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The primary impediment to formulating a general theory for
adaptive evolution has been the unknown distribution of
fitness effects for new beneficial mutations1. By applying
extreme value theory2, Gillespie circumvented this issue in
his mutational landscape model for the adaptation of DNA
sequences3–5, and Orr recently extended Gillespie’s model1,6,
generating testable predictions regarding the course of adaptive
evolution. Here we provide the first empirical examination of
this model, using a single-stranded DNA bacteriophage related
to /X174, and find that our data are consistent with Orr’s
predictions, provided that the model is adjusted to incorporate
mutation bias. Orr’s work suggests that there may be
generalities in adaptive molecular evolution that transcend
the biological details of a system, but we show that for the
model to be useful as a predictive or inferential tool, some
adjustments for the biology of the system will be necessary.

Evolution by natural selection is one of the major generalizations in
biology, yet a framework for a quantitative, rigorous study of adapta-
tion has remained elusive. Fisher’s geometric model7 has been useful
for deriving qualitative predictions8–10, but its use requires arbitrary
selection of a fitness function and mutation definition, and it assumes
a continuous, unlimited phenotypic space. Gillespie’s mutational
landscape model3–5 seems to be a better approximation to biological
reality. It uses the discrete nature of DNA sequence space and requires
only modest assumptions about the population under study. Here we
test Orr’s extensions to this model6. The results that we address
concern a single step in adaptive molecular evolution but may serve
as a solid foundation on which to construct a general theoretical
treatment of adaptive molecular evolution.

The mutational landscape model3–5 considers the adaptation of a
large population of DNA sequences under strong selection and weak
mutation5. Under these conditions, a single sequence will dominate
the population with occasional, rapid fixations of new beneficial
mutations, and the only accessible sequences will be those that differ
from the current sequence by a single mutation4. For notation, assume
that the current sequence has fitness rank i and the fittest allele has
fitness rank 1. If most mutations are deleterious, then the i – 1

beneficial mutations will be drawn from the tail of the fitness
distribution. If this distribution has an exponential tail2, extreme
value theory predicts that the fitness differences between adjacently
ranked alleles will be asymptotically independent exponential random
variables (Fig. 1). The mean of the fitness difference between the fittest
allele and second fittest allele is some constant, C; all other fitness
spacings are scaled versions of the first. The mean fitness difference
between the second fittest and third fittest allele is C/2, between the
third and forth is C/3, and so on. These spacings allow calculation of
fitness effects and thus selection coefficients for mutations. By assum-
ing that the probability of fixation is given by Haldane’s 2s approx-
imation11, where s is the allele’s selection coefficient, Orr used this
regularity property to calculate the mean transition probability as

E Pij

� �
¼ 1

i � 1

Xi�1

k¼ j

1

k
;

which gives the probability that the population jumps to the jth fittest
allele averaged over the possible assignments of selection coefficients
to the i � 1 beneficial alleles. On average, the course of adaptive
evolution for a single step depends only on the number of beneficial
mutations available. From Orr’s equation, the mean rank of the next
allele fixed can be shown to be

E j½ � ¼ i + 2

4
:

As Orr pointed out6, this is midway between the expected rank under
perfect or ‘gradient’12 adaptation, where the fittest allele (rank 1) is
always fixed, and a random choice from among the beneficial alleles,
where, on average, rank i/2 is fixed.

To test Orr’s mean transition probabilities and to assess whether the
average behavior of adaptive evolution predicts the outcome for a
single realization, we carried out 20 single-step adaptations from a
single ancestral genotype, selecting for rapid phage replication under
standard batch culturing conditions. We used an icosahedral, single-
stranded DNA bacteriophage, ID11, which is related to fX174.
Replicate populations were allowed to fix a single beneficial mutation
under strong selection and weak mutation. We determined the
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identity of the substitution by whole-genome sequencing of each
final population. To estimate the ranks of alleles, we determined the
fitness of each unique mutation through standard fitness assays13. All
ten observed substitutions were nonsynonymous (Table 1). Two
different nucleotide substitutions at the same site generated the
same amino acid replacement and were treated as a single allele;
hence, we considered nine different beneficial mutations.

Orr’s model predicts the proportion of times the population should
fix its available beneficial alleles, provided the number of beneficial
alleles is known. It is unlikely that we have observed all the beneficial
mutations, but under Orr’s model, the observed number is the
maximum likelihood estimate for the true value. To assess the good-
ness of fit for Orr’s predictions, we used a multinomial likelihood ratio
goodness-of-fit test, which suggests that Orr’s model does not ade-
quately explain our data (P ¼ 0.10, �2LnL ¼ 13.50, degrees of
freedom (d.f.) ¼ 8; parametric bootstrapping P ¼ 0.10; Fig. 2a).

Under Orr’s model, the fittest mutation should be the most
frequently substituted, the second fittest mutation should be the
second most frequently substituted, and so on. In our data, the two
most frequent mutations were both C-T transitions, whereas the
fittest genotype arose through a G-T transversion. The most salient
discrepancy between Orr’s predictions and our data set is the number
of times the fittest allele was fixed (Fig. 2a). It should have been fixed
in B6 of the 20 replicates, but it fixed only once. Transitions are
known to occur at a higher rate than transversions; therefore, muta-
tion bias is an obvious explanation for this discrepancy. As Orr
pointed out1, his predictions deal with the average behavior of
adaptation. If there is no correlation between the fitness effect of a
mutation and the rate at which it arises, then mutation bias will not
alter the predictions of the model, because mutation rates are

essentially averaged out. For specific cases, it may be acceptable to
consider the average behavior of fitness effects, but perhaps differences
in mutation rates cannot be ignored. We therefore adjusted Orr’s
model to allow the beneficial alleles to have different mutation rates:

E Pij

� �
¼

mjPi�1
k¼1 mk

Xi�1

k¼j

1

k
;

where

mk ¼
1

k

Xk

i¼1

mi:

The mutation rate for allele j is denoted mj. This adjustment works
for both absolute mutation rates and relative rates, because any scaling
factor cancels. Using 13 additional unpublished phage sequences, we
estimated the relative mutation rates for a general time-reversible
model of DNA sequence evolution. The third fittest allele arose
through two different single-nucleotide changes and could have arisen
through an additional, unobserved mutation; therefore, it was
assigned the sum of these rates. The fittest allele also had an alternate
single mutation pathway, and its rate was adjusted accordingly.
All other amino acid changes could only be achieved through a
single-nucleotide substitution. The model performed well (P ¼ 0.49,
�2LnL ¼ 7.42, d.f. ¼ 8; parametric bootstrapping P ¼ 0.49; Fig. 2b).
Our data are 21 times more likely under the mutation-adjusted
version of Orr’s model than under the original model. One caveat,
however, is that we are no longer guaranteed that the observed
number of mutations is the maximum likelihood estimate.

Even the mutation-adjusted version of Orr’s model incorporates
few of the biological and experimental details of our system. There-
fore, it seems germane to assess the explanatory power lost in this
simplification. Extending work by Wahl et al.14,15, we derived fixation
probabilities explicitly for our experimental system and protocol,
incorporating population bottlenecks, growth rates and selection
coefficients. Assuming that the fixation time for an allele is exponen-
tially distributed with rate mjP(sj), where mj is the mutation rate for
allele j and P(sj) is its fixation probability, the probability that an allele
is the next one fixed is the ratio of its rate to the sum of the rates for all
alleles5. Using the estimated selection coefficients (Table 1) and our
phylogenetic estimates for mutation rates, this model provided a
better fit than the original Orr model (P ¼ 0.67, �2LnL ¼ 5.76,
d.f. ¼ 8; parametric bootstrapping P ¼ 0.78; Fig. 2c). The mutation-
adjusted Wahl model and the mutation-adjusted Orr model both
incorporate the effects of selection and mutation bias, and both
adequately explain our data. Although Orr’s model is based on
Haldane’s 2s fixation probability, which is a small s approximation,

Wi

Wi –1 W1W2

∆W1

∆W2

∆Wi –1 

sj = ∆Wj /Wi 

Fitness

E[∆W1–∆W2] = C

E[∆W2–∆W3] = C/2

E[∆Wi –2–∆Wi –1] = C/(i – 2)

E[∆Wi –1] = C/(i – 1)

Figure 1 A schematic depiction of the extreme value theory predictions for

a single step. Wj is the absolute fitness of the j th fittest allele, DWj is its

fitness effect and sj is its selection coefficient. The current wild-type is the

i th fittest. Extreme value theory predicts that the differences in fitness

effects of adjacent alleles are independent exponential random variables.
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Figure 2 A comparison of the observed data with the expectations under Orr’s model and the mutation-adjusted models. (a) Orr’s model. (b) Mutation-

adjusted Orr model using a six rate mutation model. (c) Mutation-adjusted Wahl model incorporating selection coefficients, the experimental protocol and

differences in mutation rates. The P values indicate goodness of fit.
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it requires only that fixation probabilities be
proportional to s. The mutation-adjusted
Wahl model is a better fit to the data, most
likely because it incorporates the defining
features of our system: severe population
bottlenecks and large selection coefficients.

Orr’s approach to modeling adaptation has
resulted in general predictions for adaptive
evolution that are relatively parameter-free;
they depend only on the number of beneficial
mutations. This theory represents a first
attempt to propose general properties of
adaptive walks. It may allow predictions
about the magnitudes of fitness gains that
will occur during adaptive evolution, some-
thing that could be applied in many contexts.
Additionally, the model could potentially
serve as a tool for statistical inference. The
single parameter in Orr’s mean transition probability formula, the
fitness rank of the wild type, is of central importance in the study of
molecular evolution and adaptive walks but has never been measured.
Our work shows that his model holds for empirical data, except that
differences in mutation rates for alleles must be incorporated to be
applicable to a single realization of the adaptive process.

Many real-time outcomes of natural selection, such as the evolution
of drug-resistant bacteria and viruses and the evolution of pest
resistance to insecticides and herbicides, have been to our detriment.
Understanding adaptive evolution offers potential solutions. For
example, understanding the biological details of evolution has led to
protocols for treating human immunodeficiency virus that monitor
evolution and circumvent drug resistance, and to mandated refugia of
non–genetically modified crops aimed at delaying the evolution of
insect resistance to Bt toxin genes in transgenic plants. Understanding
and mimicking processes of evolution has led to ‘directed evolution’ in
which the biotechnology industry uses enhanced natural selection to
produce proteins and nucleic acids with specific functions. Although
the biological details will always be important, we need to keep moving
beyond details toward generalities, if such generalities exist. Orr’s work
suggests that they may indeed exist, and we have now taken the first
step towards experimental verification of his theoretical results.

METHODS
Strains and culture conditions. The phage used in this work, ID11, was

isolated from the University of Idaho barnyards. Its single-stranded DNA

genome is 5,577 nt long and encodes 11 genes. Like fX174, it is a member of

the family Microviridae, differs from the bacteriophage G4 at B3% of its sites

and has the same genome size and map. The host for all experiments was

Escherichia coli C. We carried out all experiments at 37 1C in Luria-Bertani

broth supplemented with 2 mM CaCl2.

Adaptations. Our protocol has been described elsewhere13. We grew hosts to a

density of B108 cells per ml, using a 10-ml volume in 125-ml flasks, shaking at

200 r.p.m. We added B104 phage and grew them for 40 min to a population

size of B108. We terminated growth with chloroform and then sampled the

population to begin the next flask culture. We determined phage titers by

plating for each flask and used them to monitor phage fitness, which is the log2

increase in phage numbers per h. Each adaptation was initiated from an

independent isolate of the same ancestral genotype. We terminated adaptations

after a discernible increase in fitness (8–16 flask transfers).

Sequencing. We determined the genome sequences of the final populations for

all 20 adaptations by standard methods. If the final population contained two

substitutions (5 of the 20 adaptations), we sequenced earlier populations and

the initial isolate to determine the timing of the substitutions. Three initial

isolates contained silent substitutions; these were assumed to have no effect on

fitness or the allele fixed and were not present in the isolates used for

determining fitness. Two final populations had fixed two nonsynonymous

substitutions. In both cases, only one was present at the midpoint population

and was selected as the first substitution. We sequenced isolates for fitness

assays as described for populations.

Fitness assays. Our fitness assay protocol has been described previously13. We

measured fitness, the log2 increase in the phage population per h, under our

adaptation conditions. For each unique mutation, we obtained a sequence-

confirmed genetic isolate by plating, picking a plaque and sequencing it to

assure that only the mutation of interest was obtained. We measured fitness ten

times for each mutation.

Statistics. We obtained fitnesses by averaging the results of ten experiments for

each of the nine mutations. Because the variation was similar across replicates

and alleles, we pooled the variances to produce an overall standard error of

0.20. All fitnesses were more than one standard error apart, indicating that the

observed fitness ranking is fairly accurate. But we can account for potential

error in the fitness rankings by considering all possible rankings consistent with

the data; the results are similar.

To test goodness of fit, we used a multinomial likelihood ratio test. We tested

a multinomial model with the proportions given by Orr’s mean transition

probability formula, assuming that the number of beneficial alleles is nine,

against a model with class proportions estimated from the data. The test

assumes that twice the difference in log likelihoods follows a w2 with d.f. given

by 1 minus the number of classes. We verified P values through parametric

bootstrapping with 10,000 replicates.

Although the true number of beneficial alleles is probably greater than the

nine observed alleles, the use of the w2 with 8 d.f. is conservative. If we knew the

true number of beneficial alleles and incorporated this into our analysis, then

both the mean and variance of the log likelihood ratio statistic would increase

under the null hypothesis, which would increase our P value.

To estimate the mutation rates for our phage, we estimated, by maximum

likelihood, the phylogeny of our phage and 13 unpublished natural isolate

sequences within 10% uncorrected sequence distance from our ancestor using

PAUP* 4.0 (ref. 16). We aligned whole genomes using ClustalW17 and excluded

gaps. We estimated initial parameters on a neighbor-joining phylogeny. We

used the GTR+I+G model of sequence evolution, as selected by DT_ModSel18.

Final parameter values were estimated from the ML tree. Relative rates

estimates were as follows: A2C, 0.78; A2G, 4.31; A2T, 1.01; C2G,

0.23; C2T, 8.50; G2T, 1.0.

Derivation of fixation probabilities. Details of the derivation procedure are

given in Supplementary Note online. We assumed exponential growth fol-

lowed by a bottleneck to the original population size. Following Wahl et al.15,

we defined r as the growth rate, D as the dilution factor or the proportion of the

Table 1 Substitutions observed in 20 single-step adaptations

Genome

position

Nucleotide

substitution

Amino acid

position

Amino acid

substitution Number Fitness s.d. s

Ancestor 14.61 0.18

2534 G-T J20 V-L 1 20.31 0.40 0.39

3665 C-T F355 P-S 5 20.05 0.49 0.37

3850 G-A/T F416 M-I 3 19.45 0.59 0.33

2520 C-T J15 A-V 6 19.29 0.66 0.32

3543 C-T F314 A-V 1 19.13 0.61 0.31

3857 A-G F419 T-A 1 19.04 0.52 0.30

2609 G-T F3 V-F 1 17.56 0.43 0.20

3567 A-G F322 N-S 1 16.74 0.32 0.15

3864 A-G F421 D-G 1 16.22 0.70 0.11

Fitness is measured as the log2 increase in phage number per h. The amino acid position gives the gene name
followed by residue number: gene J is a single-stranded DNA binding protein, and gene F is the major capsid protein.
Genome positions correspond to the published G4 sequence.
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population surviving the bottleneck, s as the selection coefficient and t as the

time between bottlenecks. Wahl et al.14 considered the time at which a mutant

arises as a random variable and calculated a small s fixation probability. Below

is the formula without assuming a small s. First solve for y in

1 � y ¼ e�Dyerð1+sÞt
; and then substitute y into

Y
ðsÞ ¼ ðDyÞ

1
s + 1G

s

s + 1

� �
P

Dy

a
� Y � 1

� 	
+e�a�rt 1 + a

s + 1

s


 �
+1

� e�Dy 1 +
s + 1

s
Dy


 �
;

where a ¼ Dyer(1+s)t and Y is a gamma-distributed random variable with scale

parameter given by a and shape parameter

s

s + 1
+ 1:

This means that

P
Dy

a
� Y � 1

� 	
¼ 1

G s=ðs + 1Þ+ 1ð Þ

Z 1

Dy=a
aðaxÞ

s
s + 1e�axdx

and GðtÞ ¼
R1

0 xt�1e�xdx.

GenBank accession numbers. Phage ID11, AY751298; bacteriophage G4,

AF454431.

Note: Supplementary information is available on the Nature Genetics website.
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