
Supplementary Note
A derivation of the probability of fixation using Wahl, Gerrish and Saika-Voivod
(2002) model for arbitrary selection coefficients

The mathematical derivations below are based on Wahl and Gerrish (2001) and Wahl,
Gerrish and Saika-Voivod (2002). Both papers consider a mathematical model for experi-
mental evolution and both assume that exponential growth occurs during each cycle followed
by a flask transfer which produces a bottleneck that reduces the population to its original
size. Using the notation in Wahl and Gerrish (2001), we define r as the growth rate, D as
the dilution factor, and s as the selection coefficient of the newly arisen mutant and τ as
the length of time of each cycle. It is assumed that the mutant with selective advantage s
arises at sometime t during a particular cycle. To calculate the probability that the mutant
eventually fixes in the population Π(s, t) we first calculate the probability that the mutant
is lost due to the effects of the bottleneck. We denote this probability by V (s, t). Wahl
and Gerrish (2001) showed that the solution to V (s, t) results from solving the following two
equations. First we must solve for y below

1− y = e−Dyer(1+s)τ

. (1)

We then take the solution to (1) and place into (2) below

V (s, t) = e−Dyer(1+s)(τ−t)

(2)

where t is the time the mutant with selection coefficient s arises. To calculate the relevant
probability that a mutant fixes we simply note that Π(s, t) = 1 − V (s, t). Equation (1)
represents the probability that a mutant which arose during a cycle and made it through
that bottleneck will fix and V (s, t) is the probability that a mutant that arises during a
cycle at time t will eventually go extinct. For many applications of interest y ≈ 1 and
V (s, t) ≈ e−Der(1+s)(τ−t)

which is the probability of not making it through the first bottleneck.
In Wahl, Gerrish and Saika-Voivod (2002) equation (2) is extended to consider the fact

that the time at which a mutant arises is random with probability proportional to the number
of individuals. Therefore, it is more common for a mutant to arise during the end of a cycle,
but mutants that arise during the end of a cycle will have a smaller chance of passing through
the bottleneck. However, Wahl, Gerrish and Saika-Voivod (2002) stop short of deriving the
probability of fixation except in the case where s is small. A third paper by Heffernan and
Wahl (2002) does derive a large s version of the probability of fixation but for a more general
model. For this reason we derive the formula for the probability of fixation without making
the small s assumption, but maintain the simplicity of the original Wahl et.al.(2002) model.

Let t be distributed as follows

f(t) =
rert

erτ − 1
0 ≤ t ≤ τ.

Then if we average over t we get

V (s) =

∫ τ

0
e−Dyer(1+s)(τ−t)

rert

erτ − 1
dt.
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The above integral can be solved by a series of substitutions and integration by parts.
To this end let

x = e−r(1+s)t

dx = −r(1 + s)e−r(1+s)t = −r(1 + s)xdt
1

x1/(1+s)
= ert.

Define α = Dyer(1+s)τ . Therefore

V (s) =

∫ τ

0
e−Der(1+s)(τ−t)

rert

erτ − 1
dt

=
r

erτ − 1

∫ e−r(1+s)τ

1

e−αx

−r(1 + s)xx1/(1+s)
dx

=
1

(1 + s)(erτ − 1)

∫ 1

e−r(1+s)τ

e−αx

x1+1/(1+s)
dx

=
1

(1 + s)(erτ − 1)

∫ 1

e−r(1+s)τ

e−αxx−1−1/(1+s)dx.

(3)

Now consider integration by parts to get

u = e−αx dv = x−
1

1+s
−1dx

du = αe−αxdx v = −(1 + s)x
−1
1+s .

Substituting
∫

udv = uv − vdu above and noting that (Dy/α)
−1
1+s = erτ we get∫ 1

Dy/α

e−αxx−1−1/(1+s)dx = (s + 1)e−Dyerτ − (s + 1)e−α − α(s + 1)

∫ 1

Dy/α

e−αxx−
1

s+1 dx. (4)

A second application of integration by parts to the remaining integral above gives∫ 1

Dy/α

e−αxx−
1

s+1 dx =
s + 1

s
e−α − s + 1

s
e−rsτe−Dy +

s + 1

s
α

∫ 1

Dy/α

e−αxx
s

s+1 dx. (5)

Note that erτ −1 ≈ erτ and this is approximation will make the remaining formulas more
manageable. Appropriately substitution equations (4)and (5) into (3) gives

1

(1 + s)erτ

∫ 1

e−r(1+s)τ

e−αxx−1−1/(1+s)dx = e−Dy − e−α−rτ − α s+1
s

e−α−rτ + s+1
s

αe−rsτe−rταe−Dy

−α2(s + 1)

serτ

∫ 1

Dy/α

e−αxx
s

s+1 dx

= e−Dy − e−α−rτ − α s+1
s

e−α−rτ + s+1
s

Dye−Dy

− (Dy)
1

s+1 s+1
s

Γ
(

s
s+1

+ 1
) ∫ 1

Dy/α

α(αx)s/(s+1)e−αx

Γ
(

s
s+1

+ 1
) dx.

2



The last equation follows by noting that α2 = α · αs/(s+1)α1/(s+1) and that α1/(s+1) =
(Dy)1/(s+1) erτ Note further that s+1

s
Γ

(
s

s+1
+ 1

)
= Γ

(
s

s+1

)
. Now let Y be a Gamma dis-

tributed random variable with shape parameter s
s+1

+ 1 and scale parameter α, that is

Y ∼GAM
(
α, s

s+1
+ 1

)
. Then

V (s) = e−Dy − e−α−rτ − α s+1
s

e−α−rτ + s+1
s

Dye−Dy

− (Dy)
1

s+1 Γ
(

s
s+1

)
P

(
Dy
α
≤ Y ≤ 1

)
= e−Dy

[
1 + s+1

s
Dy

]
− e−α−rτ

[
1 + α s+1

s

]
− (Dy)

1
s+1 Γ

(
s

s+1

)
P

(
Dy
α
≤ Y ≤ 1

)
.

Therefore the probability of fixation Π(s) = 1− V (s) is given by first solving y

1− y = e−Dyer(1+s)τ

(6)

and then substitute y into

Π(s) = (Dy)
1

s+1 Γ
(

s
s+1

)
P

(
Dy
α
≤ Y ≤ 1

)
+e−α−rτ

[
1 + α s+1

s

]
+ 1− e−Dy

[
1 + s+1

s
Dy

]
.

(7)

where α = Dyer(1+s)τ .
For s > .3 then y ≈ 1. In general the solution to equation (6) is solved by a series

of iterations. Begin with an initial y0 = 1 and substitute this into the right hand side of
equation (6) to obtain y1 = 1 − e−Der(1+s)τ

. In general yn+1 = 1 − e−Dyner(1+s)τ
. Typically,

convergence is quite fast and one can stop after 2 or 3 iterations.
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