Persistence of a fugitive species: *Mimulus angustatus* on gopher mounds

Brian D Inouye & Nora Underwood — Biological Science, Florida State University, Tallahassee, FL 32306-1100

Introduction

Vegetation patterns in many plant communities are affected by disturbance, such as the freshly tilled mounds of soil left by burrowing pocket gophers (Inouye et al. 1987; Hobbs & Mooney 1991; Schallom & Richards 2003). Gopher mounds have been shown to affect germination, growth, and reproduction, and these effects can be either positive or negative (e.g. Forbes et al. 2004).

Mimulus angustatus (Gray) (Scrophulariaceae) is a small annual (basal rosette 1–3 cm diameter) found in California foothills.

We classified quadrats as “undisturbed” (no fresh disturbance, < 15% bare soil), “naturally disturbed” (by pocket gophers, > 15% bare soil), or “artificially disturbed” to mimic gopher mound creation (100% disturbed). We counted artificial disturbances in mid-winter. The effects of natural and artificial disturbances were not significantly different, and have been lumped together. Disturbed quadrats were paired with adjacent undisturbed controls; additional undisturbed plots were randomly located.

Results

Number of plants

- Quadrats with recently disturbed soil had significantly more *M. angustatus* plants, and fewer potential competitors (L. californica, annual grasses) than undisturbed quadrats.

- The effect of a single disturbance event on *M. angustatus* numbers persisted for several years, as the % cover of bare soil decreased and numbers of other plants recovered (Figure 2).

Flower size

- *M. angustatus* flowers were significantly larger in disturbed quadrats, and this effect persisted beyond the year of the original disturbance (Figure 3).

Pollination success

Because seed production by *M. angustatus* is pollen limited (Underwood & Inouye, unpublished data), in 2003 we collected data on pollination success. The number of bright yellow *M. angustatus* pollen grains on the purple stigmatic surface was counted in the field using a 10x hand lens.

- The amount of pollen on *M. angustatus* stigmas was affected by flower size and the local density of conspecific flowers (Figure 4).

Questions

- How do disturbances affect *M. angustatus* directly through effects on individual plant growth and survival?
- How do disturbances affect *M. angustatus* indirectly through reproductive success?

Materials and methods

We used permanently marked 20 x 20 cm quadrats to follow the success of *M. angustatus* over 1 to 6 years (1999–2004) at Las Posadas State Demonstration Forest in Napa County, California.

For each quadrat we recorded:

- the number of *M. angustatus* plants and flowers
- beginning in 2000, the size of *M. angustatus* flowers
- the densities of potential competitors (e.g. Lasthenia californica, small annual grasses)
- the % cover of bare soil

Figures

1. A pair of control and experimental-disturbance quadrats.
2. The number of *M. angustatus* plants per quadrat decreases each year following a disturbance (P < 0.001). Numbers beside boxes are sample sizes.
3. The size of *M. angustatus* flowers per quadrat decreases each year following a disturbance (P < 0.001).
4. The number of *M. angustatus* flowers within 10 cm of the focal plant (P = 0.026).

Conclusions

Disturbance is important for at least two critical life-history stages of *M. angustatus*: germination/growth, and pollination/seed set. While effects of disturbance on plant germination and growth have been well studied, effects on plant reproduction via changes in both individual and patch floral display are less well known.

Mimulus angustatus recruitment is affected by local disturbances through both paths shown above. We plan to use a demographic model to investigate the relative importance of these paths for population dynamics, using field data on the annual distribution of new gopher disturbances.

Indirect effects of disturbance on the dynamics of small annuals through changes in local floral display may be important for other species as well. Other small *Mimulus* species appear to have a similar dependency on recurrent disturbance (e.g. *M. jepsonii*, *nana*, *pilosus*, *tricolor*, pers. obs), and pollinators can respond to the local density of plants (Groom 1998) as well as traits of individual flowers.

Literature cited

Acknowledgments

We thank the California Department of Forestry and Fire Protection for permission to work at Las Posadas. P. Pinto for housing, S. Hordon for discussions, and R. Hopkins for creating seeds. HDR and NJO were supported during the work by NSF grants DEB-0090622, DEB-0090178, and D obligations.

For further information

Please contact BDI@bio.fsu.edu. More information can be found at http://bio.fsu.edu/~b壕nu and http://bio.fsu.edu/~nunderwood/homepage.