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Abstract. Eigenvalues, the solutions to the characteristic polynomial, are important 
measures of community behavior. Their range and practical measurement present difficult 
challenges in ecology. We therefore present the derivation of variance of eigenvalues of 
the community matrix, var(A) = var (a , )  + (n - l)aoaJi, as well as a novel related formula, 
namely, the expectancy of pairwise eigenvalues (EPV), var(A ,,,,,,,,) = var(a,,-,,,,,,,,) + a,a,,. 
We propose that the two formulae may be useful in evaluating the relative contributions 
of inter- and intraspecific effects on the behavior of large systems. EPV allows estimating 
eigenvalue distribution of systems of unknown size. 

Key words: community matrzx; complex systems; eigenvalues; population dynamics; stability, 
community; variance. 

INTRODUCTION We derive a novel index, the expectation of the var- 
iance of pairwise eigenvalues (EPV). Although EPV 

Measurements of ecosystem stability derived from appears similar to the variance of eigenvalues, it may 
the so-called "Routh-Hurwitz criteria" use self-effects be substantially more practical in its applications. EPV 
and interactions among a specific number of commu- incorporates intra- and interspecific relationships into 
nity members. The coefficients of the characteristic one descriptor, using information derived only from a 
polynomial of the community matrix are the bases of subset of pairwise relationships. Levins' formula is a 
the criteria, and the eigenvalues (A), or solutions to the powerful theoretical formula but with limited practical 
polynomial, can give a valuable index of system be- applicability because it requires consideration of the 
havior (see Vandermeer 1981). Intuitively, it follows complete system. As an estimate, EPV reflects more 
that the range of eigenvalues also might be a valuable realistically the manner in which field ecological data 
index of system behavior. Eigenvalues are used to de- are usually collected and analyzed because it may be 
scribe the return time, T,, of a system, where T, = 11 calculated without complete system specification. 
[real (A)],,,, A,,, < 0 (Pimm and Lawton 1978). Levins 
(1975) expressed the variance of eigenvalues as an 
equation incorporating intra- and interspecific inter- DERIVATIONOF EPV AND VAR(A) 
actions as well as community size. This formula is 
useful because it allows for general yet robust predic- Levins (1975) described a relationship for the vari- 
tions of system behavior. Levins (1975) thus predicted ance of eigenvalues. A derivation of this relationship 
that an increase in the number of predator-prey rela- is not available in the literature. We therefore present 
tionships could cause instability. below a complete derivation of the expected pairwise- 

eigenvalue variance, EPV, and of the variance of eigen- 
Manuscript received 16 February 1999; revised 27 August values, var(A). The joint derivation will demonstrate 

1999; accepted 13 September 1999; final version received 22 Oc- how closely related the two formulae are to each other. 
tober 1999. An understanding of the derivation is also important 
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variance of eigenvalues, h, is expressed in the general 
form, 

v a r ( ~ )= X2 - i 2 .  (1) 

The derivation is constructed from a collection of 
determinants of 2 X 2 sub-matrices. We proceed by 
deriving both right-hand elements in terms of the com- 
munity matrix. The following two relationships are giv- 
en by definition (see Searle 1966): 

These two values are often called the "trace" and the 
"determinant" of a matrix, respectively. There are (I) 
possible 2 x 2 sub-matrices in any community of size 
n. We begin by determining the square of the sum of 
the eigenvalues for each 2 X 2 sub-matrix, 

or, in terms of the matrix elements, 

(a l  + = a?, + 2(al ,az2) + a;2 (5) 

and so on for each sub-matrix. We calculate the sum 
of the squares of the eigenvalues in similar fashion, 
using the relationship shown in Eq. 4, 

or, expressed in terms of matrix elements, 

Using these equations, we calculate the variance of 
eigenvalues for each 2 X 2 sub-matrix using expected 
values. Thus, we obtain the square of the means, 

where is the expected value of diagonal elements 
taken pairwise. 

and similarly the mean of the squares, 

The expectancy of the variances of a 2 X 2 sub-matrix 
is obtained by subtracting Eq. 9 from Eq. 10: 

For a community matrix of size n, we take the expected 
value of the variances computed from all possible 2 X 

2 sub-matrices that can be derived from it. Since there 
are (1) = n(n - 1)/2 different pairings, then 

and similarly the denominator used to compute the ex- 
pected values of the pairwise var(a,,) and of var(A) is 
also n(n - 1)/2. The expected variance of pairwise 
eigenvalues, or EPV, is therefore 
-
~ar(ha,~-palralse)= EPV = m(a,t-pa,rw,se) + (15) 

In order to derive the actual variance of the eigenvalues 
(i.e., non-pairwise) for a community matrix of size n, 
we generalize from Eqs. 9 and 10 and consider the n 
diagonal elements simultaneously; thus, 

where is henceforth the expected value of the di- 
agonal elements of the entire matrix (i.e., not pairwise). 
Similarly for the mean of the squares, 

Given that there are n individual diagonal elements and 
therefore n eigenvalues, the variance of eigenvalues is 
therefore 

Since there are (I) = n(n - 1)/2 different off-diagonal 
pairings, then 
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and, following substitution of Eq. 22 into Eq. 20, we 
obtain Levins' (1975) variance of the eigenvalues for 
the entire community matrix taken simultaneously: 

var(A) = var(a,,) + (n - (23)l)a,ia,,. 

A NUMERICAL EXAMPLE 

We demonstrate the calculations of EPV and var(A) 
with a numerical example. The matrix shown has not 
been selected for any particular resemblance to systems 
occurring in nature. Given the matrix, 

there are n(n - 1)/2 = 3 possible 2 X 2 matrices that 
may be constructed: 

with eigenvalues = 1, 6 and var(A) = 6.25; 

with eigenvalues = -1, 4 and var(A) = 6.25; and 

with eigenvalues = 2, 4 and var(A) = 1.00. 

The expected value of these three variances (Eqs. 24- 
26) is, =(aii-, 3x,) = 4.5. From the diagonal ele- 
ments of the three matrices, we have three sets of a,i, 
(2, 5), (2, I),  and (5, I),  with variances of 2.25, 0.25, 
and 4.00, respectively. The expected value of the var- 
iances of these pairs of a,,, ~ ( a i i - p a i r w i s e , 3 x 3 ) ,  is 6.513 -
2.2. The off-diagonals of the three base matrices yield 
the following a,a,, terms: (-2)(-2) = 4; (6)(6) = 6, 
and (-1)(3) = -3, respectively. The expected value 
of the a,a,, terms is 713 or -2.33. To demonstrate equal- 
ity, we note that =(Ap ,,,,,,,,,, ,) = 4.5 and is equal to -
var(ai,-, 3x3)+ E(a,a,,) = 6.513 + 713 = 13.513 = 

4.5. Eq. 15 is satisfied. 
In the case of the equation for var(A), we note that, 

for the eigenvalues of the 3 X 3 matrix, which are 
(- 1.27, 4.64 + 0.56i, 4.64 - 0.56i), var(A) = 7.56 
(some standard statistical packages will yield a differ- 
ent answer since the domain of their input is the real 
number field; we carried out hand calculations), while 
var(a,,) = 2.89, so that var(a,) + (n - l)E(a,aj,) = 2.89 
+ (3 - 1)(7/3) = 7.56, and Eq. 23 is also satisfied. 

DISCUSSION 

The two indices are related in their applicability but, 
broadly speaking, differ in that var(A), the variance of 

eigenvalues, is a theoretical tool for explanation while 
EPV, the expected pairwise-eigenvalue variance, is a 
practical implementation of var(A). Var(A) is a system 
parameter, derived from a completely specified com- 
munity matrix; it is an attribute. In contrast, EPV does 
not require a completely specified matrix; it is an es- 
timate. Indeed, the theoretical power of var(A) is its 
practical limitation; the system must be completely 
specified. Since one can never be certain of specifying 
a system completely, any value of var(A) may be in- 
adequate. EPV however circumvents this practical con- 
sideration by not requiring a completely specified sys- 
tem. EPV may therefore be a practical tool that incor- 
porates the relative contributions of two major com- 
ponents of system behavior, namely, inter- and 
intraspecific effects. 

The value of either index can be used as a static 
estimate. More useful, we suggest, is the potential use 
of EPV as a comparative index of dynamic change. For 
example, as a monitoring tool for disturbed ecosystems, 
EPV may reflect ongoing trade-offs between intra-and 
interspecific effects as invasive species displace native 
species and form new interrelationships. Opportunistic 
species often exhibit rapid growth, high reproductive 
rate, and tolerance to a broad variety of environmental 
conditions. Diversity may be lost as systems adapt and 
incorporate these new species (Li et al. 1999). We hy- 
pothesize that as diversity is lost, the eigenvalues will 
become more homogeneous and EPV will decrease as 
the more fragile specialists and slower-to-reproduce 
species are overpowered and driven to extinction. EPV 
provides a real-time method for monitoring such trends. 

Because the domains of var(A) and EPV include both 
real and complex numbers, eigenvalues and pairwise 
eigenvalues are not typical random variables, and 
var(A) and EPV are not "statistics." We use the stan- 
dard calculation of variance to generate the values of 
var(A) and EPV, but we make no assumptions regarding 
their distributional properties. Accordingly, as Levins 
(1975) pointed out, it is possible for var(A) < 0 to occur. 
This situation will occur under realistic conditions. 
Thus, from Eq. 23 it can be seen that when inter-specific 
relationships are overwhelmingly predator-prey, in 
strength andlor in number, that is when ai,a,, is negative, 
then their mean value can overwhelm the always-pos- 
itive var(a,,), and var(A) will therefore be negative. 
Mathematically speaking, and as demonstrated by the 
calculations in the previous section, negative values of 
the variance of eigenvalues can only arise when imag- 
inary components, common in eigenvalues (Vander- 
meer 1981), are present in their solutions. A negative 
value therefore indicates cyclic and therefore poten- 
tially less stable behavior. 

We suggest the following specific interpretations to 
values of var(A) and EPV, keeping in mind that we 
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have presented only the theory. When values are neg- 
ative, they are indicative both of intense and/or nu- 
merous predator-prey interactions. Interestingly, a neg- 
ative value can only arise in this way. When near zero, 
the indices indicate that each variable of the system 
has nearly uniform recovery time (since recovery time 
is inversely related to A).  This may occur through a 
balance between the positive variance of self-effects 
and a negative mean of (mostly) predator-prey rela-
tionships. A near-zero value therefore may be a very 
useful diagnostic tool for identifying "true" commu-
nities or sub-communities whose components respond 
at a similar rate. Positive values may be indicative of 
a community that is weakly linked and where self- 
effects dominate, possibly an assemblage more than a 
community. Alternatively, a positive value may indi- 
cate a preponderance of positive feedback through mu- 
tualism or interference, also suggesting an assemblage 
or transition more than a community. 

The index EPV thus differs from var(A) in that it is 
an equation for the mean of the variance of pairwise 
eigenvalues of a system rather than of the system ei- 
genvalues themselves. In addition, the variable n, for 
community size, is absent from the formula for EPV. 
The hypothesis-that an increase in the number, alone, 
of predator-prey relationships, with a constant negative 
mean, can lead to destabilization-was put forward 
from the equation for var(A) (Levins 1975). As a cor- 
ollary, it may also be that an increase in positive in- 
teractions (interference and mutualism) in the presence 
of predator-prey relationships could counter the ten- 
dency towards a negative variance. Were the mean of 
a,a,,to be small because of that reason or because of 
the cumulative (high n) effect of pervasive weak re- 
lationships, as suggested in a recent study (McCann et 
al. 1998), a community could still exhibit a small var- 
iance and therefore recover from input at a near-uni- 
form rate. The debate over the relationships of com- 
munity size, strength, and type of interactions with sta- 
bility is still ongoing. 

The formula for var(A) may provide a powerful con- 
ceptual formula for understanding and predicting gen- 

eral system behavior, as Levins (1975) has already sug- 
gested. Its derivation from the community matrix cla- 
rifies its biological basis. EPV provides a specific prac- 
tical index for evaluation of the common underlying 
community model. As previous work has suggested 
(Harte 1979, Haydon 1994), the theory of eigenvalue 
distribution can yield valuable insights. The variances 
of eigenvalues and EPV may add useful and novel tools 
to assess the theory and practical considerations as-
sociated with eigenvalue distribution, and may thus 
provide additional insights into complex systems. 
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