Phylogenetic Analysis of Phenotypic Covariance Structure. L. Contrasting
Results from Matrix Correlation and Common Principal Component
Analysis

Scott I. Steppan

Evolurion, Volume 51, Issue 2 (Apr., 1997), 571-586.

Stable URL:
http://links.jstor.org/sici 7sici=0014-3820%28199704%2951%3A2%3C571 %3APAOPCS %3E2.0.C0%3B2-Z

Your use of the ISTOR archive indicates your acceptance of ISTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. ISTOR's Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the ISTOR archive only for your personal, non-commercial use.

Each copy of any part of a ISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transtnission.

Evolution 1s published by Society for the Study of Evolution. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ssevol.html.

Evolution
©1997 Society for the Study of Evolution

ISTOR and the ISTOR logo are trademarks of ISTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on ISTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www jstor.org/
Mon Mar 3 11:41:05 2003



Evalutian, 51¢23, 1997, pp. 571-586

PHYLOGENETIC ANALYSIS OF PHENOTYPIC COVARIANCE STRUCTURE. L
CONTRASTING RESULTS FROM MATRIX CORRELATION AND COMMON PRINCIPAL

COMPONENT ANALYSES
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Committee on Evolutionary Biclogy, The University of Chicago, Chicago, Illinois 60637 and Division of Mammals,
The Field Museum, Chicags, Hlincis 60605
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Abstract.—Applications of quantitative techniques to understanding macroevolutionary patterns typically assume that
genetic variances and covariances remain constant. That assumption is tested among 28 populations of the Phyllotis
darwini species group (leaf-eared mice). Phenotypic covariances are used as a surrogate for genetic covariances to
allow much greater phylogenetic sampling. Twa new approaches are applied that extend the comparative method to
multivariate data. The efficacy of these techniques are compared, and their sensitivity to sampling error examined.
Pairwise matrix correlations of correlation matrices are consistently very high (> 0.90) and show na significant
association between matrix similarity and phylogenetic relatedness. Hierarchical decomposition of common principal
companent (CPC) analyses applied to each clade in the phylogeny rejects the hypathesis that comman principal
compaonent structure is shared in clades more inclusive than subspecies. Most subspecies also lack a common covariance
structure as described by the CPC model. The hypothesis of constant covariances must be rejected, but the magnitudes
of divergence in covariance structure appear to be small. Matrix correlations are very sensitive to sampling errar,
while CPC is not. CPC is a powerful statistical tool that allows detailed testing of underlying patterns of covariation.

Key words.—Common principal components, comparative method, cranial morphology, macroevolution, phenotypic

covariance structure, Phylloris, quantitative genetics.
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The evolution of patterns of phenotypic covariation is cen-
tral to two major approaches to understanding macroevalu-
tion in terms of microevolutionary process. One is that of
quantitative genetics, where evolutionary change can be mod-
eled as natural selection acting on the additive genetic var-
iances and covariances. Solving equations for a large number
of generations extends this typically microevolutionary tech-
nique to macroevolutionary phenomena. Phenotypic covari-
ation is the expression of these underlying genetic parameters
and is the attribute from which genetic covariances are cal-
culated. The other approach is a set of techniques that can
be grouped under the field of evolutionary constraints, which
views phenotypic covariances as the expressions of under-
lying constraints, whether genetic, developmental, or other.

The two approaches address the issue from different di-
rections. Quantitative genetics has built a body of explicit
theory and analytical models for microevolutionary change,
and requires a series of assumptions to extrapolate these mod-
els to understand macroevolution. On the other hand, an evo-
lutionary constraints approach infers underlying mechanisms
from macroevolutionary patterns.

There is ample information that covariance patterns are
fundamental to quantitative models of phenotypic divergence
aver short time periods (Lande 1979; Lande and Arnold 1983;
Arnold and Wade 1984; Maynard Smith et al. 1985). How-
ever, if such models are to be successfully applied to mac-
roevolution, patterns of genetic covariation must either re-
main constant or behave predictably over macroevolutionary
time scales {Lande 1979; Price ¢t al. 1984; Lande 1986; Chee-
tham et al. 1993). Theory has not provided maodels to predict
the evolution of genetic covariances, and such capabilities
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are not likely to be immediately forthcoming (Turelli 1988).
Lande and others (Lande 1979; Turelli 1988; Wagner 1988;
Emerson and Arnold 1989; Arnold 1992) have called for
more empirical studies of covariance patterns within a phy-
logenetic context. Within quantitative genetics, the question
has been primarily whether genetic covariances remain con-
stant among related taxa. With an evolutionary constraints
approach, a principal question is whether the patterns of phe-
notypic covariances remain constant. An underemphasized
issue, once one moves conceptually from simple comparisons
of pairs of taxa to phylogenies, is how do the covariance
patterns evolve?

The underlying, although often unstated, objective of these
approaches is to bridge the fields of microevolution and mac-
roevolution. During speciation, the accumulated effects of
microevolutionary processes become recognized as macro-
evolutionary patterns. The transition from populations to di-
vergent species is fundamental to evolutionary theory. This
is also the transition between population genetics and sys-
tematics. Additionally, macroevolutionary patterns and even
trends can be achieved through common anagenetic changes
among a group of lineages, independent of speciation. Ap-
plying quantitative genetic approaches to understanding mac-
roevolutionary patterns requires knowledge of the patterns
of covariation among traits (AZ = G, where AZ is the evo-
lutionary change in a vector of trait means,  is the vector
of selection gradients, and G is the additive genetic variance/
covariance matrix [Lande 1979]).

Solving the iterated version of the above equation for B
allows for the estimation of the selective forces that account
for the historical divergence of mean phenotypes (Lande
1979). Madifications allow testing whether the amount of
selection estimated from observed phenotypic evolution is
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necessary to explain that change, or if drift is a sufficient
null hypothesis (Lande 1986; Lynch 1990; Cheetham et al.
1993). The historical reconstruction has been used in a variety
of studies (Price et al. 1984; Schluter 1984; Lofsvold 1988;
Cheverud 1996). One can also extrapolate the effects of ge-
netic constraints te predict the dynamics of future evolu-
tionary changes (e.g., Boulding and Hay 1993}, although con-
fidence limits can be considerable (McCulloch et al. 1996}.
These approaches all share the unproven assumption of con-
stant or predictable genetic covariances, in addition to other
simplifying assumptions.

Covariance structure as used in this paper refers to the
patterns of covariation among traits. Pattern is present in any
variance/covariance matrix with nonuniform variances and
covariances. These patterns are nonrandom to the extent that
they reflect underlying mechanisms including genetic orga-
nization, pleiotropy, developmental programs, or environ-
mental effects. One of the first attempts to describe covari-
ance structure was Berg (1960), who called sets of highly
correlated traits “correlation pleiades.” Covariance structure
is a more general concept subsuming correlation pleiades. It
does not imply any specific mechanism producing that struc-
ture.

Previous investigations into the evolution of covariance
structure have been hampered not by insufficiently robust
estimation of G-matrices, but by their lack of phylogenetic
resolution. Previous tests of covariance evolution have typ-
ically employed two or three taxa (Arnold 1981; Atchley et
al. 1981, 1992; Lofsvold 1986; Kohn and Atchley 1988; Shaw
and Billington 1991; Brodie 1993; Paulsen 1996) or with
larger numbers of populations, little or no phylogenetic res-
olution {Riska 1983; James et al. 1990; Venable and Birquez
M. 1990; Voss et al. 1990). Either way, the internal branches
of a phylogeny were poorly sampled. In the two extreme
sampling designs, single populations from each of two spe-
cies or multiple populations of a single species, only one
clade or internal node is sampled. Even comparisons involv-
ing two or three nodes in a phylogeny give very little in-
formation regarding the evolution of covariance patterns. For
instance, one cannot determine the phylogenetic level at
which covariance patterns diverge. Nor can one determine
whether existing differences reflect actual phylogenetic di-
vergence or could be accounted for by intraspecific variation.
Those questions require more detailed sampling of the phy-
logenetic hierarchy. Furthermore, prior studies have used a
diversity of hypotheses and test methods, with the result that
conclusions have been mixed.

An additional impediment to synthesizing the results of
previous studies is the different life histories of the study
organisms {e.g., determinate vs. indeterminate growth). Some
studies involve a single ontogenetic stage (static allometry},
whereas others span multiple stages (ontogenetic allometry)
{Klingenberg and Zimmermann 1992}. This study cannot
synthesize these results directly because Phyllotis has its own
characteristic life history. Instead, [ address the principal
shortcomings of previous studies by developing techniques
to test for the conservation of covariance structure across a
diverse clade of taxa. These techniques are applied to six
species of South American leaf-eared mice, Phyllotis. More
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broadly applied, these techniques can allow the comparative
study of matrices in a variety of other contexts.

This study more thoroughly samples the evolutionary his-
tory of a group, but there are trade-offs te this benefit. Be-
cause the number of populations is large (28) it is impractical
to determine the genetic covariances. Replicate sets of rel-
atives with genealogical information are needed to estimate
genetic covariances, and these require a controlled captive
breeding program. It would not be practical to maintain 23
separate captive breeding populations, with the populations
established from wild-caught individuals and collectively
representative of the systematic diversity for a clade. Instead,
phenotypic covariances are calculated from pepulation sam-
ples already residing in museum collections. Phenotypic co-
variance matrices may not be equivalent to genetic covariance
matrices (Lofsvold 1986; Kohn and Atchley 1988; Willis et
al. 1991), but are typically similar (Cheverud 1988; Arnold
1992). If they are similar, variation in phenotypic covariance
structure should give insights into the variation in genetic
covariance structure. Constant phenotypic cevariances would
be a strong indication of common genetic covariances. In-
dependent of the relationship between genetic and phenotypic
covariances, the evolution of phenotypic covariances has
been poorly documented, and is as important a subject of
study as univariate aspects of the phenotype that are com-
monly and routinely studied in comparative biology. The
phenotypic patterns are also directly informative about the
degree of variation available to natural selection.

Study Organisms

Phyllotis is a member of the taxonomically and morphao-
logically diverse muroid subfamily Sigmedontinae and its
members are commonly known as the leaf-eared mice. Its
species are frequently the most abundant mammal species at
a locality and they have been described as the South American
equivalents of Peromyscus (Pearson 1958), although they av-
erage two to four times the mass. Most species of Phyllotis
live in rocky or brushy habitats in the Andes and nearby areas
{Fig. 1). Phyllotis has semideterminate growth as size in-
creases well into adulthood before asymptoting. Other New
World muroid rodent genera have figured prominently in
studies of the evolution of covariance structure, including
Peromyscus {Lofsvold 1986, 1988), Sigmodon (Zelditch and
Carmichael 1989; Zelditch et al. 1990), and Zygodontomys
(Voss et al. 1990; Voss and Marcus 1992).

The P. darwini species group was chosen as the subject of
this research because most species are locally abundant and
several thousand individual specimens reside in museum col-
lections. Species-level systematics (i.e., the alpha level tax-
onomy of the group), has been sufficiently well documented
(Pearson 19358; Hershkovitz 1962; Pearson and Patton 1976,
Walker et al. 1984), so that individuals could be assigned to
species with confidence. Subsequent morphology-based phy-
logenetic analyses were able only to provide minimal reso-
lution of relationships within Phyllotis (Steppan 1993; Step-
pan 1995b). DNA sequence data from a 973-bp region of the
mitochondrial cytochrome b gene increased reselution within
the genus {Steppan 1995a, in press) and provides the phy-
logenetic hypothesis for this study.
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FiG. 1. Distribution of subspecies belonging to Phayllotis darwini

(darwini, fulvescens), P. limatus (northern, southern), and P. xan-
thopygus (posticalis, chilensis, rupestris, ricardulus, vaccarum, xan-
thapygus) and locations of sampled populations. (1) Rimac Valley
(Lima, Peru); (2) Huancavelica {Huancavelica, Peru); (3) Puquio
{Ayacucha, Peru); (4, 5) Arequipa (region, Peru}; (6) Torata (Mo-
quegua, Peru); (7) Tarata {Tacna, Pern); (8) Moro Sama (Tacna,
Peru); (9) Cailloma (Puno, Peru); (1) Puno (Puno, Peru); (11) Santa
Rasa (Puno, Peru); (12) Fray Jorge {Coquimbo, Chile); (13) San-
tiago (region, Chile); (14) Angol (Malleco, Chile); (13} Paiguano
(Coquimbo, Chile); (16) Re. 40, Mendoza (Argentina); (17) Huan-
uluan (Rio Negro, Argentina); (18) Puerto Ibafiez (Aisén, Chile);
(19) Chile Chico (Aisén, Chile).

Review af Previous Studies

The conservation of genetic correlations or covariances has
been tested in several studies, most of which employed only
two operational taxonomic units. The first explicit tests were
by Arnold (1981) and Atchley et al. (1981). Visual exami-
nation of factor loadings led Arnold (1981) to conclude that
genetic correlations for response to prey were the same in
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two geographic populations of the garter snake, Thamnophis
elegans. Using similar techniques, Atchley et al. (1981) con-
cluded that genetic correlations for skull dimensions were
the same between an inbred laboratory strain of rats (Rattus
norvegicus) and an inbred strain of mice (Mus musculus).
While Atchley et al. (1981) found an overall similarity in the
genetic and phenotypic correlation patterns, they also noted
several differences as well. For example, the first pooled
principal components from the genetic correlations in each
of the two species appeared to represent different biological
properties: a general size factor in rats, a shape vector in
mice. This result indicates divergence in genetic covariances,
but to an unknown degree and at an undetermined phylo-
genetic level.

Statistical tests were first employed by Lofsvold (1986),
and later by Kohn and Atchley (1988), Atchley et al. (1992),
and Paulsen (1996). Nonparametric matrix permutation tests
(Dietz 1983) were used by both Kohn and Atchley {1988)
and Atchley et al. (1992) for the same samples of rats and
mice. The two studies examined different morphological
structures, and arrived at different conclusions about the con-
servation of genetic correlations. Kohn and Atchley (1983)
failed to find significant divergence between the two species
for genetic correlations for the pelvis. In contrast, Atchley
et al. (1992) could not reject the null hypothesis of indepen-
dent matrices for mandible traits. This difference may indi-
cate that the pelvis is more highly constrained than the jaw.
Certainly, the pelvis is much less variable among muroid
rodents than are the jaw or skull. However, the general sig-
nificance of these results should be interpreted cautiously,
because they do not address the hypothesis of primary evo-
lutionary interest, that the covariance matrices have remained
constant {Turelli 1988). Instead, the matrix permutation tests
determine whether correlation matrices are significantly sim-
ilar. Nonetheless, the similarity of correlation matrices is an
empirically valuable insight.

A more significant criticism of comparative studies with
only two operational taxonomic units (OTUs) is the inability
to generalize the conclusions, and this is exacerbated by the
use of laboratory and inbred strains. Divergence (or conver-
gence) could occur at any point in the phylogeny since the
twa lineages split, from approximately 10 M.Y.B.P. for rats
and mice (Catzeflis et al. 1992), to the populations from
which the strains were derived, or even since inbreeding. In
effect, there are only tweo data points (or just one independent
contrast, sensu Felsenstein 1985), and no statistically sig-
nificant pattern can be determined from just two data points.

Lofsvold {1986} conducted the only test of genetic covar-
iances in mare than two taxa. Correlation and covariance
matrices of external and cranial measurements were com-
pared in two subspecies of Peromyscus maniculatus and in
P. leucopus. Matrix permutation tests indicated that the null
hypothesis of independent covariance matrices could not be
rejected for the two species, and that covariance matrices
were significantly similar in the twa P. maniculatus subspe-
cies. All correlation matrices were significantly similar. Kohn
and Atchley (1988} later reanalyzed Lofsvold’s data using a
different algorithm and more permutations. They found sig-
nificant similarity among all comparisons of covariance ma-
trices. Since matrix similarity is a less restrictive test than
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matrix equality (Turelli 1988; Shaw 1991), it is unclear
whether there has been significant divergence in covariance
structure among these species. Based an Lofsvold's (1986)
results, covariance matrices of subspecies do appear to be
maore similar than species matrices.

More recently, Paulsen (1996) found no significant dif-
ference in G-matrices between two sibling butterfly species
in Precis. She did find significant differences between heri-
tabilities for some traits in pairwise element comparisons.
Paulsen interpreted this as a warning against assuming the
constancy of G.

These genetic studies suggest that genetic covariance struc-
ture may diverge over an indefinite time period, perhaps at
phylogenetic levels above subspecies. Cavariance structure
for some features may be under tighter constraints than oth-
ers. Divergence in genetic covariance structure has beep dem-
onstrated in as few as 20 generations for fruitflies under
strong directional selection (Wilkinson et al. 1990).

All studies employing larger numbers of OTUs have been
limited to phenotypic correlations or covariances. Three of
the five largest were entirely intraspecific and lacked an evo-
lutionary hierarchy. Riska (1985} examined 34 local popu-
lations of the aphid Pemphigus populicaulis. There was no
explicit phylogenetic structure to the data, although geo-
graphic proximity may be associated with genetic relatedness.
Significant heterageneity of correlation elements among pop-
ulations was observed using a jackknifing procedure. Despite
this heterogeneity, and in contrast to observations of popu-
lation means, no geaographic pattern was detected. Local sam-
ples appeared to diverge significantly, but randomly from
each other. Riska interpreted this result as possibly indicating
that geographic patterns in the means was the result of re-
gional similarity in natural selection, but that the genetic
changes responsible for this convergence on phenotype dif-
fered among the populations. Each population presented a
different set of genetic variants for selection to act upon, and
thus although the phenotypic response may be similar, the
underlying genetic patterns may differ. The random variations
in phenotypic correlations were interpreted as evidence of
that genetic organization.

Vass et al. (1990) examined 15 populations of the Neo-
tropical cane mouse, Zygodontomys brevicauda. No estimate
of relationship among populations by geography or other
biological measures was included. Analysis focused on nor-
malized coefficients of the first principal component because
characteristic roots after the first were seldom distinct. The
coefficients were very similar among all samples. Voss et al.
(1990) hypothesized that the populations shared a latent
growth factor producing parallel allometric trajectaries. Dif-
ferences in adult morphology among populations would be
due to developmental changes before weaning that result in
an offset of allometric trajectories.

Voss and Marcus (1992) expanded the taxonomic scape of
their earlier study to include 14 species; two from each of
seven Neotropical muroid (sigmodontine) genera. The ex-
panded study confirmed their earlier results. Phenotypic di-
vergence between congeneric pairs was produced primarily
by morphological shifts early in development, followed by
nearly parallel postweaning allometric trajectories. The de-
gree of conservation or divergence among genera was not
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discussed. A similar observation was made by Bjérklund
(1993}, who found that three species of finch shared tightly
constrained growth trajectories.

James et al. (1990) measured bill shape, and wing and
tarsus lengths in the red-winged blackbird. They divided sam-
ples across the geographic range into 17 blacks, sized 2° in
latitude and longitude on a side. They found significant het-
erogeneity among the blocks for variances, resulting in sig-
nificant differences among covariances, but not correlations.
However, the significance of this finding is difficult to in-
terpret because the correlations/covariances were calculated
only between a single estimate of shape (the first principal
component derived from three ““shape’ ratios) and a single
estimate of size (wing length).

The enly study with significant phylogenetic structure is
Goodin and Johnson (1992). They studied 32 populations of
land snails in a dataset that was both geographically and
phylogenetically structured, spanning four hierarchical lev-
els. They calculated an index of similarity in cavariance pat-
terns based on the number of traits having their maximum
factor loadings on comparable factors from independent fac-
tor analyses. That index is a modification of a technique used
by Gould et al. (1974) to recognize sets of highly correlated
characters. Based on this index from pairwise comparisons,
covariance similarity was found to be unaffected by the hi-
erarchical level of the comparison. There was a suggestion
that covariance patterns were most similar between popula-
tions of the same subspecies, and lowest among subspecies
of the same biological species, but these differences are prob-
ably not statistically significant. Multidimensional scaling of
the matrix of similarity indices segregated the subspecies
from each other (i.e., distinct patterns of covariation), but
there was nearly total averlap among species. Although there
was little evidence for phylogenetic structure to the data,
indices of covariance similarity among species were strongly
correlated with genetic similarity based on allozymes.

All previous studies have lacked at least one of two critical
elements. They either lack sufficient phylogenetic informa-
tion and/or a statistical test of the null hypothesis of equiv-
alent matrices. In this paper, I introduce two new phylogeny-
based comparative techniques for the study of the evolution
of covariance structure: one heuristic, the other statistical.
Each ane addresses different difficulties with the comparative
analysis of multivariate data and thereby give complementary
insights.

(hjectives

In this paper, [ test whether phenotypic covariance structure
is conserved throughout a species group phylogeny. In con-
junction with this test, I examine the efficacy of two new
approaches for quantifying and testing the evolution of co-
variance structure, The effect of sample size on estimates of
matrix similarity/identity is also tested.

METHODS

Materials and Measurements

Systematics—Twenty-eight populations representing 13
diagnosable taxa (subspecies) belonging to six biological spe-
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Fig. 2. Phylogenetic hypothesis used for the analyses of cavari-
ance structure within Phylloris.

cies were included in the population analyses. The species
(with total number of individuals analyzed) are P. andium (n
= T71), asilae (n = 405}, darwini (n = 246), magister (n =
159}, limatus (n = 414), and xanthopygus (n = 1250). The
taxonomy for the assignment of individuals, taxon bound-
aries, and phylogenetic relationships follows that presented
in Steppan (1995a, in press) including the separation of £.
limaius as a species distinct from P. xanthapygus. The revised
geographic distributions for P. darwini, P. limatus, and P.
xanthopygus are presented in Figure [ and localities for all
populations are given in the Appendix. The preferred phy-
logeny from an analysis of a 973-bp region of the mito-
chondrial cytochrome b gene (Steppan, in press) was the
standard model for the hierarchical analyses of covariance
structure. The warking phylogenetic hypothesis for the OTUs
is presented in Figure 2. The tree in Figure 2 groups all
populations of a single subspecies into an unresolved poly-
tomy, reflecting the best cladistic representation of relation-
ships among interbreeding populations with undetermined
amounts of gene flow. Subspecies are retained as separate
lineages within a species hierarchy because they are roughly
equivalent to phylogenetic species, and are diagnosably dis-
tinct, at least morphometrically. They are grouped into po-
lytomies at the species level because there is circumstantial
evidence for at least some gene flow among putative sub-
species, and significant gene flow would render a strictly
dichotomous branching hierarchy inappropriate. These nested
pairs of polytomies reflect the hypothesized discontinuities
in interbreeding and evolutionary history, with relatively
high levels of gene flow among populations of the same sub-
species, limited gene flow among subspecies of putatively
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biological species, and effectively no gene flow among bi-
ological species. Higher-level branching is strictly dichoto-
nmous.

Age criteria—Individuals were assigned to age classes
based on molar eruption and wear. Molar eruption criteria
were given priority because tooth wear can be affected by
differences in diet. The age classes and definitions are mod-
ified from common criteria (e.g., Vass et al. 1990} to hetter
reflect Phyilotis dental morphology and ontogeny. The defi-
nitions for the age classes are as follows.

Age class 0: M3 unerupted.

Age class 1: M3 erupted, but not reaching the occlusal
plane of M1 and M2. Associated with juvenile body size.

Age class 2: Mesoflexus of M2 (labial fold) partially oh-
scured by the maxilla. M3 slightly worn. Associated char-
acters include small testes, juvenile pelage, body size ap-
proximately that of adult.

Age class 3: All labial flexi of upper molars fully exposed,
M3 warn to 2 “J" or “S” shape. Roots unexposed. Asso-
ciated characters include sexual maturity, adult pelage and
body size.

Age class 4: Individual roots become distinguishable above
alveolus, mesoflexus of M3 cut off by wear to form lake.

Age class 5: All molars heavily worn, folds and flexi re-
duced to shallow indentations.

Morphaometric analyses included individuals in age classes
2-5. In Phyllotis, growth continues through to age class 4,
but age class 3 individuals are no larger on average than
those in age class 4, even for features like the rostrum. Trait
mean size changes from age class 2 to 5 ranged from +29%
(incisor depth} to — 1% (interorbital breadth}. Age classes 0
and 1 were excluded because many populations had little or
no representation from these classes. The rapid growth at
these ages can significantly increase the correlation and co-
variances among traits, such that populations including in-
dividuals in these age classes will appear to exhibit signifi-
cantly higher covariances and overall morphological inte-
gration (sensu Cheverud 1982) than populations lacking such
representation.

Measurements. —Where possible, measurements were cho-
sen to address the criticisms of Bookstein et al. (1985) re-
garding traditional distance-based schemes. Landmarks were
chosen to represent homologous peints, such as suture junc-
tions, rather than extremal points, such as maximum length
or maximum width. Long measurements that traverse mul-
tiple structures were avoided, and most measurements were
of individual banes. Long measurements will obscure true
patterns of variation if multiple elements subsumed by the
measurement do not covary isometrically. Selected mea-
surements did not repeatedly span the same element, which
would produce redundancy and obscure subtle internal vari-
ations. Element redundancy is a greater problem with longer
measurements. For example, total skull length subsumes all
longitudinal measures along the midline, and thus would be
partially redundant with all other longitudinal measures. Fur-
thermore, highly variable structures may have undue influ-
ence over long or overlapping measurements. A comman
example from mammalian morphometric studies involves the
rostrum, which exhibits much greater postnatal growth and
variation than the cranjum. Three traditional measurements
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used in mammalian taxonomic studies are nasal length, con-
dylobasal length, and total length. As these all subsume the
rostrum, they are effectively redundant measures of a single
element, and even in combination, pravide little information
abaut the {ess variable braincase. Using the same landmark
for multiple measurements was avoided except for sequential
structures along the midline, because any error in locating
the landmark, such as due to damage, would be compounded
in the several measurements. Including longitudinal mea-
surements on both dorsal and ventral sides of the skull (e.g.,
diastema and nasal length) hetter describes shape changes
like arching of the skull without confounding multipte ele-
ments. While not uniformly distributed, measurements were
chosen to be relatively evenly distributed around the skull.
Some measurements were chosen that were not necessarily
optimal from an analytical standpoint, but that are commonly
used in systematic studies, allowing some comparison across
studies. Two measurements, jaw length and moment arm of
the masseter, were used because of their biomechanical im-
portance in chewing and thus their adaptive significance (Ra-
dinsky 1985).

Twenty-four measurements were taken from skulls and
jaws using digital calipers precise to 0.01 mm (Fig. 3). A
total of 2861 Phvilotis skulls were measured, although not
all were included in the among-population analyses of co-
variance evolution. Because the OTUs in the analyses were
meant ta represent local populations as much as possible,
individual specimens were included if they could be aggre-
gated into population samples collected within a radius of 25
km and temporal range of 30 years. The minimum sample
size was 24. These temporal or spatial criteria were relaxed
in some instances to allow the inclusion of taxa that otherwise
lacked sufficiently aggregated local sampling. For example,
the OTU P. andium represents a composite of several local
populations from adjacent provinces because no single pop-
ulation was large enough for robust estimation of correlation
or variance/covariance matrices. Similarly, P. osilae phaeus
included individuals from qutside the locality Pongo, Balivia,
because despite a sample size of 40, the Pongo population
showed an unusually limited age distribution. As a result of
these minimum requirements for population samples, some
taxa belonging to the darwini species group were not rep-
resented in the covariance analyses, including P. osgoodi, P.
x. rupestris, and P. x. ricardulus. A list of the specimen num-
bers and locality information for zll populations is included
in the Appendix.

For the comparisons among taxa, data were pocled among
all representatives of a taxon, not just among the populations
fraom the population leve] analyses. By pooling across geo-
graphic samples, the subspecies P. x. rupestris could be in-
cluded in some analyses. The species P. caprinus, which
appears to be a member of the darwini species group (Steppan
1995b), was not anzlyzed because insufficient DNA sequence
data was acquired to incorporate it into the species group
phylogeny (Steppan 1995a).

Analysis: Correlation Matrices

Correlation matrices for 24 variables were calculated for
each OTU from raw, untransformed data. Logarithmic trans-
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formations were not made because the raw data were already
normally distributed and an allometric model was not being
applied to the interpretation of the results. Matrix correlations
were then calculated for all possible pairwise comparisons
of OTUs. The degree of matrix correlation was found to be
correlated with the sample sizes of the populations being
compared (Fig. 4). The harmonic mean of the sample sizes
was the best predictor of the matrix correlations, as compared
to arithmetic means, geometric means, or the smaller of the
two sample sizes. If the reduction in matrix correlations is
due to sampling error in estimating the correlation matrix,

the smaller sample will account for a greater propartion of

the error. Harmonic means give greater weight to the smaller
values.

A rarefaction analysis was performed on selected matrix
correlations to estimate the impact of sampling error. Rare-
faction analysis involves randomly subsampling an original
dataset to successively smaller sample sizes to estimate an
expected parameter value for a given sample size. The largest
geographic population sample, P. x. chilensis from Tarata (n
= 135, Fig. 3), and the twao subspecies with the largest sam-
ples, P. x. chilensis (v = 501} and southern populations of
P limatus (n = 313), were subjected to rarefaction analyses.
Matrix correlations were calculated among all subsamples
for each subspecies, and between subsamples of the two taxa.
The matrix correlations were regressed against the inverse of
the harmonic mean of the sample sizes, which resulted in a
linear relationship, and slopes of the least-squares regression
lines determined (Fig. 6). The mean of the three slopes was
used in & correction factor. The population sample was an-
alyzed separately.

A partial correction for sampling error was achieved by
incorporating the information from the rarefaction analysis.
The reduction in the mean observed matrix correlation from
the maximum value was a linear function of the inverse of
the harmonic mean sample size. Thus, given the sample sizes,
ane can estimate the expected reduction in matrix correlation
below the true matrix correlation. An “adjusted correlation™
was calculated as the sum of the observed correlation and
the correction factor, by the formula

(1)

where r, is the ““adjusted correlation,” »r, is the observed
matrix correlation, & is the slope of the regression line of r,,
on [/p,(the slope is negative), and p,is the harmonic mean
of the sample sizes. However, this correction cannot also
correct for the heteroscedasticity of the sampling error, in
which the variance in matrix correlations increases with de-
creasing sample sizes. Use of residuals from a regression of
the population by population comparisons for the complete
dataset produces statistically indistinguishable results. That
fact suggests that rarefaction analysis is an appropriate meth-
ad to estimate the average effect of sampling error. Rarefac-
tion was preferred over “‘matrix repeatability’” (Cheverud
1996) because that technique compares observed correlations
to the theoretical maximum, not the expected mean, and may
be biased to underestimate matrix correlations at small sam-
ple sizes (< 40; Cheverud 1994).

Adjusted matrix correlations were assigned to categories
reflecting the taxonomic level of the pairwise comparison.

F. = r, — By,
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For example, the adjusted matrix correlation between P. 4.
darwini from Fray Jorge and P. 4. darwini from Santiago was
classified as between populations of the same subspecies.
Higher level categories were comparisons between popula-
tions belonging to different subspecies of the same biological
species, between populations belonging to sister-species, be-
tween populations belonging to sister-clades (one node higher
than sister-species), and so on. All possible pairwise matrix
correlations were calculated and each matrix correlation was
assigned to an hierarchical category. An analysis of variance
was conducted on the adjusted matrix correlations, grouped
by the hierarchical level of the comparison. The redundancy
of populations among all possible pairwise comparisons
means that the matrix correlations are not all independent of
each other, and that the degrees of freedom will be signifi-
cantly inflated. However, as will be explained below, a cor-
rection for this inflation was found to be unnecessary.

A second set of correlation analyses was conducted to re-
duce the effect of sampling error. Correlation matrices were
calculated for each subspecies, pooling all specimens that
matched the age criteria. This pooled multiple populations,
and also allowed the inclusion of specimens belonging to
populations too small to be treated individually.

Analysis: Common Principal Components Model

Statistical tests of variance/covariance tmatrices typically
test a single hypothesis: are two matrices equal? However,
Flury (1987} and Airoldi and Flury {1988} pointed out that
two matrices can be associated by a hierarchical series of
relationships. For example, one matrix may simply be a scalar
multiple of another. In that case, they would be proportional,
with identical patterns of covariation but differing only in
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magnitude by some scalar. Similarly, two matrices may share
a common principal component structure {same cigenvec-
tors), but differ in the eigenvalues for those components. In
other words, the orientation of axes (individual principal
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components) may be the same but the variance associated
with each may vary. Furthermore, two matrices may have
eight of 10 components in common, but two of those com-
ponents may differ in orientation. Here, a partial commaon
principal component model would apply. A nested series of
models thus exists. The least inclusive model is that matrices
share a single principal component. This nested hierarchy of
matrix associations is amenable to the analysis of phyloge-
netically structured data, which is also a nested hierarchy of
associations. Flury's approach provides finer resolution to the
evolution of covariance matrices than single tests of matrix
equality or similarity.

The commeon principal component approach, hereafter re-
ferred to as CPC, proceeds by building up each level in the
hierarchy, from arbitrary to equality, and testing the signif-
icance of each level against the next lower level. The like-
lihood of a given model {level) is calculated assuming that
all deviations in individual matrices from this model are due
to sampling error. Differences in likelihoads between levels
in the hierarchy are distributed as a ¥2, assuming multivariate
normality (Flury 1988). This tests the likelihood that each
level is true given that the lower level is true, resulting in
the decomposition of the log-likelihood ratio statistic.

CPC also has the significant advantage in being applicable
to sets of mairices, rather than being limited to pairwise
comparisons. Shaw (1991) proposed a technique for testing
equality of genetic covariance matrices, which like CPC is
a maximum-likelihood method, but which is only applicable
to pairs of matrices. CPC is a generalization of the principal
companent model from a single group to multiple groups.
This generalization eliminates the problem of nonindepend-
ence of data points and the inflation of degrees of freedom
in multiple pairwise comparisons. All pertinent populations
or taxa can be examined simultaneously for shared covariance
structure. CPC does not directly account for nonindependence
due to phylogenetic history. For a different application of
CPC to evolutionary constraints and allometry, see Klingen-
berg and Zimmermann (1992) and Klingenberg and Spence
(1993}

Variance/covariance matrices were calculated for each pop-
ulation from data transformed into natural logarithms. The
logarithmic transformation was used in this analysis because
it improved the stability in jackknifed analyses. Thirteen vari-
ables were analyzed, rather than the 24 in the correlation
analyses, because matrix equality could not be concluded
when more than 14 variables were included in nonoverlap-
ping random subsets of a single population (chilensis from
Tarata, n = 70, 65). Thirteen variables also reduces the num-
ber of parameters that need to be estimated by the model,
which is of greater concern in a hypothesis testing approach
like CPC than in the correlation analyses. If there are p vari-
ables in an analysis, then there are p(p + 1}/2 parameters for
variance/covariance matrices (also the minimum number of
parameters in CPC analyses under matrix identity). Addi-
tionally, the computation time for the CPC analysis increases
approximately as 27. Thus, each additional variable daubles
the camputation time. The thirteen variables, chosen ta rep-
resent a range of correlation and covariation values as well
as major cranial features are: diastemna length, molar toothrow
length, pterygoid region, basioccipital length, frontal length,
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nasal length, nasal breadth, interorbital breadth, anterior cra-
nial breadth, posterior cranial breadth, incisor depth, bullar
length, and cranial depth.

Common principal companent analyses were conducted
using the program CPC, made available by the author Patrick
Phillips (1994), which performs the analyses outlined by Flu-
ry {1988}, The OTU sets included in each analysis constituted
the members of each clade in the phylogeny. The analyses
were repeated for each more inclusive clade, until in the
largest analysis, all 28 OTUs were analyzed simultaneously
(i.e., 28 separate matrices analyzed as a set, rather than pool-
ing the data to form a single matrix). The more inclusive
analyses contained more OTUs, but did not group by sub-
clades. The hierarchical level of matrix association (equality,
proportionality, common principal component, partial com-
mon principal component, etc.) was then mapped onto the
phylogeny. The level of matrix association was defined as
the highest level in the hierarchy for which the null hypoth-
esis of common structure among matrices could be accepted
at the P = 0.05 significance level.

A supplemental criterion for choosing the optimal hier-
archical level is the Akaike Information Criterion (AIC)
(Akaike 1973). The AIC balances the fit of the model against
the number of parameters required. Thus, if successive levels
provide an equal fit to the data (as determined by the log-
likelihood decomposition of ¥28), then the lower level with
fewer parameters has a smaller AIC value and is preferred
(Flury 1988). In some cases, a high level may have the lowest
AIC value even if lower levels of association are rejected by
the log-likelihood ratio test. Because most of the variation
is contained in the first few components, nonequality of later
components may not be biologically significant. If there were
only one or two rejected components and they were beyond
the fourth partial common principal component (PCPC 4),
then the best fitting model by the AIC criterion was still
accepted as the best description of common structure. The
program CPC ranks PCPCs by the total variance associated
with each (Phillips 1994).

Phenotypic covariance matrices from Lofsvold (1386)
were reanalyzed using the CPC analysis. This allows a direct
comparison of covariance evolution in three taxa of Pero-
myscus and the 28 OTUs in Phyllatis, as well as simplifying
interpretation of thase published results in light of the dif-
ferent methods used in this study.

RESULTS
Matrix Correlation Analyses

Sample sizes and rarefaction analysis —When matrix cor-
relations are plotted against sample size, a strong, nonlinear
relationship is apparent (Fig. 4). The highest matrix corre-
lation was between southern limatus from Tarata and chilensis
from Tarata {n = 74, 139) while the lowest matrix correlation
was between osilqe from Calacala and posticalis from Huan-
cavelica (n = 27, 28). The populations with the largest sample
sizes all bad high correlations, and the smallest correlations
all belonged to populations with the smallest sample sizes.
The variance in matrix correlation was also much greater for
small sample sizes. This pattern is very similar to that found
by Cheverud (1988} in comparing genetic and phenotypic
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Fra. 7. Matrix correlations, partially corrected for sample size, of
a]l possible pairwise comparisons, categorized by the phylogenetic
relationship of the population pairs. Bars indicate the 10, 25, 50,
75, and 90 percentiles. Circles represent individual outliers.

correlation matrices. It is clear that sampling error in esti-
mating correlation matrices could overwhelm any pattern
produced by phylogeny. Mean sample sizes did not vary sig-
nificantly among the phylogenetic levels of the comparison,
with average ., ranging from 38 (between third level species-
group) to 49 (between subspecies).

To test the effect of sampling etror, a rarefaction analysis
was conducted. The largest population sample, P. xantho-
pygus chilensis from Tarata, showed the same drop in matrix
correlations with small sample sizes, although with higher
overall values (Fig. 5). The distribution of points in Figure
5 is higher than that in Figure 4 because a single population
was sampled. Also, each subsample was correlated with the
original dataset rather than with other subsamples. The sam-
ple sizes indicate those of the subsamples, not the harmonic
means, which would be higher. The asymptotic relationship
evident in Figure 5 indicated that matrix correlations may be
appropriately described by the inverse of the sample size.
Subsampling a single small population (n = [20) results in
repeated representation of individuals in many subsamples,
thus inflating the matrix correlations in the rarefaction anal-
ysis, while different field samples do not result in repeated
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TaBLE 1. Mean matrix correlations among all pairwise compari-
sons within specified phylogenetic levels. Student's ¢ is calculated
for the difference in means between the corresponding phylogenetic
level and the next higher level, and is not corrected for inflation in
degrees of freedom due to multiple camparisons.

Matrix,
catrelatian,

Phylagenetic level " mean Student's r
Population 38 0.957 1.5¢
Subspecies 75 0.939 0.29
Sister-species 74 0.936 .11
Species-group 95 0.935 0.36
2nd species-group 96 0.931 0.1
3rd species-group 30 0.932 —

representation of individuals. Field samples effectively rep-
resent subsamples from an infinite sized population. In Figure
3, subsamples of size » = 60 share on average half of their
individuals in common, while different populations of n =
60 share no individuals in common.

Rarefaction analysis was conducted on pooled subspecies
samples to more closely approximate the natural situation.
Matrix correlations within and between each of the two larg-
est subspecies samples are plotted in Figure 6. At least down
to n = 30, the relationship between matrix correlation and
the inverse of |, appears linear. The slopes for each group
are nat statistically different from each other, and the dis-
persions differ only in their intercepts. Again, there is sig-
nificant heteroscedasticity, with the variance increasing with
smaller samples. The mean slope of the least-squares re-
gression lines from the rarefaction analysis (intertaxon: & =
—6.27; chilensis: b = —6.93; southern limatus: b = —6.45)
were used to partially correct for sampling error, as described
in the methods section.

Hierarchical matrix correlations.—Adjusted matrix cor-
relations were categorized by the phylogenetic level of the
comparisons. Analysis of variance indicated that phyloge-
netic relatedness had a significant impact on matrix corre-
lations (P = (0.0006}. However, this significance value can
not be accepted because it is based on inflated degrees of
freedom owing to repeated comparisons by each population.
Additionally, the low mean matrix correlations of second
species-group comparisons (P. osilae populations vs. mem-
bers of the darwini species group} is largely due to the effect
of a single population, gsilae phaeus from Pongo. Ninety-six
percent of the individuals in the Pongo population are in age
class 3 or young age class 4, with the smallest averall size
variation of any population. As a result, matrix correlations
are unusually low. Because P. gsilae includes only five pop-
ulations, comparisons involving phaeus from Pongo consti-
tute 20% of all second species-group comparisons.

The mean adjusted correlations for each category are all
very high, greater than 0.93 (Fig. 7, Table 1}. However, ex-
cluding the Pongo population results in a nonsignificant effect
due to phylogeny (P = 0.27), even without correcting for
inflated degrees of freedom. Corrections for inflated degrees
of freedom were unnecessary because they would only further
weaken the statistical significance. This single population
affects the results so significantly because of the limited num-
ber of data points in phylogenetically structured data, and
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associations. For most clades, one must reject at least the first three
partial common prineipal components.

the lack of independence in the data when one groups by,
but daes not correct for, the shared phylogenetic history of
populations. Correlation matrices of populations belenging
to the same subspecies are an average no more similar to
each other than are populations separated by several speci-
ation events. However, there is some indication that popu-
lations of the same species are more similar to each other
than are populations compared at the higher taxonomic levels.
The difficulty lies in estimating the effective sample sizes
(i.e., number of comparisons) in calculating the test statistic
and the appropriate degrees of freedom. Population level
comparisons would be significantly different from species
group and higher levels of comparison (Student’s ¢ = 2.15-
2.53), provided the degrees of freedom exceeded 13 and five,
respectively (Table 1). The largest difference in mean cor-
relations between adjacent phylogenetic levels is between
population level comparisons and subspecies comparisons (r
= (0.957 vs. 0.939, a difference of 0.018). No other adjacent
pairs of levels differ by more than 0.004. This value is not
significant, even with uncorrected degrees of freedom, but it
is unclear to what degree that nonsignificance might be due
to sampling error in the estimation of correlation matrices.
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This transition from population to subspecies may be sig-
nificant when only larger samples are included (., > 60, ¢
= 2.65, uncorrected P = (0.019), but the number of popu-
lations involved is small.

Comparisons between pooled subspecies samples were
conducted to partially compensate for sampling error. This
resulted in the elimination of the population-level category.
The smallest subspecies sample was n = 50 for darwini ful-
vescens. Mean sample size was # = 169. Phylogenetic level
of comparison did not have a significant effect on matrix
correlation values (uncorrected P = 0.095). Excluding osilae
phaeus, which is supplemented beyaond the Pongo population,
further lowers the significance to P = 0.36.

Common Principal Components

The CPC analyses indicated a greater degree of differen-
tiation among taxa than did the correlation analyses. For all
clades, equality and proportionality of covariance matrices
is rejected. The hierarchical level of matrix association is
indicated an the phylogenetic tree in Figure 8. Thicker
branches indicate a greater degree of shared structure. Only
two clades share a CPC structure including all components
with the largest eigenvalues: gsilae osilae and xanthopygus
posticalis. The xanthopygus xanthopygus clade is best de-
scribed by a CPC model according to the AIC, but the partial
CPC model (referred to as PCPC), with two components is
rejected by the log-likelihood ratio test. The southern limatus
clade is best described by a PCPC model with the first com-
ponent (PCPC 1) accepted as common, but PCPC 2 is re-
jected. The first principal component is primarily a size vec-
tor. Only one clade above the subspecies level is found to
share common stricture, that being P. limatus. In P. limatus,
the CPC model is the best fit, but the first component, PCPC
1, must be rejected. The same condition holds for darwini
darwini. At all higher levels, minimally the first three PCPCs
must be rejected, demonstrating statistically significant di-
vergence in covariance structure. Common structure must
also be rejected within the subspecies xanthopygits chilensis
and xanthopygus vaccarum.

CPC analyses were also applied to the pooled subspecies
covariance matrices, again to address the issue of sampling
error in estimating covariance matrices. However, because
the CPC model takes into account sample size in deriving
the x? probabilities, the principal effect of pooling the data
is to increase the power of the method to reject common
structure. Comtnon structure is rejected for all clades among
the paoled subspecies samples.

Phenotypic covariance matrices for Peromyscus leucopus
and the two subspecies of Peromyscus maniculatus (Lofsvold
1986) were analyzed using CPC. The results are in agreement
with those from the pooled subspecies analysis of Phyilotis.
Common covariance structure is rejected among the subspe-
cies and among the species. In both clades, the AIC indicates
that the best fitting model is that of arbitrary or unrelated
matrices.

DiscussioN
Efficacy of the Methods

Because the twa approaches employed here use different
techniques, each has its own strengths and weaknesses. They
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use different methods to estimate the degree of shared co-
variance structure, different null hypotheses, and different
methads to account for phylogeny. For example, the matrix
correlation analyses incorporate phylogeny by categorizing
population pairs by the degree of phylogenetic relatedness.
All comparisons possessing the same degree of cladistic re-
latedness are considered members of the same class and are
grouped. Classes are defined by the number of nodes sub-
tended via the common ancestors and by the definition of
those nodes; for example, biological species. This approach
is similar to that employed by Goodin and Johnson (1992)
in how phylogeny is incarporated into the analysis, but uses
matrix correlation as the measure of similarity in covariance
structure rather than their index of factor loading similarity.
In contrast, the CPC approach analyzes each clade separately,
does not group by class, and is not limited to pairwise com-
parisons.

Matrix correlations 18 the more heuristic approach and has
the advantage of providing an easily interpretable statistic
that is also continuously distributed. That value is a descrip-
tion of overall similarity in covariance structure. It reflects
patterns of covariation and is insensitive to differences in
overall magnitudes of correlationfcovariation. Unequal age
distribution among population samples could result in pro-
portional differences in the magnitude of correlations and
covariances without madifying the patterns of correlations/
covariances if the actual covariance structures were the same.
Matrix correlation has several disadvantages as well. The
principal shortcoming 15 that it does not provide a direct
statistical test. Applying statistical tests to the resulting data
is complicated by the inflation in degrees of freedom from
the multiple comparisons in addition to the phylogenetic non-
independence among members of clades (Felsenstein 1985).
Grouping by cladistic classes is a relatively crude adjustment
for phylogeny. It also does not intrinsically distinguish the
contributions of individual taxa or clades ta the aoverall pat-
tern. As an estitmate of matrix similarity, matrix correlation
is sensitive to sampling error, which results in a high degree
of scatter among comparisons with small to moderate sample
sizes.

The application of CPC to comparative studies as advo-
cated here provides a direct statistical test of the null hy-
pothesis of matrix identity. In an advance over other tests
between matrices (e.g., matrix permutation) it decomposes
matrix associations into a nested series of hypotheses re-
garding covariance structure. This then allows more detailed
analyses of which components are shared within and among
populations or clades and thus the nature of deviations in
covariance structure. It also allows multiple groups to be
analyzed, which is invaluable whenever palytomies are pres-
ent. This is true whether the polytomies represent our ig-
norance of the true branching pattern, or if as in the case of
interbreeding papulations, relationships can not be accurately
expressed as a dichotomously branching tree. In comparison
to matrix correlation, CPC more explicitly accounts for phy-
logeny by analyzing each clade independently. CPC also has
some weaknesses that must be remembered. As employed
here, some phylogenetic information is ignored in analyses
of the more inclusive clades. In effect, it treats each clade in
turn as a polytomy or bush without any phylogenetic struc-
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ture. This problem could be remedied if we could estimate
effective sample sizes for matrices calculated at internal
nodes (i.z., hypothetical ancestors) and then restrict analyses
to only the direct descendants of a particular node. In the
case of a fully dichotomous phylogeny, this would be a com-
parison between sister taxa, whether actual populations or
estimated hypothetical ancestors. That approach is concep-
tually similar to Felsenstein’s (1985) independent contrasts
and would better isolate the phylogenetic location of signif-
icant divergence. One limitation of CPC is that it does not
describe the nature of matrix association with a simple, con-
tinuously distributed variable that can then be used in further
analyses.

Sample sizes and the number of characters affect the two
approaches differently. Smaller sample sizes can greatly re-
duce the matrix correlation, suggesting less shared structure,
while small sample sizes would only result in accepting a
higher degree of shared covariance structure with CPC. There
is no objective way to determine minimurn sample size for
matrix correlation analyses, but with this dataset sample sizes
greater than 100 would be strongly preferred. Increasing the
number of characters should increase the accuracy of matrix
correlations as an estimate of overall structure, but it appears
to increase the likelihood of incorrectly rejecting common
structure with CPC.

The selection of characters included in the analyses can
also affect the strength of matrix correlations. This study
included traits with a wide range of correlations, from nearly
1.0 in the case of diastema and nasal length to slightly neg-
ative correlations involving interarbital breadth with nearly
everything else. Including fewer very high and very low
correlations would be expected to decrease the overall matrix
correlations.

Comparison of Results

The two techniques applied to covariance evolution in this
study present different conclusions. The uniformly high ma-
trix correlations indicate a high degree of shared covariance
structure and no significant decline with decreasing relat-
edness. In contrast, the CPC analyses show statistically sig-
nificant divergence in covariance structure at all phylogenetic
[evels with fewer shared components at more inclusive levels.
How can these conflicting results be reconciled?

The combined results indicate that while there is statisti-
cally significant divergence even among conspecific popu-
lations, the magnitudes of those divergences is small. Fur-
thermore, there is no evidence for a long-term directionality
to divergence in covariance structure. The pattern is more
consistent with random variation in covariance structure
among populations, perhaps by a Brownian motion model,
although that madel of evolution is not tested here. In con-
trast, long-term persistence of directional selection can result
in clear divergence in phenotypic means.

An argument could be made that the cause of reduced
shared structure with greater phylogenetic inclusivity may be
due to the difficulty of recovering shared structure for any
large set of randomly varying matrices. In that interpretation,
the decreasing common structure at more inclusive clades
would be a computational artifact of the number of OTUs
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rather than accumulated interspecific divergence. However,
sensitivity analyses indicate that with CPC analysis, number
of matrices alone does not increase Type I error. Increasing
the number of random subsamples (50% each) of a single
population, up to 12 subsamples, did not prevent the recovery
of shared structure, in that case accepting the hypothesis of
matrix equality (unpubl. data). Therefore, the higher level
divergences appear to be real and represent at least a small
amount of phylogenetic structure present in the data.

There are at [east three levels of sampling that should be
considered in interpreting the results. First is genetic sam-
pling (e.g., genetic drift) at the population level due finite
sample sizes. That would result in variation in the genetic
covariances. Second is environmental sampling by the pop-
ulations. Each population experienced a different environ-
ment by virtue of existing in different places at different
times. That would result in variation in the environmental
covariances, which may then cause incongruence between
genetic and phenotypic covariances (Willis et al. 1991). The
third is sampling of the population at the level of the collector,
which only affects the ability to estimate the actual pheno-
typic covariances. This last level is of course the font of
statistics, and can be partially compensated for through rar-
efaction in the matrix correlation analyses or explicitly in the
likelihood estimates in CPC.

Conclusions

CPC analyses demonstrate statistically significant diver-
gence in phenotypic covariance structure at all levels of the
phylogeny. Only within a minority of subspecies can even
the common principal compaonent model be accepted. The
hypathesis of constant covariance matrices must be rejected.
However, the magnitudes of those divergences appear to be
small and are not associated with phyletic distances. Pairwise
matrix correlations are very high, even for the most distantly
related species. Neither analytic approach demonstrates a
strong phylogenetic pattern, although both suggest greater
shared covariance structure within subspecies than among
them or higher taxa.

The phylogenetic level of the comparison did not have a
significant effect on the pairwise similarity of covariance
patterns. The greatest similarities were among populations of
the same subspecies, while higher levels did not show any
pattern. This phylogenetic pattern of covariance similarity
seen in Phyllotis using matrix correlations was also apparent
in the land snail Partula (Goodin and Johnson 1992). Goodin
and Johnson (1992) also showed that subgpecies were rela-
tively more divergent from each other than are higher cate-
gories, an observation that finds only weak support in the
two analysis presented here. There are no other studies fully
camparable to the CPC analyses.

The matrix correlations approach is an effective heuristic
technique, but is limited to describing the general pattern of
matrix similarity. CPC is a powerful statistical tool that al-
lows detailed examination of underlying patterns of covari-
ation. It would be particularly protmising for data with greater
phylogenetic structure or with less population-level diver-
gence.

Because of the conflicting nature of the results from these
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two approaches, and because the methods only partially ac-
count for phylogeny, a more explicitly phylogenetic method
for comparing matrices is needed. A minimum evolution ap-
proach for reconstructing the evolution of covariance matri-
ces and the broader implications of these results will be ad-
dressed in an accompanying paper (Steppan 1997).
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APPENDIX
Specimens Examined in Population Samples

Measurements were made of skulls and jaws from specimens of Phy!-
{otis belonging to the following collections: American Museum of Nat-
ural History {AMNH); Carnegie Museom of Natural History {CMNH}),
Field Museum of Natural History (FMNH), Laboratorio de Citogenética
Mamiferos, Facultad de Medicina, Universidad de Chile (LCM}; Mu-
seum of Comparative Zoology, Harvard (MCZ); Musea Nacional de
Historia Natural, Santiago, Chile (MNHN); Museum of Southwestern
Biology, University of New Mexico {(MSB); The Museum, Michigan
State University (MSU); Museum of Vertebrate Zoology, University of
California, Berkeley (MVZ); Oklahoma Museum of Natural History
{OMNH}; University of Michigan, Museum of Zoology (UMMZ), and
National Museum of Natural History, Smithsonian Institution {USNM}.

andium (n = 71). PERU. Ancash: Huaraz (FMNH R1209-81215,
R1217-81219, 81221-81227);, Maicate (FMNH 20914-20918, 20923~
20925, 20927, 20928, 20933-20935, 20937-20939, 20943, 20945,
20946, 20949, 20952-20958); Recuay (FMINH 81223-81233); Yungay
(FMINH. 81242-81247). Cajamarca: Cajamarca (FMNH [9466-19468,
19471, 19472); Balsas, Hac. Limon (FMNH 19476, 19477, 19834).
Lima: Matucana (FMNH 23740, 23742); Surco {(FMNH 53061); Santa
Eulalia Canyon (FMNH 107357, 107360-107362).

asilae asilae Calaeala {n = 28). PERU, Puno: Alta Calacala, 40 mi NNE
Tuliaca {(MVZ 139565-139370); Arapa, 3 mi NE {MVZ 118683,
L 16684, 116686, L16687); Hac. Calacala, 7 mi 3W Putina, 37 mi NNE
Tuliaca (MVZ 114692-114694, 114707, 116688, 116689, 139571);
Hac. Chicayani, 20 km NE Azangaro (MVZ 136337-136339); Putnia,
6 km N (MVZ 171534-171541).

osilae osilae Santa Rosa (n = 50). PERU. Puno: Asillo, 10 km W (MVZ
171522, 171529-171531); Munani, 3.6 km W (MVZ [72767-172769,
173167173171, 173291); Pucara, 6 km S (MVZ 172763172765,
173165, 173166, 173288, 173290}, San Anton, 4.5 km NE (MVZ
172749~-172762), Santa Rosa, [2 km 8 (MVZ 171532, 171533,
172730172732, 172735, 172737, 172738, 172742172747, 173163,
173164).

osilae asilae South Ilave (n = 72). PERU. Puno: Caccachara, W [lave
(FMNH 42850);, Hae. Ontave, 40 km S [lave (MVZ 141567-141578),
Hae. Pairumani, 40 km. S Ilave (FMNH 42896, MVZ 114696-114703,
114710114714, 114716, 114717, 115855, 115850); Jlave, 35 km 8, 5
ke W (FMNH 107828, 107831-107833, 107835, 107843, 107844,
107846, 107847, 107849, 107851, 107854, 107855, 107859, 107870
[O7872, 107874, 107881, 107885, 107848, 107491, 107895), Pomara,
4 km NW{MVZ [15865-1158469, 115871, 115872); Yunguyo (FMNH
51265, 51267, 51269, 51270, 51272-51277).

osilae phaeus Pango {n = 56). BOLIVIA. La Paz: Pongo {AMNH
72916, 72918-72926, 72928-72931, 72933-72940, 72942, 72943,
72945, 72947-72954, 72938-7296), 71943, 72966-72972, 72974
72977, 7298472986, T2988, 72992, 72993, 8]280).

asilae tucumanus Taf del Valle (n = 60). ARGENTINA. Tucumadn: Tafi
del Valle, El Infernillo (ARG 1272, 1282, 1300-1303, 1305, 1306,
1318-1320, 1332, 1352, 1356; CMNH 43996-44002, 44004-44008,
46452, 86453, R6530-86532, 86534, MSU 19216, 19217; OMNH
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15266-15274,
44017, 44018).

15279, 15287, 15284, 19375-19381, 44011-44015,

magister Tarata (v = 103). PERU. Tacna: Tarata (FMNH 107611-
107613, 107616, 107620, 107622, 107623, 107625, 107629, 107631,
107653, 107654; MVYZ 141513-141534, 141534, 141537, 115874-
115884, 139384139432, 139438129445},

darwini fulvescens Angol (n = 48). CHILE. Malleco: Angol {AMNH
93256, 93258, 93259, 93242, 93245, 93268, 93271, 93274, 93277
93285, 93288-93250; MSU 7430, 7432, 7434, 7436); Los Alpes, 5 km
S Angol (MSU 5677, 7019, 7021, 7413, 7415, 7416, 7419-7423, 7426,
7427, 7429, 7528, MCZ 10540, 10541); Angol, 10-18 km WNW {MSU
7411, 7412); Collipulli, 14 km NW ¢(MSU 7438-7440); Sierra Na-
huelbuta (FMNH 50550, holotype).

darwini darwini Santiago {n = 71). CHILE. Santiago. Bocatoma
(AMNH 391807); 2.5 km NE Cerre Manquehue (FMNH 119491-
119493, 119496-119500, 119504, 119505}); Farellones (LCM 737, 741,
746}; Fundo Santa Laura (MVZ 150061-150063, 150065, 150066); La
Dehesa {LCM 318), Las Condes {AMNH 391805);, Los Dominicos
(MINHN 535, 544, 548); Quebrada de {a Plata, Maipu {MNHN a44,
646, 665, 477, 679, 680, 747, 756), Rinconada de Maipu (AMNH
541761); San Cristobal (FMNH 35901, 35902); Til Til (FMNH 119503,
[ 19506, MNHN 977} Valparalso: Buen Retiro, Calera (FMNH 23889
23890); 4.5 km N Caleta Los Molles (MNHN 573); Cuesta Las Chilcas,
Com. Llay Llay (MNHN 1234, 1235, 1273, 1456); La Rojas {(FMNH
23882, 23883); Olmue (FMNH 22347, 22343); Palmilla {FMNH
24394}); Pefuelas {MNHN L166, 1167, 1169, 1364, 1365, 1370}, 7 km
SSE Papudo {(MNHN 708); Quilpue {(MSU 2102); Reserva Forestal
Penuelas (MNHN 1090, 1094, 1102, 1131, 1133, 1172, 1174, 1183,
1186).

darwini darwini Fray Jorge (n = 38). CHILE. Coquimbo: Asentamiento
Ceeres, La Serena (MNHN 973, 974), La Serena, Rio Limon {LCM
365); Las Palmas, 95 km N Los Vilos (MVZ 150060); Las Tacas (LCM
220,221,233, 234, 258, 263, 790); Parque Nacional Fray Jorge (FMNH
119512, 133874, 133877, 133881, 133894; MNHN 319, 1212, 1214-
1220, 1222, 1223, 1227, MVZ 118662); Romero (FMNH 22325-
22329}

northern fimetus (0 = 75). PERU. Arequipa: Bella Union, 8 mi NNW
(MVZ 145562, 145363-145581); La Planta (MVZ 145582, 145583);
Ayacucho: Nazca, 35 mi ENE (MVZ 138091-138094). Huancavelica:
Ticrapo, Pisco Valley (MVZ 136309136311, 136313-136319). lca:
Hac. San Jacinto (FMNH 53162, 53163); Humay, 3 km E, Pisco Valley
{MVZ 136320-136323); Pisco, 10 km SSE (MVZ 136326-136328).
Lima: Chilea, 8 mi SE (MVZ 138089, 138090); Chillon Valley (MVZ
136329, 136230); Chosica (FMNH 33164, 53169, 53170; MVZ
120058120063, 120066); Oscolla (FMNH 53056); Rimac Valley
(MVZ 120067-120071); San Barcolome Station (MVZ 120026, 120072,
120073); Santa Euialia (MVZ 120074-120076, 120078), Yangas (MVZ
136332,

southern {fimatus Tarata (n = 85). PERU. Taena, Tarata, 16 km S o 8
kin NE (EMNH 107574, 107375, 107598, 107602, 107603, 107603,
107609, 107610, LO7614, 107615, MVZ 115837, 115838, 115840~
115846, 116788, 139313-139333, 139335-139341(, 139348, 139345,
139369, 139370, 139374, 139378, 141423, 141634-141636, 141639
141651, 141653-141659, 14]1661-141665).

southern fimarus Torata (v = 42). PERU. Moquegua, Torata, 3 km N
to 20 km NE (FMNH 107403-147407, 107410, 107411, 107413-
107415, 107418, 107420-107427, 107429, 107430, 107432, 107435,
107437, 107438, 107440, 107442, 107443 107444, 107476, 107477,
107482, 107484, MVZ 115790, 115791, 115793, 115796-115800).

southern limatus Arequipa {n = 73). PERU. Arequipa: Arequipa, 7 km
E (MVZ 115779-115785), 12 km E (MVZ 136300-136307}, 12 km
SSW (MVZ 115786-115789), 15 km E (MVZ 139560); Balneario de
Jesus (FMNH 50991-51002, 533161); Salinas (FMNH 49480-49438,
49637); Yura (FMNH 4945149479, 49608, 49748).

southern fimatus Moro Sama (n = 46). PERU. Tacna: Moro Sama, 65
km W Tacna (MVZ 141492, 141493, 141498141500, 141502-141509,
143713143716, 143718143738, 143741, 143742, 143744, 143750,
143751, 143757, 143758).
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xanthopygus posticalis Huaneavelica (n = 28). PERU. Huancavelica:
Huancavelica (FMNH 75427, 75441, 75443-75458); Lircay {FMNH
75456-75459); Locroja, Hac. Piso (FMNH 75415, 75426); Mayoc
(FMNH 75436, 75439}, San Jenaroe (FMNH 75437, 73460-75462,
75465).

xanthopygus posticalis Puquio {(# = 24}. PERU. Ayacucho: Puquio, 2
km E (MVZ 139306-139309), 18 km E (MVZ 174042}, 35 km E (MVZ
115808), 15-21 km NE {MVZ 115809, 116024), 10-15 km WMW
(MVZ 138098, 138099-138113).

xanthopygus chilensis Tarata (n = 139). PERU. Tacna: Tarata, 2.6 mi
N (MVZ 139342-139347, 139349, 139351, 139353, 139355-139363,
139366-139368, 139371-139375, 139377, 139379-139381), 4 km N
(MVZ 115832, 115833, 115835, 115836, 115847, 115848}, 2 km NE
(MVZ 141638}, 5-8 km NE (FMNH 107550-107552, 107556-1075360,
107562-107566, 107571, 107572, 107576, 107577, 107582, 107588,
107590, 107636-107638, 107595, 107596, 107604, 107606-107608,
107635, 107648; MVZ 141422, 141424141427, 141429141431,
141433141436, 141438141440, 141442-141446, 141448, 141451~
141458, 141460, 141461, 141553141555, 141557, 141564141566},
13 km NE (MVZ 141463, 141465-141477, 141480141482, 143753
143756), 20-25 km NE (MVZ 115849-115854), 10 km § (MVZ
141652}, Livine, 21 mi NE Tarata (MVZ 114687-114690); Nevado
Livine, 2 kemm NW (MVZ [15839).

xanthopygus chilensis Torata {(n = 46). PERU. Moquegua: Torata, 19
km NE (FMNH 107494-107496), 24-27 km NNE (FMNH 107445~
107452, 107454~107456, 107458, 107459, 107471, 107473, 107474,
107483-107487, 107489, 107490}, 31-35 km NNE (FMNH 107498-
107508, 107510, 107512-107515, 107319, 107520, 107524, 107527,
107529, 107537, 107545).

xanthopygus chilensis Arequipa (n = 31). PERU. Arequipa: Cailloma,
16-20 km SE (FMNH 107757, 107759, 107775) Callalli, 15 km § (MVZ
174028-174031); Chiguata, 8 km E (FMNH 107778-107782, 107778-
107790, 107796, 107798, 107800, 107802), Chivay (FMNH 107648,
107672, 107677, 107682, 1076385, 107686, 107695, 107697, 1077086,
107708, 107715, 107730).

xanthopygus chilensis Santa Rosa (n = 421). PERU. Puno: Santa Rosa,
3-12 km W (FMNH 107898, 107900-107905, 107907, 107909-
197911, 107914-107916, 107924, 107927, 107929, 107934107939,
107942, 107945, 107947, 107948, 107955, 107957, 107958, 107941,
107963, 107965, 107964, 107972, 107973, 107977, 107978, 107980,
107986, 107992, 107994).

xanthopygus chilensis Cailloma (n = 43}, PERU. Arequipa: Caiiloma
(EMNH 49507-49515, 49519-49525, 49533, 49626-49630, 49632
496335); Sibayo (FMNH 39508, 39509, 39511-39513), Sumbay (FMNH
49501-49506, 49516-48518, 49609, 49610, 49612, 49625).

xanthopygus chilensis Puno (¢ = 92). PERU. Puno: Arapa (MVZ
116685); Asillo, (FMNH 51245-51248), 5 km § (MVZ 116130); Chi-
cuito (FMNH 52384, 52586, 52588-52592, 52565); Hac. Callacachi
(FMNH 49526-49532, 49534, 493535, 49776); Huacullani (FMNH
52576, 52577, 52580, 52381); Rio Huanque (MVZ 136333, 139382),
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Tlave, 15 km § (MVZ 115816, 115817); Imata, 6 mi § (MVZ 116131,
116132y, Tuli (MCZ 39302, 39503, 39506; MVZ 115818115821,
115883), Juliaca, (FMNH 43489, 49490, 49621}, 6 km NNW (136334,
136340~136342), 3 mi SW {MVZ 116690}, Mazocruz, 30 mi 8§ (MVZ
[16786), Occomani (FMNH 53182); Hac. Pairumani, 24 mi S Tlave
(MCZ 39518, MVZ 114684, 115815, 115887); Pampa de Ancomarca
(MVZ ]15822-115824); Pisacoma (FMNH 52601-52604); Pomata
(MVZ 113873, 115970); Pucara (MVZ 172776); Puno {AMNH 213613,
213615, 213617-213619, 213623, 213625, MVZ 116133, 116146), 5-
[5 km W (MVZ 115825, 115826, 115888, 115889, 115891}, 82 km W
(MVZ 115827, 115828), San Antonio de Esquilache (FMNH 49638,
49709), San Ignacio (MCZ 39507, 39514, 39515); Hac. Umayo, 15 mi
S Tuliaca (MVZ 116691, L16694-116696); Yunguya (FMNH 51266).

xanthopygus vaccarum Paiguano (s = 42). CHILE. Coquimbo: Paiguano
(AMNH 259593, 259594; EMNH 22251, 22260, 22262-22267, 22269,
22272, 22273-22288, 2229227296, 22298-22301, 25278-25281,
25284;.

xanthopygus vaccarum tt. 40, Mendoza (n = 40). ARGENTINA. Men-
doza: Cerro Medio, 35 km WNW 25 de Mayo (MVZ 181569, 181570),
El Manzano Monument, 10 km W (CMNH 43977-43979); 10 km W
old rt. 40, road to Lago Diamante ([ADZA 2194, 2199, 2204, 2250,
OMNH 1525915264, 15318-15321, 15325, 1532915331, 15362—
15366, 15367-15378).

xanthopygus xanthapygus Chile Chico (n = 121}. CHILE. Aisén: Chile
Chico (FMNH 133934, 133935, 133938, 133940, 133944, 133946-
133950, 133952, 133953, 133955-133959, 133941, 133962, 133964
133968, 133970, 133971-133977, 133980, 133983-133986, [3368R,
133989, 133991-133998, 134001-134004, 134006, 134007, 134009-
134013, 134070, 134073-134076, 134103, 134105, 134106, 134108-
134112, 134114, 134115, 134117, 134118, 134120, 134121, 134124,
[34126-134128, 134)30, 134132, 134133, 134135-134139, 134141,
134142, 134145-134147, MNHN 469, 1405, 1414, 1423, 1433, 1436,
1442, 1445, 1491, 1494, 1504, 1509, 1515, 1560, 15384, 1628, 1631,
1637, 1644, 1662, 1900, 3629, 3955, 3961, 3964, 3970, 3973, 3990,
3999).

xanthopygus xanthopygus Puerto [bafiez (n = 83). CHILE. Aisén: Puerto
Ibafiez (FMNH 134015, 134021, 134022, 134024, 134025, 134028—
134031, 134034, 134036-134040, 134042, 134045-134049, 134051,
134052, 134134134056, 134058, 134060, 134061, 134063-134067,
134069, 134079, 134081, 134082, 134090-134093, 134097, 134039,
134100, 134102, 134148, 134150, 134151, 134153-134157, 134159,
134160, 134163-134166, 134168, 134169, MNHN 1411, L6635, 1705,
1708, 1752, 1755, 1761, 1774, 18427, 1849, 1852, 1897, 3476, 3593,
3623, 4007, 4071, 4074, 4080, 4099, 4115).

xanthopygus xanthopygus Huanuluan (n = 42). ARGENTINA. Ria Ne-
gro. Bariloche, 15-25 km ENE (MVZ 151029, 158469, 159412,
163810, 171145~171148); Comalle, &8 km WSW (MVZ 164024
164027, 163848, 169012, 179307), Huanuluan (MCZ 1[3996-13000,
1902619035, 19038, 19040, 19042-19045, 291 14; MNHN 4118}, Pil-
caniyeu (MCZ 23837, 29115; MVZ 21944).



