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Stability and coexistence in a lawn community: mathematical
prediction of stability using a community matrix with parameters
derived from competition experiments
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Community matrix theory has been proposed as a means of predicting whether a
particular set of species will form a stable mixture. However, the approach has rarely
been used with data from real communities. Using plant competition experiments, we
use community matrix theory to predict the stability and competitive structuring of
a lawn community.
Seven species from the lawn, including the six most abundant, were grown in boxes,
in conditions very similar to those on the lawn. They were grown alone (monocul-
tures), and in all possible pairs.
The species formed a transitive hierarchy of competitive ability, with most pairs of
species showing asymmetric competition. Relative competitive ability (competitive
effect) was positively correlated with published estimates of the maximum relative
growth rate (RGRmax) for the same species.
A seven-species community matrix predicted the mixture of species to be unstable.
Simulations revealed two topological features of this community matrix. First, the
matrix was closer to the stability/instability boundary than predicted from a range of
null (random) models, suggesting that the lawn may be close to stability. Second, the
tendencies of the lawn species to compete asymmetrically, and to be arranged in
competitive hierarchies, were found to be positively associated with stability, and
hence may be contributing factors to the near-stability seen in the matrix.
The limitations of using competition experiments for constructing community ma-
trices are discussed.
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Perhaps the most crucial question in community ecol-
ogy is whether communities are self-regulating, to the
extent that they can recover their state after a perturba-
tion, i.e. whether they are stable (Pimm 1984). More-
over, the question most commonly asked when
ecologists are consulted is whether a particular commu-
nity is stable, and therefore whether a particular
planned land management is likely to have a lasting
effect on the community (Peterman 1980).

May (1972) initiated the modern approach to stabil-
ity, with his community matrix analysis. This is based
on a mathematical procedure called local stability anal-
ysis (= ‘Liapunov stability analysis’= ‘neighbourhood
stability analysis’). In ecological terms, the community
matrix summarises all possible pairwise species interac-
tions in an equilibrium community. The stability of a
community, i.e. whether a mixture of species that are
coexisting at equilibrium will return to that equilibrium
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following perturbation, can be predicted mathemati-
cally from the community matrix.

Since May’s (1972) analysis, the community matrix
has been used extensively in theoretical studies to pre-
dict the patterns of interactions among species that
would be expected to result in the persistence of multi-
species mixtures in nature. Particular emphasis has been
placed on investigating the relationship between the
complexity of ecological systems and stability (for re-
views see Pimm 1982, 1984, Lawton 1989, Hall and
Raffaelli 1993).

To briefly summarise the results from this vast litera-
ture, given a matrix comprising random values, com-
munities with many species and/or with many or strong
interspecific interactions are less likely to be stable. In
fact, it is very unlikely that a community of randomly
assembled species will be stable at all. This represents
an obvious conflict with the observation that multispe-
cies communities commonly persist in nature. One ex-
planation is that the species in natural communities
have co-evolved to be able to co-exist stably. However,
it has been found that the introduction of some basic
ecological processes, especially simulating the assembly
of a community by the immigration and extinction of
species, allows complex multispecies communities to
develop relatively easily (Taylor 1988, Haydon 1994).

Despite the dominant role that the community ma-
trix has played in the development of theory relating to
the stability and persistence of ecological communities,
almost all of the extensive literature on the community
matrix has dealt with theoretically constructed matrices.
Progress in testing predictions of the theory using natu-
ral systems has been surprisingly slow. Most such tests
have been clouded by uncertainty over the validity of
the data. For example it has been suggested that studies
based on the analysis of food webs (e.g. Briand 1983,
Auerbach 1984) are unreliable due to biases in the data
(Paine 1988, Kenny and Loehle 1991). Another ap-
proach has been to estimate the community matrix by
using the observed distributions of organisms (Mc-
Naughton 1978, Gitay and Agnew 1989, Hallett 1991),
but it has been pointed out that it is impossible to
estimate species interactions from association data
alone (Hastings 1987, Keddy 1989, but see Wilson and
Gitay 1995).

The only valid method for estimating the community
matrix for a given community is by the experimental
manipulation of the organisms, quantifying the effect
that each species has upon the growth rate of each
species. We are aware of only four studies which have
used this approach in the investigation of community
stability (Seifert and Seifert 1976, Thomas and Pomer-
antz 1981, Wilson and Roxburgh 1992, Schmitz 1997).
Never has the stability of a community been estimated
using the community matrix, and that prediction of
stability then been tested in the field. We set out to do
this for the first time.

Because there has been so little empirical testing of
the community matrix, two crucial questions remain
open: a. whether communities in the field are usually
stable, and b. whether stability can, as May suggested,
be predicted from the values of the community matrix.

We tested the ability of community matrix theory to
predict stability in a community of herbaceous lawn
plants. In this paper, we describe how a community
matrix for the lawn was estimated, and was used to
make predictions of how the vegetation would respond
to perturbation. In a companion paper these predic-
tions are tested through experimental manipulation of
the community (Roxburgh and Wilson 2000).

To assist the reader, we first provide an introduction
to the theory.

Introduction to community matrix theory

Interaction equations

Consider a community of organisms co-occurring in
some spatially well-defined area, such as a lawn com-
munity comprising n species of plants. If each of these
n species is increasing (or decreasing) over time in
response to changes in the abundance (density or
biomass) of other species, the population growth rate of
each species may by described by n equations with the
very general form:

dNi

dt
= fi(N1, N2, . . . , Nn) i=1, 2, . . . , n. (1)

These equations simply state that, for a species i, the
rate of change in its abundance (dNi/dt) is some func-
tion of both interspecific and intraspecific interactions.
In the vast majority of theoretical studies, the actual
interaction equations used have been Lotka-Volterra
competition equations, where the per capita growth
rate is a linear function of the Ni values (Pimm 1982,
Hall and Raffaelli 1993). Note that abiotic factors are
included only indirectly through their effects on the
species abundances. The implications of this aspect of
the theory, and in particular the potential importance
of environmental fluctuations on species coexistence,
are considered in greater detail in the section ‘Mecha-
nisms of species coexistence’, and in the companion
paper (Roxburgh and Wilson 2000).

Equilibrium

To determine the stability of a community, it must first
be assumed that the mixture has reached equilibrium.
Equilibrium is the state in which the rate of recruitment
of new individuals (or biomass) for each species is
equivalent to the rate of death, so for all species the
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total net change over time is zero. In the lawn, this
would be observed as lack of change in the abundances
of the n plant species over time. Mathematically this
can be expressed as

dNi

dt
=0= fi(N. 1, N. 2, . . . , N. n) i=1, 2, . . . , n, (2)

where N. i are the equilibrium abundances for each
species, and are found by equating Eq. 1 to zero.

Mathematically, an equilibrium can occur with some
or all of the species at negative abundances. Such an
equilibrium has no biological meaning, and is called
‘unfeasible’ (Roberts 1974). Similarly, the equilibrium
abundance of some or all of the species can be zero,
and such solutions are called ‘trivial’.

Stability

In general, the non-linear Eq. 1 cannot be solved
explicitly, but in the region of the equilibrium (as
defined by Eq. 2), which is the region of relevance for
determination of stability, it can be approximated by
linear equations. These linear approximations can then
be solved and used to investigate the stability of the
community in the region of the equilibrium, i.e.
whether all the species would be expected to recover
following a small perturbation. The first step is to
perturb the abundance of each species by a small
amount xi away from equilibrium. Formally

xi=N %i−N. i i=1, 2, . . . , n, (3)

where N %i is the density of species i after a displacement
of xi from the equilibrium N. i. Then, changes in the xi

are followed through time. If each species eventually
returns to its original abundance, however long it takes,
then the community as a whole has recovered and is
therefore locally stable. If at least one species remains
different from its original abundance, the community is
said to be unstable.

For brevity we will skip over the mathematical steps
required to derive an expression which describes how
the xi change with time (for a full treatment see Pimm
1982), and jump straight to the ‘community matrix’,
which we will denote by the symbol S. In a community
of n species, the community matrix is an n×n matrix
with elements:

sij=
� #fi

#Nj

�*
, (4)

where sij quantifies the effect that perturbing species ‘j ’
from equilibrium by the small amount ‘#Nj ’ has on the
growth of species ‘i ’, given by ‘#fi ’. The sii elements
represent intraspecific interactions, and the sij elements

represent interspecific interactions. To determine local
stability, we calculate the n eigenvalues of the commu-
nity matrix. If all of the eigenvalues are less than zero,
then following perturbation, all the species will return
to their pre-perturbation equilibrium abundances, i.e.
the community is stable. All we need, therefore, is
R(l)max, the real part of the largest eigenvalue. A
negative value of R(l)max indicates community stability,
and a positive value indicates instability.

Application of community matrix theory

In using community matrix theory to predict stability in
the real world, four assumptions must be met: (1)
equilibrium, (2) small perturbations, (3) instantaneous
perturbations, and (4) spatial homogeneity.

Assumption 1: Equilibrium

The stability predictions are valid only if the commu-
nity is at equilibrium. In the strict mathematical sense a
community is at equilibrium only when the rate of
change for all species is zero (Eq. 2). This assumption is
often seen as the major limitation of the theory, simply
because this theoretical ideal could never be achieved in
natural communities, e.g. due to seasonal and stochas-
tic environmental variation (Wiens 1984). However,
despite this limitation, both theoretical and empirical
investigators have attempted to use the theory as a tool
for predicting or investigating the dynamics of real
communities.

In applying the theory to real communities the ques-
tion becomes not whether the species are coexisting at
the ideal of a point equilibrium (because the answer will
always be ‘no’), but rather how far the community is
from the ideal, and what effect that has on the validity
of predictions based on the theory. To date, there have
been no empirical studies which have simultaneously
aimed to both apply community matrix theory and also
investigate in detail the assumption of equilibrium.
Because our aim was to provide a thorough application
of the theory, we set out to do this for the first time.

The methods used to test for equilibrium in our study
community are described in Roxburgh and Wilson
(2000). Our overall conclusion there is that the data are
consistent with the existence of an equilibrium over a
medium time-scale. However, the presence of between-
season and between-year variation in the abundances of
some of the species indicates departure from the point-
equilibrium ideal.

Assumption 2: Small perturbations

The second limitation is that the analysis predicts only
‘local’ stability, i.e. stability after arbitrarily small per-
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turbations. Although ‘arbitrarily small’ perturbations
are easily defined mathematically, in a natural system
the effects of a very small perturbation will inevitably
be swamped by environmental noise. It would be desir-
able to specify a perturbation within the domain in
which the linear approximations are valid, but in natu-
ral communities this domain is unknown. Experimen-
tally, one has to apply a perturbation large enough to
ensure a measurable effect on the community. If the
community recovers, then we can conclude that it is at
least locally stable, and may be globally stable. If the
community has not recovered, then the perturbation
may have been too great to test for local stability, or
there has not yet been enough time for recovery to have
occurred, or the community is unstable.

Assumption 3: Instantaneous perturbations

The theory assumes that the perturbations are instanta-
neous. While many natural perturbations may be tem-
porally well-defined, such as episodes of flooding or
temporary shading, there are others which may last for
very long periods, such as climatic changes and ra-
dioactive pollution. These latter perturbations are in-
compatible with local stability analysis (Kindlmann and
Lepš 1986).

Assumption 4: Spatial homogeneity

Eqs (1) incorporate an implicit assumption of spatial
homogeneity. In real communities this can be observed
as a lack of spatial structure in the distribution patterns
of the species; i.e., for the theory to be validly applied,
the species must be well intermixed, to ensure that they
all have the opportunity to interact with one another.

Where can community matrix theory be applied?

Because of these limitations, a number of authors have
suggested that the value of models such as the commu-
nity matrix lies in their ability to provide inspiration for
developing new hypotheses, even though they are too
simplistic as ‘working models’ to apply to real commu-
nities (e.g. May 1984). However, as Pimm (1992: xiv)
pointed out ‘‘What then is the purpose of building
ecosystem models if we cannot test them; how do we
know the models are not purely theoretical edifices?’’.

We do not imply in this work that the community
matrix model (with its simplistic assumptions) is rele-
vant to all natural communities. It has been argued that
many persist in a non-equilibrium state, and that envi-
ronmental variation plays an integral role in the
maintenance of their diversity (e.g. Chesson and Huntly
1989). Here, we attempt to apply community matrix

theory to a real community that was chosen as coming
as close as possible to satisfying the assumptions – the
Otago University Botany lawn. If the usefulness of the
theory cannot be demonstrated using this simplest of
communities, then the claim that the theory is too
simplistic to adequately represent real communities
must be taken very seriously, and the validity of results
derived from a whole suite of theoretical studies must
be questioned. Note that because this study is limited to
a single community, we were unable to directly investi-
gate issues related to between-community differences in
stability, such as the stability-diversity debate.

Experimental methods

The Botany lawn study site

The lawn, 13 m×11 m, is situated in a secluded part of
the Otago University campus, Dunedin, New Zealand,
at an altitude of ca 5 m a.s.l. It was established during
the early 1960s (Professor G. T. S. Baylis pers. comm.),
since when the only management has been regular
mowing. The lawn is mown to a constant height, and
all clippings are collected in a catcher and removed
from the site. During the summer months, mowing
frequency averages approximately once every two
weeks, and in the winter once every two months. That
the lawn is subject to a continuous mowing regime is
not incompatible with the concept of equilibrium, since
the mowing treatment is a constant and predictable
background feature of the environment, and the re-
moval of foliage from the vegetatively reproducing
species does not result in the death of entire plants. In
this, mowing is comparable with natural herbivory.
This can be contrasted with typical ‘disequilibrium’
processes such as unpredictable disturbances, which
open up space and initiate successions in many
communities.

We chose a lawn on which to apply community
matrix theory because: (1) The species within the mown
sward are generally well-mixed and closely-packed, with
little or no bare ground; under such conditions compe-
tition may be expected to be intense, and thus play a
significant rôle in structuring the community. Although
mowing removes biomass from the canopy, and is thus
potentially reducing competition for light, previous
work on this community has shown that the species do
compete strongly with each other, even under these
conditions (Watkins and Wilson 1992, Wilson et al.
1992, Wilson and Roxburgh 1994). (2) The species that
are characteristic of lawns are generally fast growing, so
there is potential for a high rate of biomass turnover,
and for fast community development; therefore in well-
established lawns it is more likely that the species in the
community have reached equilibrium. (3) Fast growing
herbaceous plants are easy to manipulate under experi-
mental conditions.
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Experimental rationale

The elements of the community matrix were determined
from pairwise competition experiments, estimating the
effect of one species upon another by comparing the
performance of each species when grown in mixture, to
its performance when grown in monoculture. An addi-
tive experimental design was used (Underwood 1986),
i.e. the planting density for each species in mixture and
in the corresponding monoculture was the same. With
an additive design, if species A has no competitive
effect on species B, the biomass of species B in mixture
and in monoculture will be the same.

To predict stability, a seven-species community ma-
trix, with 49 elements, was constructed. Seven species
were chosen from the 23 vascular plant species recorded
in the undisturbed lawn (Roxburgh 1994). The number
of seven species was a trade-off between the number of
species combinations required to estimate the matrix
parameters, the number of replicates required to attain
satisfactory statistical power, and the physical space
available adjacent to the lawn. The seven species to-
gether comprised 81% of the total point quadrat hits
for the lawn (Roxburgh and Wilson 2000). Six of the
species were the most common ones found on the lawn:
three grasses (Agrostis capillaris, Holcus lanatus and
Festuca rubra) and three forbs (Trifolium repens,
Prunella 6ulgaris and Hydrocotyle heteromeria). The
seventh species was Ranunculus repens, one of the rarer
species found in the lawn, which was included so that
the experimental mixture represented a wider range of
field abundances. Note that, because it is not possible
to include all species in the experiment, we are making
the assumption that the stability properties of the
seven-species matrix are consistent with the full matrix.
This assumption is discussed in greater detail in the
section ‘Limitations of the stability analysis’.

Experimental design

The following 35 types of box were set up:

– a monoculture box for each species, planted with
three ramets per box (single-density monoculture),

– a monoculture box for each species, planted with six
ramets per box (double-density monoculture),

– all possible (21) two-way mixtures of the seven spe-
cies, planted with three ramets of each species.

Aarssen (1985) and Taylor and Aarssen (1989) have
shown that the results of pairwise competition experi-
ments, as described above, are valid only when it can
been shown that both species in monoculture are fully
utilising the resource space, i.e. the monocultures
achieve constant final yield (CFY). To check for CFY
therefore requires confirming that the final (12-month)
biomass of the single- and double-density monocultures

was the same (Taylor and Aarssen 1989, Johansson and
Keddy 1991).

There were ten replicates of each treatment, arranged
in a randomised block design, 350 boxes overall. For
each species in each block a single clone was used, to
control error variation, but also to ensure that each
replicate was independent from the moment of collec-
tion of the original ramets.

Plant and soil materials

Ramets of the seven species were collected at random
from the lawn, 13 months before the establishment of
the experiments, and cloned. During this period the
clones were regularly clipped, mimicking the action of
the lawn mower.

The soil used in the boxes was collected from the
Botany lawn, from holes 20 cm deep at random posi-
tions (away from the perturbation experiment blocks:
Roxburgh and Wilson 2000). The top 5 cm of vegeta-
tion was discarded. In the remaining soil, the top and
bottom halves of the profile were kept separate to
retain, in the boxes, a soil structure as close as possible
to that in the Botany lawn. The bottom layer was
placed, unsterilised but thoroughly mixed, in the bot-
tom of the experimental boxes to allow the introduction
of naturally occurring soil organisms. The remaining
soil was steam sterilised at 102°C for 3 h to destroy the
propagule bank, mixed and placed in the boxes on top
of the unsterilised soil.

Planting, establishment, maintenance and
harvesting

The experiment was established in February 1991, ca 20
m from the Botany lawn, in wooden boxes with dimen-
sions 20×20×20 cm. In the pairwise mixtures the
ramets were planted in a chequerboard pattern, in close
proximity to one another, to ensure that the species
were given the opportunity to interact at the earliest
possible opportunity. For the first two weeks of growth,
the boxes were covered with shade cloth to aid estab-
lishment. Dead ramets were replaced for up to six
weeks with live material of the same genotype (mortal-
ity before replacement was 10%). During the experi-
ment, the boxes were clipped by hand to simulate the
mowing regime on the lawn. As with the mowing, the
clippings were discarded, and were not allowed to
decompose in situ. Clipping frequency mirrored that of
the lawn mowing: every two weeks in summer and
every two months in winter.

All boxes were harvested exactly 12 months after
they were set up, having been clipped two weeks before
that date. At harvest, the above-ground vegetation of
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the boxes was removed, sorted into species, dried and
weighed. Because we wanted the conditions in the
competition experiment to be as close as possible to
those in the actual community, we did not alter the
natural soil matrix, e.g. by mixing sand. Unfortunately,
this meant we were unable to harvest the below-ground
biomass, due to difficulty in separating root material
from the soil, and difficulty in disentangling the roots
of competitors.

Stability analysis methods

To predict stability the results of the pairwise competi-
tion experiments were first expressed as the ‘Relative
Yield per Plant’, RYP, which for the additive design is
defined as:

RYPij=
Yij

Yi

,

where Yij is the yield from three ramets of species i after
competing with three ramets of species j and Yi is the
single-density monoculture yield of three ramets of
species i. For interspecific competition i" j and for
intraspecific competition i= j. RYP values were calcu-
lated for each replicate (i.e. block) separately to allow
calculation of the variance of the RYP values.

To calculate the elements of the community matrix
from the RYP values the method of Wilson and Rox-

burgh (1992) was used. A summary of that method
follows.

The interpretation of matrix elements sij (Eq. 4) is
that, in a mixture near equilibrium, changing the abun-
dance of species j by the small amount #Nj will have an
effect on species i of #fi. The ratio effect:change gives
sij. If, when extra plants of i are added to a box, growth
of other plants is reduced to exactly compensate (as in
a monoculture at CFY, when the plants have reached
environmental carrying capacity), RYP will be 0.5 and
sij or sii will be −1.0. If there is no interaction between
plants/species, RYP will be 1.0 and sij or sii will be 0.0.
If there is exact mutualism (i.e. adding extra plants to
the box results in an increase in the growth of the
existing plants to exactly match), RYP will be 2.0 and
sij or sii will be +1.0. Therefore, to convert RYP values
into sij community matrix elements we apply the
transformation:

sij= log2(RYPij). (5)

The appropriate form of the transformation in between
RYP values of 0.5, 1.0 and 2.0 is unknown, but the
assumption is that the transformed RYP values are
approximations to the elements of the community ma-
trix, or are related in such a way that the stability
properties of the transformed RYP matrix parallel
those of the ‘actual but unknown’ community matrix.
Stability is determined from S as described in the
Introduction, calculating the maximum eigenvalue
R(l)max (by algorithm HQR; Press et al. 1986).

Table 1. Matrix of average RYP values and standard deviations (in parentheses) from the pairwise competition experiments
(n=10 replicates). Column (effect) and row (response) averages are calculated with the diagonal elements excluded. Effect and
response values sharing the same letter are not significantly different (Tukey’s test, P=0.05). *=RYP values not significantly
different from 1.0 by t-test (P=0.05). Species abbreviations: Hl=Holcus lanatus, Ac=Agrostis capillaris, Rr=Ranunculus
repens, Tr=Trifolium repens, Fr=Festuca rubra, Pv=Prunella 6ulgaris, Hh=Hydrocotyle heteromeria.

Target species Mean responseNeighbour species

HhPvFrTrRrAcHl

Hl 0.52 0.75 0.60 0.65 1.00* 0.83a0.98*0.99*
(0.23)(0.12) (0.28) (0.33) (0.21) (0.32) (0.35) (0.26)

0.97* 0.68ab0.27 0.53Ac 0.46 0.73 0.77 0.88*
(0.24) (0.33)(0.16) (0.09) (0.15) (0.20) (0.27) (0.22)

0.68ab0.860.820.830.370.490.740.48Rr
(0.14) (0.25)(0.26) (0.24) (0.09) (0.12) (0.21) (0.20)

Tr 0.56 0.58 0.70 0.52 0.70 0.68 0.82 0.67ab

(0.12)(0.15)(0.11)(0.14)(0.06)(0.09)(0.15)(0.09)
Fr 0.12 0.29 0.49 0.63 0.53 0.65 0.87 0.51abc

(0.16) (0.33)(0.05) (0.21) (0.27) (0.17) (0.09) (0.29)
Pv 0.11 0.17 0.23 0.45 0.43 0.50 0.63 0.34bc

(0.07) (0.08) (0.09) (0.16) (0.18) (0.13) (0.24) (0.25)
0.23cHh 0.510.340.220.270.310.110.11

(0.13)(0.10)(0.19)(0.12)(0.11)(0.16)(0.06)(0.06)
Mean effect 0.27a 0.44ab 0.46abc 0.52abc 0.66abc 0.73bc 0.85c

(0.15)(0.28)(0.35)(0.22)(0.21)(0.35)(0.25)
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Table 2. Matrix of P values from t-tests between pairwise competitors (see Table 1). Statistically significant P values are
indicated in bold (P=0.05), and indicate that the row species is competitively superior to the column species. * indicates t-tests
based on log-transformed values to homogenise unequal variances.

RanunculusHolcus HydrocotyleAgrostis PrunellaTrifolium Festuca
repens rubrarepens heteromeria6ulgarislanatus capillaris

H. lanatus 0.000 0.386* 0.422 0.000* 0.000* 0.000*
A. capillaris 0.078 0.000*0.001* 0.000*
T. repens 0.000 0.316 0.002 0.000
R. repens 0.009 0.008 0.000* 0.000
F. rubra 0.0000.077

0.010P. 6ulgaris

Results and discussion

Patterns of competition

Interspecific competition
All of the interspecific RYP values except five (Table 1)
were significantly B1.0 (based on pairwise t-tests, PB
0.05), i.e. suppression in mixture relative to monocul-
ture was detected in 37/42 of the possible combinations.

Intraspecific competition
None of the diagonal RYP elements were significantly
different from 0.5. This means that comparison be-
tween the single- and double-density monocultures gave
no evidence for unused resources in the single-density
monocultures, suggesting that after 12 months’ growth
constant final yield had been attained (Aarssen 1985,
Taylor and Aarssen 1989).

Effect/response, and asymmetry
Competitive interactions in multispecies communities
can be separated into two processes: the effect that a
species has on all others in the community, and the
response of a species to all others (Miller and Werner
1987). The overall effect and response (Table 1) are
seen as the row and column averages, excluding the
diagonal elements. The mean effect ranged from 0.27
for Holcus lanatus (indicating that on average Holcus
depressed the performance of other species to 27% of
that which they attained in monoculture) to 0.85 for
Hydrocotyle heteromeria. Tukey’s range test indicated
that there was a continuous variation in competitive
effect, from Holcus, the most competitive species, to
Hydrocotyle, the weakest.

Competitive response values ranged from 0.83 for
Holcus (indicating that on average other species de-
creased the performance of Holcus to 83% of its perfor-
mance in monoculture) to 0.23 for Hydrocotyle.
Tukey’s test again showed continuous variation be-
tween these two extremes. This continuum of competi-
tive ability is in contrast to the results of Johansson and
Keddy (1991), where the species clearly split into three
superior competitors and three inferior competitors.
Competitive effect and response were significantly nega-
tively correlated across species (r= −0.978, PB0.001),
illustrating that there was usually asymmetric pairwise

competition between the species pairs, with a ‘winner’
and a ‘loser’, as Miller and Werner (1987) found for
five herbaceous old-field species, and Johansson and
Keddy (1991) for ‘wetland’ species.

The extent of the competitive asymmetry was investi-
gated further by performing t-tests between each pair
of RYP values. Of the 21 pairwise comparisons, 16
showed significant difference (Table 2) between recipro-
cal RYP values (Table 1), i.e. asymmetry in competi-
tion, i.e. a greater competitive ability for one species of
the pair.

Hierarchy and transiti6ity
The pattern of the asymmetric competitive relations
among the seven species shown in Table 2 was such

Fig. 1. Hierarchy of competitive abilities based on the results
of the pairwise competition experiment. An arrow leaving
species A and terminating at species B indicates that species A
suppressed B significantly more strongly than species B sup-
pressed A, as defined by the t-tests in Table 2.
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Fig. 2. Competitive effect from Table 1 vs maximum relative
growth (RGR) as measured by Grime and Hunt (1975) for six
of the seven species used in the competition experiments (all
except Hydrocotyle heteromeria). Note the inverted x-axis. See
Table 1 for species abbreviations.

feature of many competition studies of herbaceous
plant communities (Shipley 1993).

Gaudet and Keddy (1988) proposed that the compet-
itive abilities of species, e.g. their position in a compet-
itive hierarchy, might be predicted from a small number
of species-specific traits. In particular they argued that
plant size, together with related morphological charac-
ters, has the potential to predict the outcomes of plant
competition experiments. We suggest that for the
Botany lawn species plant size per se is irrelevant, due
to the constant mowing regime. However, the competi-
tive effects of the species (i.e. their ability to suppress
neighbours; Table 1) were related to their maximum
relative growth rates (RGRmax; Fig. 2) as determined
by Grime and Hunt (1975). This strong relation (r2=
0.897, P=0.004), although based on only six species,
supports Gaudet and Keddy’s (1988) claim that com-
petitive ability might be predictable from a small num-
ber of traits.

Stability analysis

Each element in the observed RYP matrix (Table 1) has
an uncertainty associated with its estimation, measured
as a standard deviation. To generate an estimated
community matrix incorporating this uncertainty, com-
munity matrix elements were drawn at random from a
normal distribution with mean and standard deviation
equal to that in the observed RYP matrix. For each
‘resampled’ RYP matrix, the transformation of Wilson
and Roxburgh (1992) was used to convert it to a
community matrix. 1000 such matrices were generated.
The average matrix and its standard deviation over
these 1000 estimates is shown in Table 3.

Eigenvalue analysis of the estimated community ma-
trix predicted instability of the mixture, with a maxi-
mum eigenvalue R(l)max=0.019. This suggests that the
Botany lawn is unstable, and therefore will not recover

that they could be arranged into a linear hierarchy of
competitive ability (Fig. 1), the most competitive at the
top (Holcus lanatus, competitively superior to four spe-
cies and inferior to none) to the least competitive at the
bottom (Hydrocotyle heteromeria, competitively inferior
to six species and superior to none). This linear hier-
archy (i.e. transitivity of competitive ability: Keddy and
Shipley 1989) supports the conclusion of Miller and
Werner (1987), that in many plant communities there is
little specificity of species interactions, e.g. the most
dominant species affects all other species strongly, not
just some of them. The latter workers interpreted this
as evidence that all the species are competing for the
same resources, i.e. light, water and nutrients. Transi-
tive competitive hierarchies have been found to be a

Table 3. Estimated community matrix for the Botany lawn calculated from 1000 community matrices randomly generated from
the RYP values in Table 1. Values in parentheses are standard deviations. See text for further details.

Neighbour speciesTarget species

Rr Tr Fr Pv HhAcHl

Hl −0.41−0.94 −0.76 −0.63 0.01 −0.02 −0.03
(0.04) (0.16) (0.26) (0.09) (0.14) (0.18) (0.10)

−1.90 −0.92 −1.12 −0.45 −0.39 −0.18Ac −0.04
(0.09)(0.08)(0.14)(0.08)(0.07)(0.02)(0.14)

−1.06 −0.43 −1.04 −1.44 −0.28 −0.30Rr −0.23
(0.20) (0.12) (0.02) (0.06) (0.08) (0.07) (0.03)

−0.29−0.55−0.51−0.94−0.52−0.79−0.84Tr
(0.02) (0.05) (0.02) (0.01) (0.04) (0.03) (0.04)

Fr −3.10 −1.78 −1.05 −0.68 −0.91 −0.64 −0.21
(0.03) (0.23) (0.21) (0.07) (0.02) (0.20) (0.04)

Pv −3.21 −2.55 −2.15 −1.17 −1.22 −0.99 −0.67
(0.13)(0.05)(0.10)(0.08)(0.05)(0.05)(0.06)

Hh −3.25 −3.21 −1.69 −1.88 −2.22 −1.54 −0.98
(0.05) (0.05) (0.12) (0.07) (0.10) (0.15) (0.03)
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following perturbation. It interesting to note that 0.019
appears close to the stability/instability boundary of
0.0, and also that the 95% quantile of eigenvalues for
the 1000 community matrices from which the average
matrix was calculated includes zero (−0.005, 0.465).
These observations suggest the possibility that the ob-
served community matrix may be close to the boundary
of stability/instability, implying that the community
itself is close to being stable. This would be an ecologi-
cally interesting result, and for this reason we chose to
examine the topology of this community matrix in
greater detail.

Statistical explorations of the obser6ed community
matrix
To gain a deeper appreciation of the topological char-
acteristics of the community matrix, we used a null
models approach. We noted above that the estimated
value of R(l)max appears close to the stability/instabil-
ity boundary value of 0.0. However, to make conclu-
sions about how ‘close’ or ‘far’ the community is from
this boundary requires comparison with an appropriate
null model. This is a problem, because it is difficult to
know how much ecological information the null model
should include. We therefore used four different null
models, with characteristics which represent different
aspects of the observed interspecific interactions. The
procedure is similar to that used by Lawlor (1980) in
his analysis of 11 lizard and 10 bird community
matrices.

For each null model, 5000 seven-species community
matrices were constructed, R(l)max for each random
matrix was recorded, and the observed value was com-
pared with the frequency distribution of the null model
values. The four null models are as follows:

1. Random 6alues. In the observed RYP matrix, the
off-diagonal elements ranged from 0.11 to 1.00, with
the distribution approximately rectangular. The ‘Ran-
dom values’ algorithm constructed RYP matrices by
filling the off-diagonal cells from a rectangular-random
distribution with the same range. The diagonal ele-
ments were assigned the average of the value of the
observed matrix (=0.51). These random RYP matrices
were then converted to community matrices by Eq. 5,
and their stability determined. (Random RYP matrices
were generated here, rather than random community
matrices directly, as the distribution of the observed
RYP values was closer to a rectangular than the distri-
bution of the community matrix elements.) This model
retains a minimum amount of the original community
structure, in that there is no constraint on the patterns
of interactions among the species.

2. Random positions. For this algorithm, the off-diago-
nal sij values in the observed community matrix were
retained, but they were allocated to positions at ran-

dom. Since this model retains in the random matrices
only the observed values, not their positions, it tests
what effect the arrangement of the observed elements
has on community stability. The values of the observed
diagonal elements were also retained, but allocated at
random along the diagonal.

3. Random pairs. This algorithm also retains the ob-
served sij values, but in addition it retains the observed
‘asymmetric’ pairwise competitive relationships, by
keeping the 21 sij/sji competitive pairs as pairs, and
randomly allocating those pairs. The orientation of
each pair above/below the diagonal was randomised, to
disrupt the observed tendency of the species to form a
transitive competitive hierarchy.

4. Random pairs and hierarchy retained. The only dif-
ference between this algorithm and the previous model
was that the tendency for the species to be arranged
into competitive hierarchies was retained in the random
matrices, by retaining the observed above/below diago-
nal orientation of the competitive pairs. This algorithm
produces random matrices which are topologically very
similar to the observed community matrix.

The null model analysis provides two sorts of informa-
tion. First, it gives an indication of how likely it is to
observe a stable seven-species matrix at random, under
a variety of constraints. (results presented below under
‘Analysis 1’). Second, it provides an indication of where
the observed matrix occurs relative to the distribution
of matrices generated from a particular null model. The
closeness of the observed matrix to the stability/insta-
bility boundary can be quantified by counting the num-
ber of random matrices that had R(l)max values less
than the observed matrix, but greater than zero. If this
number is very small, then this indicates that the ob-
served matrix is indeed close to the boundary (results
presented below under ‘Analysis 2’). Two further as-
pects of the topology of this matrix were investigated.
In the third analysis we explore the stability properties
of subsets of species within the matrix (Analysis 3). In
the fourth we investigate how sensitive the prediction of
instability is to changes in the above/below diagonal
structure of the matrix, i.e. diagonal dominance. This is
a characteristic that is critical in determining commu-
nity stability (Analysis 4).

Analysis 1: Probability of stability under the null
models
Under the Random values null model there was a very
low chance of observing a stable seven-species matrix,
with only 1/5000 matrices having a R(l)max value of
less than zero (Fig. 3a). Through models 2–4, as the
similarity of the null model to the observed matrix
increased, the chance of observing a stable seven-species
matrix increased correspondingly. In particular with
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Fig. 3. Frequency histograms
of R(l)max calculated from
5000 randomly generated
matrices for each of four null
models. The arrow indicates
the interval containing R(l)max
for the community matrix
calculated for the Botany lawn.
Open bars indicate stable
communities, i.e. matrices with
R(l)maxB0. See text for
further details.

model 4 (Fig. 3d), which retains both the observed
competitive asymmetry and competitive hierarchies, the
chance of observing a stable matrix increased to 630/
5000, or 13%. This suggests that competitive asymmetry
and competitive hierarchies enhance the chance of form-
ing a stable mixture. Strong pairwise competitive asym-
metry and competitive hierarchies are consistent with at
least one model of multispecies coexistence, described
by Keddy (1989) as the ‘competitive hierarchy’ model.

Asymmetric competition appears to be common in
plant communities (Connell 1983, Schoener 1983), and
Shipley (1993) has further suggested that the tendency
to form competitive hierarchies is a common feature of
many herbaceous plant communities (but see Connolly
1997). Although the link between competitive asymme-
try and stability has been suggested by previous theoret-
ical studies (Rummel and Roughgarden 1985, Ginzburg
et al. 1988), Fig. 3 represents the first time that both
asymmetry and competitive hierarchies have been di-
rectly linked to a model of community dynamics.

Lawlor (1980), analysing 11 lizard communities and
10 bird communities using a null model very similar to
the Random positions, found observed matrices to
exhibit ‘higher stability’ than the corresponding random
communities, although it should be noted that Lawlor’s
‘community matrices’ were actually matrices of overlap
indices, and are approximations to matrices of Lotka-
Volterra competition coefficients rather than to the
community matrix S.

Analysis 2: Closeness of the obser6ed community
matrix to the stability/instability boundary
In Fig. 3 it can be seen that, under all null models, the
value of R(l)max for the Botany lawn matrix was

extremely close to the stability/instability boundary
value of 0.0. This closeness is confirmed when the
number of random matrices greater than 0.0 but less
than the observed matrix are counted. For both the
Random values and Random positions models, there
were no random matrices with a value of R(l)max in this
interval. For the Random pairs model, only 20/5000 or
0.4% of the random matrices were closer to the
boundary than the observed matrix, and for model 4
this increased to just 4.3%. These results confirm that
the Botany lawn community matrix is extremely close to
the boundary of stability/instability, at least when com-
pared against the range of null models considered. This
is an interesting result, in that it predicts a community
which may be ‘teetering’ on the edge of stability. That
the observed matrix is close to the stability/instability
boundary can also been seen by the sensitivity of the
stability predictions to minor changes in the diagonal vs
off diagonal structure of the matrix, described below
under Analysis 4.

Analysis 3: Is the amount of stability within the matrix
greater than expected at random?
We also investigated whether there are more stable
subsets within the observed community matrix than
expected at random, using the Random positions and
Random pairs models described above. One thousand
seven-species random matrices were constructed under
each model. All possible subsets within the observed
matrix and within each random matrix were tested for
stability.

The observed community matrix contained a greater
number of stable subsets of every size than any of the
1000 Random-positions random matrices (Table 4). The
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Random pairs null model, with the competitive hier-
archy retained, showed considerably greater numbers of
stable subsets, though again on average fewer of each
size than in the observed matrix. This confirms that the
Botany lawn community matrix is closer to stability
than expected at random, and that much of this stabil-
ity can be attributed to the presence of a competitive
hierarchy.

Analysis 4: Diagonal dominance and niche separation
One of the most important characteristics of commu-
nity matrices influencing stability is the relationship
between the diagonal and off-diagonal elements (Auer-
bach 1984). In competition communities, a tendency for
the diagonal elements to be greater in magnitude than
the off-diagonal elements enhances stability (Barnett
and Storey 1970). In an extreme case, if for all rows the
sum of the magnitudes of all off-diagonal elements is
less than the magnitude of the diagonal element in that
row, stability is guaranteed. Ecologically, this repre-
sents weaker interspecific interactions than intraspecific
interactions, and is usually attributed to niche
differentiation.

Manipulations of the Botany lawn community matrix
showed its stability to be sensitive to small changes in
its diagonal elements. For example, a uniform increase
of only 2% in the diagonal values resulted in a reversal
of the prediction from unstable to stable (2% is well
within experimental error, though experimental error
would not be uniform in direction). This confirms that
the matrix is very close to the stability/instability
boundary.

Two important features of the Botany lawn commu-
nity matrix were revealed in the above analyses. First,
the Botany lawn community is predicted to be close to
the boundary of stability/instability. This was reflected
both in the comparison of R(l)max for the observed
matrix with the distribution of R(l)max derived under
the various null models, and also in the sensitivity of
the stability prediction to small perturbations of the
matrix diagonal elements. Just how a real community
close to the stability/instability boundary would be
expected to behave is uncertain. Possible scenarios in-
clude a trend for the community to recover, but not

fully, for some species to be able to recover but not
others, and sensitivity of the community response to
small changes in the nature of the perturbations, e.g.
degree, timing or type.

Second, the tendency of the Botany lawn species to
compete asymmetrically and form transitive competi-
tive hierarchies was found to enhance the probability of
stability in community matrices. This was observed as
an increase in the probability of observing a stable
community in the null models where both asymmetry
and hierarchy were retained, and also in the analyses of
the stability of subsets within the matrix.

Mechanisms of species coexistence

The proximity of the community matrix to the stability/
instability boundary, and the observation that many of
the species within the lawn are able to coexist with one
another (Roxburgh and Wilson 2000), raises the ques-
tion of which mechanisms are enhancing coexistence.

Apparent mutualism
In multispecies mixtures, indirect effects (Levine 1976,
Vandermeer 1990) can cause an interaction that is
negative on a pairwise basis to become positive, pre-
venting competitive exclusion and hence allowing long-
term coexistence (Lawlor 1979). Tilman (1988) has
called this type of indirect effect ‘apparent mutualism’,
because in the context of the multispecies community
direct competitors can behave as mutualists. Stone and
Roberts (1991) provided an analytical method for iden-
tifying apparent mutualism. Their results showed that
20–40% of interactions which are competitive in pair-
wise isolation became mutualistic when they were em-
bedded within multispecies competitive communities.

Apparent mutualism seems not uncommon in nature.
Connell (1983) reviewed field manipulation experi-
ments, detecting apparent mutualism by an decrease/in-
crease in the abundance of one species in response to an
experimental decrease/increase in another. He found
two cases of apparent mutualism involving higher
plants (viz. Allen and Forman 1976, Fowler 1981).

Table 4. The number of stable two-, three-, four-, five- and six-species mixtures within the estimated community matrix, and the
average number of stable subsets for each from 1000 matrices constructed from each of the ‘Random positions’ and ‘Random
pairs’ algorithms.

6 234Subset size 5

Total possible 7 21 35 35 21
Observed no. stable subsets 1 10 18 31 20
Random positions

10.06.6Average no. subsets stable 1.20.10.0
0.000.000.00 0.000.00Proportion random]observed

Random pairs
Average no. subsets stable 0.4 4.5 15.8 28.4 –
Proportion random]observed 0.28 0.07 0.32 0.16 –
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Although we were unable to directly test for the
presence of apparent mutualism in the Botany lawn,
this is just the type of community where apparent
mutualism might be expected to be found; there is
strong competition between the species (Table 1), and
all the species are well mixed, providing the opportunity
for simultaneous multispecies interactions (Roxburgh
and Wilson 2000).

Niche differentiation
It is unlikely that apparent mutualism is the only
mechanism responsible for maintaining diversity in the
Botany lawn. Eleven other possible mechanisms are
known (Wilson 1990). Niche differentiation is almost
certainly a contributory mechanism. We have demon-
strated differences in vertical stratification in this lawn
(Roxburgh et al. 1993), differences in guild membership
(Wilson and Roxburgh 1994, Wilson and Watkins
1994), and there are obvious differences in growth form
between species. For example, Hydrocotyle heteromeria
is stoloniferous and forms a complex clonal network
which weaves and scrambles amongst other ‘non-mo-
bile’ species such as Holcus lanatus.

However, only niche differences which are indepen-
dent of environment variability can be incorporated
into the community matrix framework, due to the
assumption of equilibrium. Despite this, niche differen-
tiation can also arise in nature due to differential
species responses to variable environmental conditions,
either in space or time, giving rise to spatial and
temporal niches. These fluctuation-dependent coexis-
tence mechanisms are incompatible with the traditional
community matrix approach, and hence require alter-
native methods of analysis to elucidate (Chesson 1994).
Indeed, the exclusion of these potentially important
mechanisms is a major limitation of the community
matrix approach, and is discussed in greater detail in
the ‘Conclusions’ section of the companion paper (Rox-
burgh and Wilson 2000). Although we chose the
Botany lawn as a community which we thought would
come close to satisfying the assumptions required by
community matrix theory, we cannot guarantee that
fluctuation-dependent mechanisms do not contribute to
the maintenance of diversity in this community. For
example, Hydrocotyle heteromeria has the ability under
stress to replace above-ground parts using reserves in
the rhizome (Sykes and Wilson 1990). This potential to
buffer population growth against unfavourable envi-
ronmental conditions is a key ingredient of many fluc-
tuation-dependent mechanisms of coexistence, e.g. the
storage effect (Chesson 1994), and thus suggests the
possibility that this mechanism may also contribute to
the coexistence of species in the Botany lawn.

Opportunity for coe6olution
Apart from Hydrocotyle heteromeria, which is a native
of New Zealand, the remaining six species are all native

to Europe and the British Isles (Clapham et al. 1987).
More specifically, all of these species are common com-
ponents of temperate grasslands, and where their
ranges overlap they commonly coexist (Perring and
Walters 1962, Grime et al 1988). Also, in Muller’s
(1990) study of approximately 800 lawns from 12 Ger-
man cities, all six species were common components of
the lawn flora. This suggests the possibility that these
species have had the opportunity to coevolve traits to
enhance coexistence, e.g. through the evolution of niche
differentiation.

Limitations of the stability analysis

As indicated in the Introduction, the community matrix
and the associated stability analyses are based on a
number of simplistic assumptions. Although we chose
to apply the theory on a community which we thought
would approximate these assumptions, a number of
problems were encountered in applying the theory to a
natural community. Two problems which directly relate
to the estimation of the matrix elements are discussed
below. In the companion paper (Roxburgh and Wilson
2000), we discuss the relationship between community
matrix theory and the dynamics of the Botany lawn,
and more generally draw conclusions on the utility of
community matrix theory for investigating stability in
ecological communities.

Difficulty in quantifying the interactions among all
species in the community
One difficulty in applying the community matrix to real
communities is the work required to measure the matrix
elements, for this requires quantifying the interactions
among all possible pairs of species in the community.
For the Botany lawn there were 21 species recorded in
the community; however, the maximum number we
could use in the experiments was only seven, and even
this required a large experimental effort. This is an
important problem, because there is no guarantee that
a subset of species chosen from a stable (or unstable)
community should exhibit the same dynamic behaviour
as the parent community (Table 4). The relatively
strong competitive effect exhibited by the numerically
rare Ranunculus repens suggests that all species have the
potential to play an important role in community dy-
namics, not only those that are the most abundant in
the community.

Difficulty in relating experimental results to community
matrix theory
Community matrix theory assumes a stable equilibrium
point, with the matrix elements describing the dynamics
around this equilibrium. We used competition experi-
ments to estimate these elements; however, the assump-
tion that such experiments can be used to infer the
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dynamics about an equilibrium point is far from certain
(Wilson and Roxburgh 1992). This is because the ma-
trix elements represent instantaneous pairwise effects
measured when all other species in the community are
held at their equilibrium values (Eq. 4), whereas the
competition experiments quantify the direct pairwise
effects, averaged over the duration of the experiment.
In the case of the Botany lawn the situation is compli-
cated further, because monitoring the actual commu-
nity showed some within- and between-year variation in
the dynamics of some of the species, therefore violating
the strict definition of equilibrium specified by the
theory (Roxburgh and Wilson 2000). The Botany lawn
community matrix should therefore be regarded as the
best estimate available, and these caveats should be
borne in mind when assessing the stability predictions
based on this matrix.

Experimental evidence of stability

In this paper we used an experimental approach, apply-
ing community matrix theory to an actual community,
to make predictions of its stability. The resulting pre-
diction of marginal instability, keeping the above
caveats in mind, suggests a possible conflict with the
actual behaviour of the community, as the Botany lawn
has already persisted for 30 years. However, there are
no records of the floristic composition of the lawn over
this period. The only valid method of testing the predic-
tion of marginal instability is by experimental perturba-
tion of the community, and subsequent monitoring of
its recovery. In the companion paper (Roxburgh and
Wilson 2000) we report such an experiment.
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