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Summary

Currently defined ecotypes in marine cyanobacteria
Prochlorococcus and Synechococcus likely contain
subpopulations that themselves are ecologically dis-
tinct. We developed and applied high-throughput
sequencing for the 16S-23S rRNA internally transcribed
spacer (ITS) to examine ecotype and fine-scale geno-
typic community dynamics for monthly surface water
samples spanning 5 years at the San Pedro Ocean
Time-series site. Ecotype-level structure displayed reg-
ular seasonal patterns including succession, consis-
tent with strong forcing by seasonally varying abiotic
parameters (e.g. temperature, nutrients, light). We iden-
tified tens to thousands of amplicon sequence variants
(ASVs) within ecotypes, many of which exhibited dis-
tinct patterns over time, suggesting ecologically
distinct populations within ecotypes. Community struc-
ture within some ecotypes exhibited regular, seasonal
patterns, but not for others, indicating other more irreg-
ular processes such as phage interactions are im-
portant. Network analysis including T4-like phage
genotypic data revealed distinct viral variants corre-
lated with different groups of cyanobacterial ASVs
including time-lagged predator–prey relationships. Var-
iation partitioning analysis indicated that phage com-
munity structuremore strongly explains cyanobacterial
community structure at the ASV level than the abiotic
environmental factors. These results support a hierar-
chical model whereby abiotic environmental factors
more strongly shape niche partitioning at the broader

ecotype level while phage interactions are more impor-
tant in shaping community structure of fine-scale vari-
ants within ecotypes.

Introduction

The availability of high-throughput sequencing methods
has allowed amazing insight into the diversity of microbial
communities. In particular, amplicon sequencing of the 16S
rRNA locus is now a standard technique for assessing the
diversity and community structure of microbes across vari-
ous habitats and through time at particular sites. An emer-
gent theme among such studies is that taxa defined as
clusters of 16S rRNA or other gene sequences occupy dis-
tinct niches defined by environmental conditions or differ-
ences in resource utilization (Johnson et al. 2006; Martiny
et al. 2009; Chase et al. 2017). Another common theme in
this field is that using more fine-resolved metrics for defin-
ing taxa continues to uncover larger numbers of taxa that
appear to be biologically and ecologically distinct (Eren
et al. 2013; Eren et al. 2015; Tikhonov et al. 2015; Need-
ham et al. 2017; Ward et al. 2017). Finer level resolution is
achieved, for example, by increasing percent identity cut-
offs (e.g. with 16S rDNA), use of oligotyping approaches
such as minimum entropy decomposition (Eren et al.
2015), or multigene or whole genome approaches (Hunt
et al. 2008; Mazard et al. 2012; Kashtan et al. 2014). This
seemingly ever increasing discovery of finely resolved bac-
terial variants, often termed ‘microdiversity’ (Acinas et al.
2004), begs the question of at what resolution are these
variants reflective of ecological differences, and at what
level are they neutral? Answering these questions is critical
because subsequent interpretation of diversity data, such
as the ecology and biogeography of microbes, is predi-
cated on defining biologically relevant taxonomic units.

Marine cyanobacteria Prochlorococcus and Synecho-
coccus, in addition to being globally important primary
producers (Flombaum et al. 2013), have served as valu-
able organisms to investigate these topics of how phylo-
genetically distinct groups correspond to ecologically
relevant populations and patterns of microdiversity. Sev-
eral distinct phylogenetic clusters or clades within each
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of these named genera possess distinct niches and corre-
spondingly occupy different habitats in the oceans due to
differential adaptation to temperature, light and nutrient
conditions (Coleman and Chisholm 2007; Biller et al.
2015; Sohm et al. 2015). These taxa, therefore, are
thought to represent ecotypes, adopting a concept from
the ecological literature of macroscopic organisms
(Rocap et al. 2002). These ecotypes in fact are quite
closely related according to 16S rRNA sequence differ-
ences (>98 or >99% identity), and thus more divergent
loci such at the internally transcribed 16S–23S rRNA
(ITS) region or coding genes have proven more effective
for identifying closely related ecotypes (Rocap et al. 2002;
Ahlgren and Rocap 2012; Mazard et al. 2012; Kashtan
et al. 2014).

Upon closer examination, many of these ecotypes
appear to contain distinct sequence subclusters, possibly
representing biologically distinct taxa within ecotypes.
Again, this highlights the broader pattern of microdiversity
and that a large portion of microbial diversity is comprised
by such microdiversity (Acinas et al. 2004). There is
growing evidence that these within-ecotype subgroups or
subclades exhibit distinct patterns over time (Tai et al. 2011)
or distinct biogeographic patterns corresponding to gradients
in environmentally relevant parameters (e.g. nutrient, tem-
perature, and light) (Farrant et al. 2016; Larkin et al. 2016),
supporting that these subclades likely represent cryptic, eco-
logically distinct subpopulations. Whole-genome analysis of
single-cell isolates from a single ecotype, Prochlorococcus
HL2, has also revealed several genomically distinct
sequence clusters within this ecotype (Kashtan et al. 2014).
A few of these clusters also exhibit different abundance pat-
terns at the Bermuda Atlantic Time Series site, albeit for only
three time points sampled. This work also importantly
demonstrates that the ITS locus is divergent enough to
congruently distinguish the same distinct subpopulations
delineated by whole-genome divergence. Additional anal-
ysis of these genomes also suggests that this one eco-
type may contain hundreds or thousands of genomically
and presumably ecologically distinct populations. If we
are to properly understand the biology and ecology of
such microbial communities, it is imperative to identify and
track distinct populations at an appropriate scale of diversity.
Using marine cyanobacteria as a model, this suggests
there are many as-yet unidentified and uncharacterized
populations within currently defined ecotypes (or OTUs), and
more in-depth analysis of microbial populations at a fine
genetic scale is needed.

The apparent large number of ecologically distinct
populations also begs the question of whatmechanisms per-
mit the co-existence of such high diversity. This question is
precisely the one addressed by the classic ‘Paradox of the
Plankton’ put forth by Hutchinson, long before molecular
methods could envision such levels of diversity among

bacterioplankton (Hutchinson 1961). This paradox surmises
that for plankton competing for the same limited number
of resources (e.g. nutrients and light) marine communi-
ties are expected to only support a limited amount of
diversity as competitive exclusion would favour a few
successful species. Mechanisms that help explain co-
existence of diverse types include differential utilization of
resources, fluctuating changes in resources and microscale
habitat heterogeneity (Roy and Chattopadhyay 2007). None-
theless, an order of magnitude or more increase in the recog-
nized number of co-existing planktonic populations still
requires some examination of how this is possible.

Differential adaptation to bottom-up controls such as
light availability, various forms of N and P nutrients, and
temperature can explain some but not all of the variance in
cyanobacterial ecotypes or sub-ecotype populations
(Johnson et al. 2006; Farrant et al. 2016; Larkin et al.
2016). Less well constrained are the contributions of top-
down controls of microplankton predators (grazers) (Apple
et al. 2011) and phage on community structure. Top-down
effects are often proposed as key factors that contribute to
the unexplained variance in community structure, but their
contribution is rarely if at all assessed concurrently with
abiotic bottom-up factors. Phage in particular have been
proposed to generate and maintain community diversity at
the finest scale through virus–host interactions (Thingstad
and Lignell 1997; Thingstad 2000; Xue and Goldenfeld
2017). The studies of simple virus and host communities in
the laboratory, including those of marine cyanobacteria,
indeed demonstrate that virus–host interactions can gener-
ate and maintain diversity in this way (Mizoguchi et al.
2003; Paterson et al. 2010; Marston et al. 2012). However,
there are limited field-based studies that specifically exam-
ine how phage shape host community structure in com-
plex, natural populations (Rodriguez-Brito et al. 2010;
Winter et al. 2010; Cram et al. 2016).

To address these aforementioned issues, we have devel-
oped and applied a high-throughput sequencing method for
cyanobacterial ITS sequences from a set of monthly, surface
water samples spanning 5 years at the San Pedro Ocean
Time-series (SPOT) site located off the coast of Southern
California. This method allows for quantitative assessment
of community structure at the ecotype and subecotype level,
and in natural populations, we find hundreds to thousands of
distinct amplicon sequence variants (ASVs) within ecotypes.
Several means of community structure analysis support that
many of these ASVs are ecologically distinct; however,
some ASVs within ecotypes appear to represent effectively
neutral variants. Analysis of concurrently measured viral and
cyanobacterial host populations more than 2 years suggests
that phage community structure is a stronger driver of host
community structure at fine scales of diversity than abiotic,
bottom-up factors, in support of the virus–host interaction
models described above.
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Results

Evaluation of ITS high-throughput sequencing

To assess community diversity within the marine cyano-
bacteria Prochlorococcus and Synechococcus at high
depth and fine resolution, primers that amplify cyanobacterial
ITS sequences were adapted for use with the Illumina
sequencing platform. These primers were applied to mock
communities consisting of knownmixtures of several different
marine cyanobacteria ITS fragments to assess the accuracy
of quantification. Mock communities consisted of an even
mixture of nine different Synechococcus ecotypes (11%
each) and an uneven mixture where the nine ecotypes
ranged from 0.008% to 85% of the total community. Mea-
sured ecotype abundances of the even and uneven mock
communities were within 1.8-fold and 1.7-fold of the expected
abundances respectively (Supporting Information Fig. S1A
and C). Both the even and uneven mock communities were
also mixed with Prochlorococcus ecotype HL1 or HL2 eco-
type sequences at several concentrations to better simulate
natural communities that contain both genera (Supporting
Information Fig. S1B and C). Most of the ecotypes were
measured at levels within twofold of the levels measured in
mixtures without Prochlorococcus added, showing mini-
mal bias across differing concentrations ofProchlorococcus
present. A few ecotypes however did quantify at greater
than twofold from expected levels at higher levels of
Prochlorococcus added, but never above a threefold differ-
ence. For the uneven Synechococcus samples mixed with
Prochlorococcus, the four least abundant ecotypes were
sometimes not detected, consistent with a drop-out effect in
the number of total Synechococcus reads obtained as the
fraction of Prochlorococcus in the mixtures increased
(Supporting Information Fig. S1C).
We similarly tested a Prochlorococcus mock community.

A single PCR reaction of an uneven mock community of
Prochlorococcus ecotypes HL1, HL2, LL1, LL2 and LL4
sequences mixed at 0.19%, 97%, 1.9%, 0.02% and 0.97%,
respectively, was tested and resulted in values similar to the
expected relative abundances: 0.22%, 98%, 1.2%, 0% and
0.46% respectively. No LL2 sequences were detected, prob-
ably because the sequencing depth was insufficient to
detect a population at such low relative abundance – for
14 639 cyanobacterial reads in this sample, one would only
expect by probability to recover three LL2 reads. Likewise
Prochlorococcus HL2 sequences mixed in with Syn-
echococcusmock communities were measured at very sim-
ilar levels to expected abundances (Supporting Information
Fig. S1C).

Cyanobacterial community dynamics at SPOT

Cyanobacterial community structure was characterized
for a set of 50 monthly surface water samples collected

for 5 years from 2009 to 2014 at the SPOT site located
off the coast of Los Angeles (CA, USA). Consistent with
previous studies at this site, basic chemical, physical and
biological parameters more than 5 years of this study
exhibited clear seasonal patterns of winter mixing,
upwelling in spring and summer stratification (Fig. 1)
(Chow et al. 2013; Cram et al. 2015). Primary productivity
and bacterial production typically peaked in March follow-
ing winter mixing, and total prokaryotic and total virus
abundance most often peaked in April. Total Syn-
echococcus abundance peaked slightly later in April and
June. Prochlorococcus were usually less abundant than
Synechococcus, and in contrast gradually and slightly
increased in abundance as the year progressed.

High-throughput ITS sequencing was first used to char-
acterize cyanobacterial community structure at the ecotype
level. Prochlorococcus was almost always completely com-
prised of the high-light and cold-temperature adapted eco-
type HLI (Fig. 2A). A few pulses of the low-light adapted
ecotype LLI occurred in surface waters during winter months
when vertical mixing presumably brought these deeper
populations to the surface. High-light adapted ecotype HL2
and low-light adapted ecotypes LL2 and LL4 were occasion-
ally detected but only at very low relative abundance (<1.1%
of total Prochlorococcus sequences). Synechococcus was
dominated by one ecotype, IV, but at a few time points, eco-
type I reached comparable or higher levels (Fig. 2B). Eco-
type I and two subclades identified within IV, labelled IVa
and IVb (see below), exhibited apparent patterns of sea-
sonal succession (Fig. 2C). Ecotype I usually peaked first
during early spring (March to April) and was often closely
followed by a peak in IVb, and IVa dominated the rest of the
year. Several other ecotypes (II, III, CRD1 and CRD2)
exhibited notable intermittent pulses, reaching up to 3%–

33% of total Synechococcus sequences (Fig. 2B) while
eight additional ecotypes (V, VI, VII, VIII, XV, XVII, XVIII,
CB3, WPC1, 5.3-1) were detected but only rarely, and never
above 2% (Supporting Information Fig. S2). While the
dynamics of these low abundance, ‘minor’ ecotypes were
not as consistent, III, XVII, XVIII, CRD1, CRD2 and WPC1
often appeared or increased in abundance in summer and
fall, while the remaining rare ecotypes were mainly detected
in spring (February through May) (Supporting Information
Fig. S3).

Minimum entropy decomposition (MED) was used to
identify distinct ASVs (or oligotypes) within ecotypes that
are not a result of sequencing error (Eren et al. 2015).
A total of 1655 and 1442 cyanobacterial ASVs were
identified, respectively, within Prochlorococcus and Syn-
echococcus corresponding to tens, hundreds or up to
~1400 unique ASVs within their respective ecotypes
(Table 1). For ecotypes containing >30 ASVs, rarefaction
analysis indicated that we have well sampled the total
diversity of ASVs in most ecotypes with exceptions being
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ecotypes II, VI, VIII and XV where Chao1 estimates were
markedly above the number of ASVs found and rarefac-
tion curves did not appear to have reached complete sat-
uration (Table 1, Supporting Information Fig. S4). To
further characterize ASV dynamics, we only considered
those ASVs that comprised ≥0.5% of the respective relative

abundance of Prochlorococcus or Synechococcus se-
quences in at least one sample. This was done to exclude
possible artefacts for rare, low-abundance ASVs. Even with
this conservative criterion, there were tens to hundreds of
ASVs within the various ecotypes, again highlighting rich
within-ecotype diversity (Table 1). Bar graphs of all the
ASVs meeting the above criterion were plotted for the four
ecotypes containing ≥10 ASVs (HL1, I, II and IV) and pro-
vide a broad view of persistence of ASVs over multiple
years and dynamic changes in within-ecotype ASVs across
seasons and years (Fig. 3). Prochlorococcus ecotype HLI
and Synechococcus ecotype I both contained a single
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ASV that consistently made up a large portion (often >30%)
of the ecotype populations over time. Synechococcus II
was less skewed in community evenness and appeared to
have more dynamic changes in fine-scale, within-ecotype

structure with transient changes in ASV dominance. Split-
ting ecotype IV into its two major subclades IVa and IVb
revealed a more even distribution of variants in the less
abundant subclade IVb.

Bubble plots of these select ecotypes more clearly rev-
ealed temporal dynamics of fine-scale variants within
ecotypes and that ASVs largely exhibit distinct patterns
from one another, consistent with them representing eco-
logically distinct populations (Figs. 4 and 5). One major
exception however is Synechococcus ecotype IV, which
contains a large subclade of ASVs that exhibit very simi-
lar dynamics (Fig. 5). Many ASVs within this subclade,
IVb, indeed showed strong autocorrelation with one
another (Pearson correlation, p < 0.05 with Bonferroni
correction). In contrast, the remaining IV ASVs belonging
to subclade IVa only showed distinct clusters of autocorrela-
tion among smaller groups (generally 2–5) of closely related
ASVs. Such autocorrelation of small numbers of closely
related ASVs was also seen for other ecotypes, possibly
indicating that these ASVs represent effectively neutral vari-
ants over the study period within those autocorrelated
groups. Overall, it appears that many ASVs exhibit distinct
abundance patterns from each other, whereas subclade IVb
ASVs had very similar patterns to each other over time.

Previous work at SPOT clearly shows that microbial
community structure exhibits strong, predictable patterns
in community structure that correlate with seasonal
cycling of physical and chemical conditions (Fuhrman
et al. 2006; Chow et al. 2013; Cram et al. 2015). Such
patterns can be detected using plots of average pairwise
Bray-Curtis (BC) similarity scores when binning sample
pairs by the number of months separating them (Chow
et al. 2013; Cram et al. 2015). Data in such plots that sig-
nificantly fit sinusoidal curves with a period of 12 months

Table 1. Number of MED ASVs identified in SPOT surface water
communities.

Taxon

Number
of all

ASVs found

Chao
estimate
of total

ASVs (±S.E.)

Number of
ASVs found
at ≥0.5%
in at least

one time point

Prochlorococcus
ecotypes
Pro HL1 1393 1393 ± 1.1 149
Pro HL2 13 16 ± 3.4 -
Pro LL1 242 243 ± 1.0 9
Pro LL2 1 1 ± 0 -
Pro LL4 6 6 ± 1.3 1

Prochlorococcus
sum

1655 159

Synechococcus
ecotypes
I 210 243 ± 20 19
II 84 120 ± 22 14
III 137 138 ± 1.4 4
IV 887 893 ± 4.1 88
V 4 6 ± 3.7 1
VI 11 46 ± 25 1
VII 3 3 ± 1.3 1
VIII 17 41 ± 20 1
XV 10 28 ± 23 1
XVII 4 4 ± 0 –

XVIII 6 6 ± 0.4 1
CB3 2 2 ± 0 –

CRD1 23 23 ± 0 4
CRD2 41 42 ± 1.7 6
5.3-1 3 3 ± 0 –

Synechococcus sum 1442 141
Unclassified 16 –
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demonstrate that these communities possess repeatable
and seasonal patterns. The BC plot of ecotype commu-
nity structure for Synechococcus yielded a sinusoidal
curve that was significantly correlated, with a period of
12 months (Fig. 6).
Zooming in at community structure within ecotypes, BC

plots for Prochlorococcus ecotype HL1 and Synechococcus
ecotype IV also exhibited significantly sinusoidal curves with
a period of 12 months (p < 0.001, R2 = 0.45 for both). Syn-
echococcus ecotype I communities had no obvious sinusoi-
dal pattern (p = 0.52), and instead BC scores dropped quickly

and plateaued with increasing months between samples.
Synechococcus ecotype II also did not exhibit a significantly
sinusoidal pattern with a 12 month period (p = 0.23); how-
ever, qualitatively, BC scores did fluctuate cyclically but with
an inconsistent and apparently decreasing period. Consider-
ing that ecotype IV comprised two apparent subclades with
distinct dynamics of ASVs within them, BC plots were gen-
erated separately for IVa and IVb subclade communities.
Subclade IVa BC scores did not exhibit a significant cyclic
pattern (p = 0.09) and had a plateau pattern similar to that
of ecotype I. Subclade IVb communities on the other hand

Fig. 5. Abundances of and correlations between ASVs within Synechococcus ecotype over 5 years in surface waters at SPOT. Trees on the left
depict the phylogenetic relationship of ASVs, and ASVs and corresponding tree branches assigned to the emergent subclades IVa and IVb are
coloured blue and pink respectively. Dots in the middle panels depict the relative abundance of each ASV over time. Dots are scaled for each
ASV such that abundances are normalized linearly to the maximum abundance in the time series (blue circle). The panel on the right depicts sig-
nificant Pearson correlations between ASVs (p < 0.05 with Bonferroni correction) whereby the horizontal order of ASVs from left to right (see
ASV names as the top of the panel) is the same as the order of ASVs from top to bottom as in the corresponding tree.
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Fig. 6. Detection of repeated, seasonal patterns in cyanobacterial community composition using BC similarities. Plots show the mean Bray–Curtis
similarity values for pairs of samples binned by the number of months separating them, and each plot shows the analysis for different communi-
ties – ecotype composition or within-ecotype or within-subclade ASV composition. Black lines depict the mean values and grey lines show stan-
dard deviations. Red lines depict sine curve fitting to the mean values, and significance levels and R2 values (if significant, p < 0.05) are shown.
Solid red lines indicate significant sine fitting and dashed lines indicate that the sine fitting was not significant.
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had significant cyclic patterns with a period of 12 months
(p < 0.001, R2 = 0.36), although not as strong as results of
all ecotype IV ASVs or Synechococcus ecotype-level
patterns.

Cyclic patterns in BC scores for Synechococcus eco-
types, Prochlorococcus HLI and Synechococcus sub-
lcade IVb ASVs support that they possess predictable,
seasonal patterns in community structure, presumably in
response to strong seasonal patterns of the physical
and chemical conditions of the water. Non-metric multi-
dimensional scaling (NMDS) analysis was used to further
assess whether communities at these different levels are
correlated with environmental conditions (Supporting Infor-
mation Fig. S5). Analysis at the level of ecotypes and ASVs
within ecotypes both demonstrated significant correlation
between several parameters to ordination of community
structure, again supporting that fine-scale community struc-
ture within ecotypes is controlled in part by abiotic environ-
mental parameters.

Network analysis of cyanobacteria and viral populations
and abiotic and bulk biotic parameters

Network analysis of correlations among cyanobacterial
community abundances, environmental factors, and viral
community data was used further to assess what interac-
tions may be influence cyanobacterial community struc-
ture. Viral community structure was assessed using
previously published tRFLP data of the g23 marker gene
for T4-like viruses (Chow and Fuhrman 2012) for two

overlapping years for which we also had ITS data.
Extended local similarity analysis (eLSA) was used to
identify correlations between parameters including time-
delayed relationships. To simplify our analysis, networks
were only examined for strong significant relationships
(ρ ≥ 0.6, Spearman correlation). In no cases did we find
any strong correlations between environmental parame-
ters and individual cyanobacterial ecotypes or ASVs.
Strong correlations were instead frequently found between
viral g23 variants and cyanobacterial ASVs. These corre-
lations were summarized in a network view whereby
nodes represent ecotypes, ASVs, viral variants, or envi-
ronmental parameters and lines connecting nodes indicate
significant correlations in dynamics between them (Fig. 7).
Emergent subnetworks were observed involving Syn-
echococcus IV ASVs, where distinct groups of viral vari-
ants were significantly correlated to either IVa or IVb
ASVs. In some cases, time-lagged correlations were seen
where specific viral variants followed particular host ASVs,
consistent with a Kill the Winner virus–host interaction
model (Thingstad 2000); however, time-lagged correlations
between cyanobacterial and viral variants were also seen in
the opposite direction. These subnetworks also reveal a
notable pattern of interconnection between IVb ASVs, con-
sistent with what was observed in Fig. 5, and likewise sig-
nificant negative correlations were detected between IVa
and IVb ASVs.

Similar patterns were seen in Prochlorococcus HL1
networks, including a highly interconnected subnetwork
of many HL1 ASVs (Supporting Information Fig. S6A). As
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Fig. 7. Network depicting correlations between Synechococcus ecotype IV ASVs and viral T4-like g23 tRFLP variants. Only strong (ρ ≥ 0.6) and
significant (p < 0.05) interactions are shown and notably no correlations were found between Synechococcus ecotype IV ASVs and environmen-
tal parameters that met those criteria. Nodes depict host or viral populations whereby the size of the symbols for Synechococcus ecotype sub-
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the Supporting Information Fig. S6.
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with subclade IVb, this subnetwork may represent effec-
tively neutral variants within a coherent HL1 subclade,
but the phylogenetic signal for this locus could not
readily resolve any clear subclades (data not shown).
Synechococcus I networks exhibited a high degree of
interconnection between viral variants and only one con-
nection between a single cyanobacterial ASV and a viral
variant (Supporting Information Fig. S6B). The highly
interconnected viral variants could represent ecologically
and evolutionarily distinct viral populations that infect sim-
ilar sets of host populations or effectively neutral genetic
variants of a single viral population.

Variation partitioning analysis

Variation partitioning analysis (redundancy analysis
[RDA]) and partial RDA) (Peres-Neto et al. 2006) was
used to determine the relative importance of abiotic envi-
ronmental factors and viral communities on impacting
cyanobacterial community structure. In particular, we
were interested in comparing the individual contribution
of environmental factors (env|viral) or viral community
structure (viral|env) in explaining host community struc-
ture at the ecotype vs. within-ecotype, ASV level. Varia-
tion partitioning analyses were assessed using relative
host abundances or absolute host abundances (top and
bottom portions of Table 2). Only in two cases, the
relative abundance of all Synechococcus ecotypes and

ecotypes I, II and IV, did ANOVA significantly support the
estimated contribution of environmental parameters alone
(env|viral) to host variance. In contrast, ANOVA more fre-
quently significantly supported (10 of 18 analyses) the
estimated contribution of viral community structure alone
(viral|env) to host variance, and most of these were for
ASV-level analyses. Only for Synechococcus ecotype
relative abundance did ANOVA significantly support both
estimates of viral community structure and environmental
factors individually, and environmental factors explainedmar-
ginally more of Synechococcus ecotype variance than viral
community structure (0.18 vs. 0.17). The lack of ANOVA sup-
port for both factors (environmental and viral alone) in most
analyses, therefore, made it difficult to confidently compare
the relative strength of viral vs. environmental factors; none-
theless, for most ASV-level analyses (11 of 14), viral commu-
nity structure more strongly explained host community
variance than environmental factors. Furthermore, the
amount of variance viral community structure explained was
frequently much higher than that explained by environmental
factors. For example, viral community structure explained
23% or 40% of the host variance for Synechococcus sub-
clade IVb genotypic structure (using relative and absolute
abundances respectively) while environmental factors
explained a negligible amount of host variance. Finally, varia-
tion partitioning for just the dominant Synechococcus
ecotypes I, II and IV supported that for relative host abun-
dance, environmental factors alone significantly explain

Table 2. The value of R2 from variation partitioning analysis determining the portion of host community composition variance explained by envi-
ronmental factors or viral community structure.

RDA Partial RDA

Host community
level tested

Cyanobacteria
community vs.

environmental factors

Cyanobacteria
community vs.
viral community

Cyanobacterial
community vs.
environmental factors
alone (env|viral)

Cyanobacterial
community vs.
viral factors
alone (viral|env)

Unexplained
variance

Relative host abundance
Syn. all ecotypes 0.26* 0.24* 0.18* 0.17* 0.57
Syn. ecotypes I, II, IV 0.31* 0.26* 0.22* 0.26 0.53
Syn. I, II, IV ASVs 0.15** 0.13** 0.04 0.02 0.83
Syn.I ASVs 0.21** 0.32*** −0.02 0.09 0.70
Syn.II ASVs 0.15** 0.11* 0.05 0.01 0.84
Syn.IV ASVs 0.14* 0.19** −0.02 0.02 0.83
Syn.IVa ASVs 0.23** 0.23*** 0.01 0.01 0.76
Syn.IVb ASVs 0.12* 0.38** −0.02 0.23* 0.65
Pro. HL1 ASVs 0.37*** 0.45*** 0.04 0.13* 0.51
Absolute host abundance
Syn. all ecotypes n.s. 0.27** n.s. n.s. n/a
Syn. ecotypes I, II, IV 0.18* 0.55** 0.04 0.42** 0.57
Syn. I, II, IV ASVs 0.17* 0.49*** −0.06 0.25** 0.51
Syn.I ASVs 0.27** 0.48*** −0.02 0.20* 0.53
Syn.II ASVs 0.22** 0.16** 0.09 0.04 0.75
Syn.IV ASVs 0.21* 0.51*** −0.06 0.24* 0.55
Syn.IVa ASVs 0.27** 0.50*** −0.02 0.20* 0.53
Syn.IVb ASVs 0.08 0.49*** −0.01 0.40** 0.52
Pro. HL1 ASVs 0.39*** 0.47*** 0.06 0.14* 0.46

n.s. = estimate of contribution to variance not significantly supported by ANOVA (p > 0.05).
Asterisks indicate the level of ANOVA support for the estimated contribution to host variance: *p < 0.05; **p < 0.01; ***p ≤ 0.001.

© 2019 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 21, 2948–2963

2956 N. A. Ahlgren, J. N. Perelman, Y.-C. Yeh and J. A. Fuhrman



ecotype-level host variance (‘Syn. ecotypes I, II, IV’), but did
not when zooming in at the ASV-level (‘Syn. I, II, IV ASVs’). In
addition, variation partitioning results generally support a
model where environmental factors more strongly explain
ecotype-level variance while viral community structure more
strongly explains within-ecotype, ASV-level host community
variance.

Discussion

Here, we have developed and implemented an Illumina-
based, high-throughput amplicon sequencing method to
characterize fine-scale community composition of marine
cyanobacteria using the ITS locus. The ITS amplicon
sequencing method produced accurate measurement of
ecotypes in mixed samples as assessed with mock com-
munities of known mixtures of ITS template DNA com-
prised of up to four Prochlorococcus ecotypes and nine
Synechococcus ecotypes. We emphasize the impor-
tance of assessing the accuracy of amplicon sequencing
methods, which is often not done (Parada et al. 2016). In
the various tests of even and uneven mock communities
of Synechococcus ecotypes alone or mixed with varying
amounts of Prochlorococcus sequences, the relative
abundance of Synechococcus could be measured with
very good accuracy, usually within ~1.5-fold and not
exceeding threefold of the expected relative abundances.
This accuracy is comparable or exceeds that of qPCR
assays (Zinser et al. 2006; Ahlgren and Rocap 2012),
and this sequencing approach has the additional advan-
tage of detecting genotypic variants within ecotypes. The
inability to detect Synechococcus ecotypes (and in one
case a Prochlorococcus ecotype) at very low abundances
is consistent with the expected probabilities of read abun-
dance for the sequencing depths used here (generally
10 000 sequences per sample). This drop-out effect
occurred for ecotypes mixed at ~0.85% or less, and this
helped inform the threshold we applied to filter out low-
abundance ASVs in analyses of natural communities (those
that never exceeded 0.5% of the whole sample). The mea-
sured Prochlorococcus ecotype abundances from mixed
mock communities were also largely similar to expected
abundances.

We applied our high-throughput cyanobacterial ITS
sequencing method to monthly surface water samples
spanning 5 years at the SPOT site. ITS sequencing rev-
ealed thousands of distinct ASVs such that the dominant
Prochlorococcus and Synechococcus ecotypes con-
tained hundreds of ASVs. This level of intra-ecotype diver-
sity is comparable to results from Larkin et al. (2016) that
found hundreds of operational taxonomic units (OTUs)
within Prochlorococcus ecotypes using high-throughput
sequencing of the ITS-2 (ourmethod targets the ITS-1 region).
Our results are also broadly consistent from a previous

genome-based study that suggests the Prochlorococcus
HL2 ecotype may contain hundreds or thousands of distinct
genomic types (Kashtan et al. 2014). This study also found
that full-length ITS phylogeny is congruent with and could dis-
tinguish intra-ecotype populations determined by whole
genome analyses, supporting the utility of the ITS marker for
tracking fine-scale cyanobacterial subpopulations. It is how-
ever important to note that our method only examines 160 bp
of the ITS-1 region (see Experimental Procedures) that is less
divergent than the ITS-2 region, and in practice this region
cannot distinguish all of the subclades observed genomically
by Kashtan et al. (Supporting Information Fig S7). Larkin et al.
(2016) have developed a similar ITS-based amplicon method
for the more divergent ITS-2 region, but specifically only
for Prochlorococcus sequences. A refined ITS amplicon
approach targeting the ITS-2 region for Synechococcus and
Prochlorococcus or utilizing advances in increased read
lengths has the potential to resolve even more fine-scale
populations. Nonetheless, our ITS method as it stands has
identified a level of intra-ecotype diversity not previously
observed for Synechococcus and comparable levels for
Prochlorococcus. Furthermore, this method can easily be
used to quantitatively track these fine-scale ASVs across hun-
dreds of samples in a way not feasible with current single-cell
or metagenomic approaches, largely due the prohibitive cost
to sequencing high numbers of cells or at necessary high
sequencing depths respectively.

This study highlights the importance of zooming in at
the fine-scale to identify important, biologically relevant
patterns in subpopulations that may be otherwise missed.
On a practical level, fine-scale analysis was important in
revealing two emergent subclades within Synechococcus
IVa and IVb. These two clades peak in abundance at different
times of the year (Fig. 2C), and their within-subclade ASVs
either do or do not exhibit repeatable seasonal patterns
(Fig. 6), indicating fundamental differences in their biology.
The IV subclades highlight a broader theme that genotypic
composition differs fundamentally between ecotypes and
subclades. Ecotypes and subclades exhibit broad differences
in evenness, with some dominated by a single ASV
(e.g. Synechococcus I and IVa and Prochlorococcus HL1)
while others are more even (e.g. Synechococcus II and IVb)
(Fig. 3). ASVs within some ecotypes qualitatively appear to
have more dynamic and seemingly stochastic patterns than
others (e.g. Synechococcus II vs. IVa). These differences
could reflect fundamental differences in the selective or evo-
lutionary forces shaping them and the particular strategies
that they arrived at to adapt and thrive in this environment.
While not a specific focus of our analysis here, the impor-
tance of these patterns in the context of microbial evolution
and speciationwarrants further investigation.

Most of these ASVs appear to exhibit distinct dynamics
across the time-series studied. This is consistent with pre-
vious studies that have observed subclades within
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ecotypes that have distinct dynamics (Tai and Palenik
2009; Tai et al. 2011) or distinct biogeographies (Farrant
et al. 2016); however, here, we have identified many
more, finely resolved ASVs than previously. The analysis
of Bray-Curtis data also demonstrates that within-ecotype
genotypic community composition of some ecotypes has
repeatable seasonal patterns (Fig. 6). This parallels how
ecotype-level community composition exhibits strong,
repeating, seasonal patterns (Fig. 6), and previous work
has firmly established that ecotypes are ecologically dis-
tinct based on the previous physiological and biogeo-
graphical and time-series evidence (Johnson et al. 2006;
Zwirglmaier et al. 2008; Malmstrom et al. 2010; Sohm
et al. 2015; Farrant et al. 2016). Together these data sup-
port the conclusion that many within-ecotype ASVs like-
wise represent ecologically distinct populations. It is
however possible that some closely related ASVs are
effectively neutral variants of the same subpopulation
(Figs. 4 and 5). More broadly, the within-ecotype seasonal
patterns are consistent with previous analyses of SPOT
that show repeatable seasonal patterns in total prokary-
otic composition due in large part to strong seasonal forc-
ing of chemical and physical parameters (Chow et al.
2013; Cram et al. 2015). This therefore implicates such
bottom-up factors as likewise important in shaping within-
ecotype genotypic community structure. This conclusion
is also supported by NMDS analysis of within-ecotype
community structure (Supporting Information Fig. S5).
Previous studies have shown that a good portion of the

variance in community composition of Prochlorococcus
and Synechococcus can be explained by commonly
measured bottom-up factors such as macronutrients,
temperature and light (Johnson et al. 2006; Martiny et al.
2009). Authors frequently suggest that the remaining,
unexplained variance is due partly to top-down pressure
from grazers and/or viruses. Coleman and Chisholm
(Coleman and Chisholm 2007) and Rodriguez-Brito et al.
(Rodriguez-Brito et al. 2010) furthermore put forth models
suggesting that phage interactions are important drivers
of differentiation at the finest levels of diversity in marine
cyanobacteria. The latter study specifically invokes the
Kill the Winner (KTW) model (Thingstad 2000) whereby
they suggest that at a broad level (e.g. the ecotype level),
community structure is relatively stable, but at a finer,
genotype-level scale, dynamic changes can occur due to
sequential booms and busts of interacting viruses and
hosts (see Fig. 6 in the study by Rodriguez-Brito et al.
2010). The fact that some cyanophage can infect a nar-
row range of cyanobacterial strains (Sullivan et al. 2003;
Gregory et al. 2016) is generally consistent with the plau-
sibility of KTW dynamics, but observations of complex,
natural communities that may support or refute this model
are sparse or non-existent.

Our study provides some of the best empirical data
available to assess the relative importance of abiotic
environmental and top-down viral factors on community
structure at wider (ecotype) and finer (intra-ecotype,
ASV) scales. Consistent with the above model, individual
cyanobacterial ASVs did not exhibit strong correlations to
abiotic factors but frequently did to individual viral ASVs
(Figs. 4 and 5, Supporting Information Fig. S5). Co-
variation networks also identified a few examples of time-
lagged dynamics of viral and host variants that are
consistent with KTW dynamics and more broadly classic
predator–prey interactions. From variation partitioning
and NMDS analysis of community structure, bottom-up
controls are important at both ecotype and within-
ecotype levels. Variation partitioning analysis results also
supported that environmental factors more strongly
explained Synechococcus ecotype-level variance, while
for intra-ecotype analyses, viral community structure
more often better explained host community variance
than environmental factors (Table 2). These results
together are all consistent with the proposed model
based on KTW-like dynamics that seasonally forced abi-
otic factors are primary drivers of ecotype-level composi-
tion while viruses are more important in driving fine
scale, intra-ecotype dynamics.

It is important to note that many cyanophage and
myoviruses, including T4-like phage, can have broad
host ranges and infect strains across ecotypes or across
the two genera Prochlorococcus and Synechococcus
(Sullivan et al. 2003; Gregory et al. 2016), so viruses
likely have some impact at the broader ecotype or genus
level. Similarly, the discovery of a new family of viruses
(Autolykiviridae) with broad inter-species host ranges
(Kauffman et al. 2018) highlights that bacterial communi-
ties may experience complex selective pressures from
both narrow and broad range viruses. In a similar vein,
studies have discovered within-ecotype variation in adap-
tation to bottom-up factors including macronutrients
(Martiny et al. 2006) and temperature (Pittera et al.
2014). Such intra-ecotype variation in abiotic adaptations
does not preclude our model, and instead we emphasize
that both viral and bottom-up factors are important in
within-ecotype population structure. The amount of host
community variance unexplained by viral or environmen-
tal factors was high (0.46–0.84, Table 2) indicating that
there are outstanding, unmeasured factors that are
important to controlling host community structure. These
may include organic nutrients for which cyanobacteria
have differing capacities to utilize (Scanlan et al. 2009)
and viral communities not detected by the g23 tRFLP
method used here, such as finer-scale genotypic variants
or non-T4-like viruses (i.e. podoviruses and siphoviruses).
Also poorly constrained but likely as important are differ-
ences in top-down nanoflagellate grazing susceptibilities
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(Apple et al. 2011) and ‘lateral’ allelopathic interactions
(Paz-Yepes et al. 2013). Therefore, measuring additional
chemical parameters or grazer impacts will better inform our
understanding of control of host community composition.

A complicating factor in our analysis however is that
the viral genotypic data available (tRFLP analysis of the
g23 gene) assesses the diversity only of a particular
superfamily of viruses, the T4-like myoviruses, which as
a whole make up a significant portion of total marine
viruses in surface waters (approximately 15% of total viral
particles) (Breitbart et al. 2002; Angly et al. 2006;
Williamson et al. 2008; Brum et al. 2013). More importantly,
most cyanophage isolates infecting Synechococcus and
Prochlorococcus are myoviruses (Sullivan et al. 2003;
Gregory et al. 2016; Hanson et al. 2016). Isolation-
independent viral-tagging methods (Deng et al. 2014) and
culture-independent metagenomics (Roux et al. 2016) also
support that myoviruses appear to be the dominant group
of viruses infecting these cyanobacteria. The tRFLP viral
data also are not sequence based, so some of the detected
variants may not be cyanophage, such that some of net-
work relationships and variation partitioning analyses may
include non-specific correlations between cyanobacteria
and non-cyanophage. Spurious, non-specific correlations
are always a problem with co-variation analyses, but never-
theless this study utilizes some of the best available data to
analyse both host and viral genotypic data at multiple diver-
sity levels, along with bottom-up factors. Our results are
also consistent with a recent paired analysis of host (16S
rDNA) and viral (g23 sequences) variants at SPOT that
likewise saw that viral variants correlated better with fine-
scale level 16S rDNA ASVs than broader taxa defined by
99% 16S rDNA identity (Needham et al. 2017). As more
viral metagenomic sequences or high-throughput viral
marker gene data become available, we will be better
equipped to more definitively test these proposed models
and virus–host dynamics.

While we have known for a long time that marine
microbial communities contain large amounts of micro-
diversity, this study in sum raises the bar in terms of the
magnitude of this diversity measured within marine Syn-
echococcus in particular. Our results also demonstrate
that many of these very fine-scale level variants appear
to represent ecologically distinct populations, an emerg-
ing theme for studies using MED (or other single-base-
resolved amplicon classification) on microbial communi-
ties from a wide variety of habitats (Callahan et al. 2016;
Eren et al. 2016; Amir et al. 2017). This study highlights
the importance and necessity of characterizing communi-
ties at a very fine scale, lest we do not fail to identify and
characterize community structure at a biologically rele-
vant scale. In particular, because viruses often can infect
a narrow set of strains, we contend that teasing apart
important virus–host interactions will require examination

of hosts at these fine scales. Sequencing technology is
now at a place that we can characterize these fine-scale
populations, opening up to possibility to better address
challenging and fundamental questions about the struc-
ture and drivers of microbial diversity, and in particular
the role of virus–host interactions in shaping community
structure.

Experimental procedures

Cyanobacterial ITS Illumina-based amplification and
sequencing

Cyanobacterial ITS specific primers for use with the
Illumina platform were designed using previous devel-
oped PCR primers and the adaptor, barcode and index
strategy developed previously for 16S rRNA sequencing
(Parada et al. 2016). The 16S-1247f (Rocap et al. 2002)
and ITS-ar (Lavin et al. 2008) primers amplify the ITS-1
region spanning from the end of the 16S rRNA gene to
the isoleucine tRNA within the ITS region to generate
products of roughly 490 and 550 bp for high-light adapted
Prochlorococcus and Synechococcus. These primers
were joined to Illumina compatible sequences that contain
appropriate adaptors, forward sequencing primers and 5 bp
barcode and 6 bp index sequences for forward and reverse
primers respectively (see Supporting Information for primer
sequences). PCR reactions were performed using Platinum
HiFi Taq polymerase (Invitrogen Corp.) with 2.5 mM total
MgCl2 and the following cycling conditions: initial denatur-
ation step of 95�C for 2 min; 25 cycles of 95�C for 45 s;
55�C for 45 s; and 68�C for 90 s; and a final elongation step
of 68�C for 10 min. Single PCR reactions were carried out
using 1 μl of DNA at 1 ng μl−1. PCR reactions were purified
using Agencourt Ampure XP beads (Beckman Coulter
Corp). These reactions were pooled and purified again, and
resulting pools were sent for Illumina MiSeq 250 bp paried
ended sequencing at the University of California Davis
Genome Center. Sequence data have been submitted to
the GenBank databases under BioProject accession num-
ber PRJEB12267.

Mock communities

To construct the mock community, plasmids containing
cloned ITS sequences constructed previously in Ahlgren
and Rocap (2012) were linearized with the restriction
enzyme PstI and purified. Purified linear plasmids were
quantified using PicoGreen fluorescence using lambda
DNA standards in six replicate wells and ITS plasmids in
triplicate wells. ITS plasmids were mixed at various ratios
to generate mock communities with nearly equal propor-
tions (even) or at various levels of relative abundances
(staggered). Mock communities were diluted to
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approximately 10 000 copies μl−1 to correspond to the
estimated abundance of cyanobacterial DNA in natural
samples.

SPOT samples

Surface water from the SPOT site located off the coast of
Los Angeles (CA, USA) was sampled on a monthly basis
for microbial analysis along with various physical and
chemical parameters (Chow et al. 2013; Cram et al.
2015). Collection of environmental and biological param-
eters and collection and extraction of microbial fraction
DNA for cyanobacterial ITS sequencing are described
previously in the study by Cram et al. (2015). For this
study, we focused on a 5 year data set of 50 samples
from February 2009 to January 2014. Of the available
43 abiotic physical and chemical and bulk biotic parame-
ters measured at SPOT, these were reduced to 26
variables by manual inspection and removal of highly co-
correlated parameters. The final list of these parameters
was month, average wind speed, precipitation, prokary-
otic abundance, average wave period, dominant wave
period, wave height, absolute phytoplankton abundance,
satellite based chlorophyll a, chlorophyll max depth, day
length, elapsed days, leucine production, mixed layer
depth, nitrite concentration, nitrate concentration, phos-
phate concentration, excess phosphate concentration
(P*), oxygen concentration, salinity, temperature, leucine
turnover, virus to prokaryotic ratio (VPR), total virus abun-
dance, Pacific Fisheries and Environmental Laboratory
(PFEL) estimates of coastal upwelling and Sverdrup
transport (SVD) (see Cram et al. 2015 for details). These
are herein referred to as environmental parameters for
simplicity, even though they include bulk biological
parameters such as chlorophyll a and viral and prokary-
otic abundances.

Sequence processing and phylogenies

Because the forward read mostly comprised the end of
the 16S rRNA gene and has limited sequence information
for discrimination, analysis was performed on the reverse
reads covering most of the ITS-1 region. Because the
reverse reads for one of the sequencing runs had degraded
quality after roughly 180 bp, sequences were trimmed to
160 bp, and a quality filter of Q ≥ 20 was applied. Unique
ITS oligotypes were identified and their read counts were
determined using minimum entropy decomposition (MED)
on all of the combined trimmed, quality filtered reads for the
environmental SPOT, negative control and mock community
samples. The resulting oligotype sequences were assigned
to their corresponding ecotypes using blastn to a reference
database of full length ITS sequences from previous publica-
tions (Rocap et al. 2002; Ahlgren and Rocap 2006; Choi

and Noh 2009; Ahlgren and Rocap 2012; Huang et al. 2012)
for which ecotype assignments are definitive based on phy-
logeny. Only 16 of 3113 total oligotypes did not match a
cyanobacterial ITS sequence. One was a homopolymer of
cytosines, and the other 15 are apparently from
Gammaproteobacteria as they have ≥92% identity to the
ITS of a Candidatus Thioglobus strain. Except for one
Thioglobus sequence which reached up 6.5% of total
sequences in one sample, these non-cyanobacterial se-
quences were minor constituents, never exceeding 0.41%
of total ITS sequence abundances, and were excluded
from subsequent analyses. Phylogenies of ASVs within
select ecotypes were constructed by first aligning
sequences with CLUSTALW (Larkin et al. 2007) then con-
structing trees with the F84 DNA substitution model and
the FITCH algorithm in PHYLIP (Felsenstein 2005).

Community statistical analyses

Unless noted, all R functions used for community statisti-
cal analyses were standard functions within R or from the
package ‘vegan’ (Oksanen et al. 2017). Rarefaction was
performed on MED ASVs for the 5 year data set using
the function specpool, which reports Chao estimates of
alpha diversity. ASV counts were pooled across all sam-
ples. Bray-Curtis (BC) dissimilarity scores were computed
for cyanobacterial community composition using the func-
tion vegdist and pairwise scores were binned by the
number of months separating the samples. Sinusoidal
curve fitting of averaged, month separation-binned BC
scores, using binned scores from 3 to 36 months since
pairs separated by only 1 or 2 months often had much
higher average BC scores above the typical amplitude
observed for subsequent cycles of BC values.

Extended local similarity analysis (eLSA) (Xia et al.
2011) was used to identify significantly co-varying
cyanobacterial ecotypes (n = 26) and ASVs (n = 89), viral
g23 (major capsid protein) variants (n = 207), environmen-
tal parameters (n = 26, see above) for more than 2 years of
time points (February 2009 to December 2010, n = 17 sam-
ples) for which g23 and cyanobacterial ITS data were both
available. The input for cyanobacterial community com-
position was relative abundances of ecotypes within
Prochlorococcus and Synechococcus and relative abun-
dances of ASVs within their respective genera. For viral
variant data, we used peak areas of terminal restriction
fragment length polymorphism analysis of the g23 gene
(Chow and Fuhrman 2012), and only the data for 50 termi-
nal products digested with enzyme HincII were used. Net-
works were constructed using Cytoscape (Shannon et al.
2003) and examined only for significant (p < 0.0015 and
Q < 0.05) and strong Spearman correlations (ρ ≥ 0.6).

Nonmetric multidimensional scaling (NMDS) analysis
of relative cyanobacterial community composition was
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performed using the function metaMDS with a minimum
of 100 random starts in search of a stable solution (try = 100)
on BC distances of ecotype or ASV relative abundances for
the 5 year data set (n = 47 samples; October, November
and December 2013 were excluded due to missing
corresponding environmental data). The function envfit was
then used to determine which environmental parameters
(n = 26, see above) were significantly correlated to sample
clustering using 999 permutations.

Variation partitioning was performed to determine the
relative strength by which environmental parameters and
viral community structure can explain the variation of
cyanobacterial community structure over the 2 year data
set. Variation partitioning analyses were performed
for Synechococcus ecotype community composition and
the genotypic composition within the following groups:
Prochlorococcus ecotype HL1 and Synechococcus
ecotypes/sublcades I, II, IV, and IVa, and IVb. Host com-
munity structure was analysed using relative or absolute
abundances. Absolute abundances were calculated by
multiplying relative abundances to corresponding total
Prochlorococcus or Synechococcus concentrations de-
termined by flow cytometry. Detrended correspondence
analysis was first used to determine the appropriate
response model, canonical correspondence analysis or
redundancy analysis (RDA), with the function ‘decorana’,
and for all cyanobacterial community data sets, RDA was
selected because the longest gradient lengths (DCA1)
were all less than three. Environmental data were first
standardized using the function decostand. Relative
abundances of viral variants, cyanobacterial ecotypes
and within-ecotype ASVs were first Hellinger trans-
formed. Because explanatory variables (environmental
factors and viral variants) in some cases outnumbered
the observations (sample size), these data were reduced
using forward selection of principal component axes
using the function ordistep and requiring that added axes
have p values ≤0.1 (option p = 0.1). RDA and partial
RDA were then performed on these data using the func-
tion rda and the significance of RDA results were
assessed with ANOVA using 200 steps and up to 200 per-
mutations. In particular, the unique fraction of variance
explained by the environmental data alone was determined
using the command varpart(cyano,envir,viral) where ‘cyano’
is the cyanobacterial community composition, ‘viral’ is the
viral g23 genotypic composition and ‘envir’ is the environ-
mental parameter data, and the unique fraction of variance
explained by the viral data alone was determined using the
command varpart(cyano,viral,envir).
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