthermore, as of 
this writing, T-Coffee Web servers are the only way to run Expresso.  Expresso is T-Coffee’s latest and greatest 
mode.  It’s the triple-shot espresso, extra whip cream, Irish whiskey enriched, grandé cappuccino, of modes!  It’s 
a logical pipeline: the server runs an all against all BLAST search of your dataset against the sequences in PDB, 
finds all templates with greater than 60% identity to any of your sequences (if they exist), and then uses T-
Coffee/3DCoffee to align your dataset using that structural information to build the consistency library as well as 
T-Coffee’s usual library methods, all in an automated fashion.  Give it a try.  It’s very slick, and impressively 
accurate. 

Conclusion 

The comparative method is a cornerstone of the biological sciences, and key to understanding systems biology in 
so many ways.  Multiple sequence alignment is the comparative method on a molecular scale, and is a vital 
prerequisite to some of the most powerful biocomputing analyses available, such as structure/function prediction 
and phylogenetic inference.  Understanding something about the algorithms and the program parameters of 
multiple sequence alignment is the only way to rationally know what is appropriate.  Knowing and staying well 

within the limitations of any particular method will avert a lot of frustration.  Furthermore, realize that program 
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defaults may not always be appropriate.  Think about what these default values imply and adjust them 
accordingly, especially if the results seem inappropriate after running through a first pass with the default 
parameters intact.  T-Coffee’s and others’ consistency based approaches can help with these decisions. 

Oftentimes you’ll need to deal with quite complicated datasets — distantly related local domains, perhaps not 
even in syntenic order between sequences; or widely divergent paralogous systems resulting from large gene 
expansions; or extremely large sequence collections with megabases of genomic data; often you’ll even need to 
resort to manual alignment, at least in some regions — these are the situations that will present vexing alignment 
problems and difficult editing decisions.  These are the times that you’ll really have to think.  A comprehensive 
multiple sequence editor such as GCG’s SeqLab, or alternative freeware and public-domain editors, can be a 
lifesaver in these situations.  As can the powerful evaluation and comparison modes built into the T-Coffee 
multiple sequence alignment package. 
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