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ABSTRACT

In modeling evolutionary genetics, it is often assumed that mutational effects are assigned according to
a continuous probability distribution, and multiple distributions have been used with varying degrees of
justification. For mutations with beneficial effects, the distribution currently favored is the exponential dis-
tribution, in part because it can be justified in terms of extreme value theory, since beneficial mutations should
have fitnesses in the extreme right tail of the fitness distribution. While the appeal to extreme value theory
seems justified, the exponential distribution is but one of three possible limiting forms for tail distributions,
with the other two loosely corresponding to distributions with right-truncated tails and those with heavy tails.
We describe a likelihood-ratio framework for analyzing the fitness effects of beneficial mutations, focusing
on testing the null hypothesis that the distribution is exponential. We also describe how to account for miss-
ing the smallest-effect mutations, which are often difficult to identify experimentally. This technique makes
it possible to apply the test to gain-of-function mutations, where the ancestral genotype is unable to grow
under the selective conditions. We also describe how to pool data across experiments, since we expect few
possible beneficial mutations in any particular experiment.

ADAPTATION at the molecular level involves the
fixation of beneficial mutations over time through

natural selection. Although there is an extensive body
of theoretical work on the process of natural selection,
the overall process of adaptation is not as well character-
ized theoretically (Orr 2005a). Because beneficial muta-
tions are rare and often have small effects, theoreticians
have little information on the raw material upon which
natural selection acts. Despite this dearth of data, there
has been a recent emergence of work on the theory of ad-
aptation (Gillespie 1983, 1984, 1991; Orr 2002, 2003a,
2005b, 2006b; Rokyta et al. 2006). Building on ideas of
a sequence space originally proposed by Maynard Smith

(1962, 1970), Gillespie introduced the primary assumption
leading to much of the current theoretical work by ar-
guing that extreme value theory (EVT) can help circum-
vent our lack of information regarding the nature of
benficial mutations. Gillespie (1983, 1984, 1991) posited
that, given an initial genotype, one can imagine the fit-
nesses of mutants being drawn from some underlying
probability distribution. The majority of these muta-
tions will be neutral, deleterious, or even lethal to the
organism and only a small number will be beneficial.
The fitness effects assigned to these mutations can thus
be assumed to reside in the extreme right tail of the
underlying fitness distribution.

Assuming that the fitnesses of interest lie in the right
tail of the fitness distribution allows the use of EVT to
predict the characteristics of beneficial mutations. Theo-
retical work thus far, however, has relied on one further
assumption. It has always been assumed that the un-
derlying fitness distribution is in the Gumbel domain of
attraction. If this is true, EVTshows that the limiting dis-
tribution of the tail is exponential. However, this need
not be the case. In fact, EVT describes three types of
limiting tail distributions (i.e., domains of attraction),
and furthermore, not all distributions have even a limit-
ing tail distribution. This choice of the Gumbel domain
has been rationalized by arguing that the other two types
are biologically unreasonable (Orr 2006a), and some
theoretical(Orr2006a),computational(Cowperthwaite

et al. 2005), and empirical data (Kassen and Bataillon

2006) support this contention.
As the Gumbel domain of attraction is such a prom-

inent component of the current theory of adaptation, it
is necessary to provide a thorough empirical test of this
assumption. Any attempt to test the Gumbel hypothesis
ultimately reduces to a determination of whether or not
data from the extreme right tail of a distribution appear
to be exponential. Of course, in the construction of any
statistical test, the appropriate alternative hypothesis must
be determined. Commonly, in tests for exponentiality,
the alternative selected is the gamma distribution (e.g.,
Kassen and Bataillon 2006), which has the attractive
property that it subsumes the exponential distribution
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as a special case. However, since there seems to be little
reason to doubt that fitnesses of genotypes possessing
beneficial mutations can be considered draws from the
tail of the fitness distribution, this may not be the most
appropriate alternative hypothesis. In fact, the test of
interest is whether the Gumbel domain is the correct
domain for the unknown fitness distribution. The gamma
distribution is in the Gumbel domain, so at best, testing
against the gamma might provide information on whether
the observed fitness values are indeed drawn from the
tail.

According to EVT, there are three domains of at-
traction, the Gumbel, Fréchet, and Weibull domains
(Figure 1). All distributions in the Gumbel domain have
the exponential as the limiting distribution of their tail.
This domain contains the majority of well-known distri-
butions such as the normal, the exponential, and the
gamma. The Fréchet domain contains distributions with
an infinite yet heavier tail than the exponential, (e.g., the
Cauchy distribution). The Weibull domain (distinct from
the Weibull distribution, which in fact belongs to the
Gumbel domain) contains distributions with lighter tails
than exponential, which possess a finite upper bound (e.g.,
the uniform distribution).

There are two standard approaches to EVT. The clas-
sical approach considers the distribution of the largest
value, the second largest value, etc. This naturally leads
to results on the distribution of spacings between con-
secutive extreme observations. These results are lever-
aged by Gillespie and Orr in their theory of adaptation,
as the spacings can be used to calculate fitness effects.
However, when considering alternative models, the dis-
tribution of the spacings is not straightforward. A more
natural approach is to consider the distribution of val-
ues above a threshold, i.e., the wild type. This is often
referred to as the ‘‘peaks over threshold’’ approach. Under

this framework all three domains can be described by
a single family of distributions called the generalized
Pareto distribution (GPD) (Pickands 1975).

The cumulative distribution function for the GPD is
given by

F ðx j k; tÞ ¼

1� ð1 1 kx=tÞ�1=k; x $ 0; if k . 0

1� ð1 1 kx=tÞ�1=k; 0 # x , � t

k
; if k , 0

1� e�x=t; x $ 0; if k ¼ 0

8>><
>>: ð1Þ

and the probability density function is given by

f ðx jk; tÞ ¼

1

t
1 1

kx

t

� ��ððk11Þ=kÞ
; x $ 0; if k . 0

1

t
1 1

kx

t

� ��ððk11Þ=kÞ
; 0 # x , � t

k
; if k , 0
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t
e�x=t; x $ 0; if k ¼ 0:

8>>>>>><
>>>>>>:

ð2Þ

This parameterization unifies all three limiting distri-
butions in terms of the distribution of values exceeding
a high threshold, where the data are transformed such
that the threshold is at x ¼ 0. A location parameter can
be added to move the threshold, but it is equivalent to
transforming the data relative to the threshold. The form
of the GPD is determined by a scale parameter t and
shape parameter k, commonly referred to as the tail
index, which specifies the weight of the tail. Note that
the exponential distribution is nested in the GPD as a
special case when k¼ 0, making it an ideal candidate for
likelihood-ratio methods. Further, the domain of attrac-
tion is exactly determined by the shape parameter k, the
case k ¼ 0 corresponding exactly to the Gumbel, k . 0
to the Fréchet, and k , 0 to the Weibull domain of at-
traction (Castillo 1988). EVTassures us that these other
domains are the best alternative to the Gumbel hypoth-
esis of an exponential tail and therefore will produce
the most powerful statistical tests, provided the data lie
in the extreme right tail of some underlying distribution
falling into one of the three domains of attraction. In
terms of empirical data, we can assume that the thresh-
old is the fitness of the wild type and that the fitness
effects of beneficial mutations follow some form of the
GPD.

We imagine that the methodology we present herein
will prove to be most useful for microbial experimental
evolution experiments, although the test is applicable to
other forms of data. Particularly in viral experimental
evolution, it is possible to isolate multiple beneficial mu-
tations arising from the same ancestral genotype, as well
as identify the mutations involved (e.g., Bull et al. 2000;
Rokyta et al. 2005). Yet in these experiments, there is an
inherent difficulty associated with testing for the domain
of attraction for the fitness distribution. As we are assum-
ing that our observations represent extreme values from
the tail of a distribution, we can expect only a small number
of unique beneficial mutations. However, having only a

Figure 1.—An illustration of the different possible tail
behaviors corresponding to the three domains of attraction
under extreme value theory. The top describes a general fit-
ness distribution of all genotypes within one mutational step
of the wild type, with wild-type fitness given by Wi. We are in-
terested in the distribution of values bigger than Wi. The bot-
tom shows hypothetical examples of the three alternative tail
distributions.
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handful of beneficial mutations implies low statistical
power to perform a test for domain of attraction. The
usual solution to this problem is to collect more data,
but as the number of beneficial mutations is small, this
results in little or no improvement in statistical power,
since replicating will tend to produce the same mutants.
As any test with a low number of observations will be
plagued by at best mediocre power, we present methods
that allow for an additional increase in power through
pooling data across distinct experiments. We also ad-
dress the issue of missing small-effect mutations. Since
identifying beneficial mutations experimentally involves
selecting for them, it may prove difficult to identify those
mutations with very small beneficial fitness effects. This
bias toward seeing larger-effect mutations could have
profound effects on the outcome of the data analysis.
Under our statistical framework, accounting for this turns
out to require only a simple shift of the data.

STRUCTURE OF THE DATA

When fitting a statistical distribution to data, one usu-
ally views the data as a random sample, where this is
defined to be a collection of independent observations
from a common probability distribution. However, a sam-
ple of observed first-step mutations and their corre-
sponding fitnesses that arise from an adaptive evolution
experiment cannot be viewed as a random sample from a
probability distribution. Since evolution favors the fix-
ation of more-fit mutants over less-fit mutants, there is a
greater chance of observing a mutation with large effect
over one with small effect. In fact, it is likely that mu-
tations with effects below some threshold may not be
observed at all, even after a large number of replicate ex-
periments. In addition, another threshold exists where
mutations cannot be resolved as significantly beneficial
given some assay to measure fitness. Both of these as-
pects contribute to the possibility of some data not being
observed during the course of the experiment. This is
known as a censored data problem. As a solution to this,
we present a way to transform the data through a shift
relative to the smallest observation.

Censored data: Consider the fitness distribution of all
one-step mutations from some genotype. Let i be the
rank of the wild type. Thus, from the ancestral genotype,
there are a total of i � 1 beneficial mutations with se-
lection coefficients in rank order s¼ s1, s2, . . . , si�1, which
are drawn from an unknown probability density f(s) with
cumulative distribution F(s). Thus, s1 is the selection co-
efficient for the largest-effect mutation, s2 is the selec-
tion coefficient for the second largest, etc. Note that
selection coefficients are just the fitness difference rel-
ative to the wild type normalized to the wild-type fitness.
All of what follows works equivalently if selection co-
efficients are replaced with fitness effects. Now suppose
that due to the experimental protocol, it is not possible
to observe all possible mutations, only the largest n of

the total i � 1, with selection coefficients s1, s2, . . . , sn,
where n , i� 1. In other words, we failed to observe the
leftmost selection coefficients sn11, sn12, . . . , si�1 in the
collected data set. Denote the observed selection coef-
ficients as sn ¼ (s1, s2, . . . , sn).

Using standard results from order statistics (see Rice

1995, p. 100), the distribution of sn depends on i and is
given by

fsðsnÞ ¼
ði � 1Þ!
ði � n � 1Þ! f ðs1Þf ðs2Þ . . . f ðsnÞ½F ðsnÞ�i�n�1:

ð3Þ

If fitness effects are measured relative to the wild type
and there exists the possibility that selection coefficients
smaller than sn are missing from the data set, then Equa-
tion 3 represents the appropriate likelihood equation.
However, because there are missing data, the true num-
ber of selection coefficients, i � 1, is unknown. Thus, to
use Equation 3, an estimate for i � 1 would need to be
obtained while accounting for uncertainty in this esti-
mate. This unfortunate complication of the likelihood
analysis can be avoided at the cost of 1 d.f. Instead of
measuring fitness relative to the wild type, we shift the
distribution relative to the smallest observed selection
coefficient,

xk ¼ sk � sn ð4Þ

for k ¼ 1, 2, . . . , n � 1. Now we have a transformed data
set x ¼ (x1, x2, . . . , xn�1) with one less observation. The
likelihood for this shifted data is

fXjsn
ðx1; x2; . . . ; xn�1 j snÞ

¼ fX;sn
ðx1; x2; . . . ; xn�1; snÞ

fsn ðsnÞ

¼ ðði � 1Þ!=ði � n � 1Þ!Þf ðx1 1 snÞf ðx2 1 snÞ . . . f ðxn�1 1 snÞf ðsnÞ½F ðsnÞ�i�n�1

ðði � 1Þ!=ði � n � 1Þ!ðn � 1Þ!Þf ðsnÞ½F ðsnÞ�i�n�1½1� F ðsnÞ�n�1

¼ ðn � 1Þ! f ðx1 1 snÞ
1� F ðsnÞ

f ðx2 1 snÞ
1� F ðsnÞ

� � � f ðxn�1 1 snÞ
1� F ðsnÞ

:

Note that the probability density function for the selec-
tion coefficients shifted by sn simplifies to

fX ðxÞ ¼
f ðx 1 snÞ
1� F ðsnÞ

: ð5Þ

Therefore,

fXjsn
ðx1; x2; . . . ; xn�1 j snÞ ¼ ðn � 1Þ!fX ðx1Þ . . . fX ðxn�1Þ;

ð6Þ

which is the distribution of a rank-ordered random sam-
ple of n� 1 selection coefficients drawn from the density
fX(x). The key observation is that the probability density
function given by (6) does not depend on the unob-
served selection coefficients between si�1 and sn. This
result is independent of the particular distribution.
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Assuming that all of the unobserved mutations fall
below a set threshold, shifting the probability distribu-
tion further out into the tail resolves the missing data
problem and eliminates the need to know i, the rank of
the wild type. This comes at the moderate cost of losing a
single degree of freedom. While this may reduce power,
it results in the avoidance of the potentially serious
consequence of misinterpreting the data (Figure 2).

Applying (6) to the GPD yields a curious result. As has
been previously noted (Castillo and Hadi 1997), the
GPD shape parameter k is stable with respect to shifts
in the threshold. Thus, upon shifting the threshold, k

remains the same and only the scale t changes. For our
purposes, we are concerned only with the shape, as it de-
termines the domain of attraction. To see this, suppose
the f(s) is given by (2); then

fX ðxÞ ¼
f ðx 1 snÞ
1� F ðsnÞ

¼ ð1=tÞð1 1 kðx 1 snÞ=tÞ�ððk11Þ=kÞ

ð1 1 ksn=tÞ�1=k

¼ 1

t 1 ksn
1 1

k

t 1 ksn
x

� ��ððk11Þ=kÞ
:

Thus, a GPD with a change in threshold will again follow
the GPD with the same shape but new scale parameter.
This stability property is not true in general for other
distributions, such as the normal, lognormal, and gamma.
Note that for k¼ 0 this result simply states the well-known
memoryless property for the exponential. This implies
that the likelihood function for shifted data is of the
same form as for the unshifted data, differing only by a

factor of (n� 1)!, which cancels out in a likelihood ratio
and is needed only in the case of ordered observations.

LIKELIHOOD-RATIO TEST

We propose a likelihood-ratio test (LRT) framework
for testing whether an empirical sample of beneficial mu-
tations have fitness effects that are consistent with having
been drawn from a distribution in the Gumbel domain
of attraction. While likelihood analysis is well established,
there are several aspects to our problem that make it
unique. First, if we believe that some of the possible se-
lection coefficients were not observed, we need to change
the threshold and measure fitness relative to the smallest
observed fitness as described above. Second, we argue
that the GPD given by (2) is a more appropriate alter-
native to the exponential distribution than some of the
more familiar distributions. Third, because there may
be only a small number of mutations that are adaptive,
the power of any test may be low. To improve power we
consider pooling data from many experiments. The flex-
ibility of the likelihood approach allows a simplified adap-
tation of the test to this general framework. Finally, the
likelihood framework extends to incorporate measure-
ment error associated with the observed fitness effects.

Likelihood-ratio test: After shifting the selection coef-
ficients appropriately (see Equation 4), we can view the
data X¼ (X1, X2, . . . , Xn�1) as a random sample of n� 1
observations from the GPD. The log-likelihood function
under the GPD is given by

‘ðX j k; tÞ ¼

�ðn � 1Þln t� k 1 1

k

Xn�1

i¼1

ln 1 1
kXi

t

� �
;

Xi $ 0; if k . 0

�ðn � 1Þln t� k 1 1

k

Xn�1

i¼1

ln 1 1
kXi

t

� �
;

0 # Xi , � t=k; if k , 0

�ðn � 1Þln t� 1

t

Xn�1

i¼1

Xi ;

Xi $ 0; if k ¼ 0:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ

The likelihood framework allows great flexibility in hy-
pothesis testing. If we are interested in testing the null
model that the data are from the exponential distribu-
tion, we can simply optimize the likelihood under the re-
striction of k ¼ 0 and then under the alternative model
where k is unrestricted. The LRTstatistic is usually calcu-
lated on the log scale and with the standard formulation,

�2 lnðLÞ ¼ 2ð‘ðX j k̂; t̂Þ � ‘ðX j 0; t̂0ÞÞ; ð8Þ

where t̂0 is the maximum-likelihood estimate (MLE) for
t under the exponential model, and k̂ and t̂ are the
maximum-likelihood estimates under the full GPD.

Although often �2 ln(L) asymptotically follows a x2
1-

distribution, we do not know the sample sizes for which

Figure 2.—The impact of missing small-effect mutations
on the type I error for the LRT. Values were simulated from
a shifted exponential. The horizontal axis represents the shift,
measured as a fraction of the mean fitness effect. The vertical
axis represents the true type I error for the likelihood-ratio
test when one fails to account for the shift. One hundred thou-
sand replicate tests were performed for each point.
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this approximation is appropriate. Instead, the distribution
of the test statistic can be generated using parametric
bootstrap based specifically on the size of a particular
sample. First, the MLEs of the parameters are found un-
der the restricted model, which in our case is the scale
parameter of the exponential. A data set is generated un-
der the null model using this estimated parameter. The
LRT is performed on this simulated data set and the test
statistic �2 ln(L) is calculated. This procedure for the
calculation of the test statistic is replicated to generate
an empirical distribution of the test statistic from which
an approximation of the P-value is obtained. The param-
etric bootstrap approach approximates the distribution
of �2 ln(L) in two ways. Because the approach is based
on simulation of data, there is simulation error. How-
ever, this error is controllable, as we can obtain any de-
gree of accuracy needed by increasing the number of
bootstrap replicates. The second way in which the pa-
rametric bootstrap approximates the true distribution
of �2 ln(L) is that we simulate using the estimated pa-
rameter t̂0 rather than the unknown true parameter t. For
small sample sizes, the low accuracy of the estimate could
affect the approximation. There are ways to adjust the
parametric bootstrap approach to account for this error,
but these adjustments are not necessary for the problem
at hand. In general, the fact that t is a scale parameter
would imply that the distribution of Xj/t is independent
of t. Specifically, under the null model, Xj/t follows the
standard exponential distribution with mean one. Note
that the likelihood of the data under every form of the
GPD (Equation 2) is a function of Xj/t, so the distribu-
tion of ‘ðX j k; tÞ does not depend on t. (However, Xj=t̂

does depend on t, but the dependence is so weak that it
can be ignored, even for small sample sizes).

Care must be taken when applying likelihood theory
to the Weibull domain of attraction (k , 0). Here, the
truncation point depends on the parameters to be esti-
mated. In the statistical literature this is referred to as a
range-dependent model. It is well known that standard
asymptotic theory does not apply for range-dependent
models. This issue for parameter estimation under max-
imum likelihood has been previously noted for the GPD
(Smith 1985). However, since we are using parametric
bootstrap, we do not rely on asymptotic theory. Also, note
that if k ,�1, the likelihood can become infinite due to
the distribution increasing the weight on the rightmost ob-
servation, and therefore the maximum-likelihood estimate
does not exist. The problem can be remedied by restrict-
ing k .�1, which excludes ‘‘reverse’’ tails (Figure 1) from
consideration. If the true value of k is indeed , �1, the
likelihood-ratio test nearly always leads to rejection of the
null model k¼ 0. This restriction is conservative and has
little effect on the analysis (see Power analysis).

Pooling data across experiments: The problem of low
power is inherent in any statistical test involving extreme
values. The nature of extreme value theory dictates that
when observing data from the extreme right tail of a dis-

tribution, we will have relatively few observations. The
observation of a large sample contraindicates this assump-
tion. This presents a problem in an experiment that re-
lies on the observation of adaptive mutations. Not only
is there an expectation of a small number of observa-
tions, the number of possible observations is actually
fixed. This prevents the standard solution of increasing
power through the collection of additional observations
through replicate experiments. As the number of rep-
licate experiments is increased, data collection suffers
from a diminishing return; previously observed mutants
will occur more often, culminating at a point where all
possible mutants have been observed and no new infor-
mation can be gained. Alternatively, there may be enough
beneficial mutations to achieve a reasonable amount of
power, but many of these mutations will be of small ef-
fect and require a prohibitive number of replicate ex-
periments before they will be observed.

Seemingly caught in a catch-22 (Heller 1961), the
only hope for increasing power is through pooling data
across nonreplicate experiments with different ances-
tral genotypes or different environmental conditions. In
this case the data can now be thought of as an array of
observations, where Xj,k represents the jth fitness effect
from the kth experiment. Consider a total of m experi-
ments. The formal hypothesis test is of the form

H0: k1 ¼ k2 ¼ . . . ¼ km ¼ 0 against HA: kk 6¼ 0

for at least one k. The likelihood-ratio statistic in this
scenario generalizes to

�2 lnðLÞ ¼
Xm

k¼1

2ð‘ðXk j k̂k ; t̂kÞ � ‘ðXk j 0; t̂0kÞÞ; ð9Þ

where Xk ¼ ðX1;k ;X2;k ; . . . ;Xnk�1;kÞ are the observed fit-
nesses for the kth experiment, k̂k ; t̂k are the parameter
estimates under the GPD for the kth experiment, and
t̂0k is the estimate for t under the exponential model.

To illustrate the improvement in power that occurs by
pooling nonreplicate experiments consider the following
example. Suppose that one performs 10 nonreplicate ex-
periments generated from distinct ancestral genotypes,
each of which results in the observation of 10 distinct
beneficial mutations. After shifting the threshold rela-
tive to the smallest observed, we have nine fitness effects
for the 10 experiments. For each experiment we are re-
quired to estimate two parameters and shift relative to
the smallest observation, which reduces the degrees of
freedom by 3 for each replicate experiment. The effec-
tive sample size would then be 70, since 10(10� 1 d.f.� 2
d.f.)¼ 70. Now consider the case of observing 73 distinct
adaptive mutations in a single replicate experiment. We
lose 3 d.f. from the shift of the threshold and the esti-
mation of two model parameters, leaving us again with
an effective sample size of 70. Therefore pooling 10 ob-
servations from 10 experiments is equivalent to observ-
ing 73 from a single experiment.
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Incorporating measurement error: In microbial evo-
lution experiments, the beneficial mutations are first
identified and then the fitness effect of each is estimated
from the results of a separate experiment. The precision
of the fitness assays associated with this second step can
be a source of significant measurement error and could
influence the analysis. Kassen and Bataillon (2006)
appropriately account for this measurement error in
their likelihood analysis. It is possible to minimize the
effect of this error on the test for domain of attraction by
conducting a larger number of replicate fitness assays.
However, it is possible that the number of replicates re-
quired is too large or not cost effective, so that account-
ing for measurement error is required. In this case the
likelihood equations can be easily extended to account
for both normal and lognormal error. The type of error
that is operating can be determined by standard meth-
ods such as a Q-Q plot against the standard normal.
Here we present an efficient algorithm for estimating
the appropriate parameters when measurement error
cannot be ignored. Let yij be the jth replicate for the ith
largest fitness effect. Suppose that f(x j u) is the distribu-
tion for fitness effects. We use u as the generic param-
eter, where u could represent a vector of parameters, for
example, the scale and shape parameter of the GPD. Let
g(y j x, s2) be the normal density with mean x and var-
iance s2. Let �y1; �y2; . . . ; �yn be the average of the observed
fitness effects under the assumption of equal replica-
tions per mutant genotype. Let u0 be the MLE for u when
measurement error is ignored. Let ŝ2 ¼ ð1=rðn � 2ÞÞPr

j¼1

Pn�1
i¼1 ðyij � �yiÞ

2 be the pooled variance based on
the observed fitness effects. Now, the likelihood of the
data is given by

Lð�y1; �y2; . . . ; �yn js; uÞ ¼
Yn
i¼1

ð
f ðx j uÞg ð�yi j x;s2=nÞdx:

We can approximate Lð�y1; �y2; . . . ; �yn j s; uÞ, using a Monte
Carlo algorithm as follows. Since ŝ is the appropriate
estimate of s we need only calculate Lð�y1; �y2; . . . ; �yn j ŝ; uÞ.
Calculate u0, the MLE for u when measurement error
is ignored. Simulate X1,j, X2,j, . . . , Xn,j for j¼ 1, . . . , N, from
f(x j u0). Order the X ’s so they match up with the corre-
sponding �y. The maximum-likelihood estimate can now
be obtained by maximizing the following approximation
to the likelihood with respect to u:

Lð�y1; �y2; . . . ; �yn j ŝ; uÞ

¼
Yn

i¼1

ð
f ðx j uÞg ð�yi j x; ŝ2=nÞdx

¼
Yn

i¼1

ð
f ðx j uÞg ð�yi j x; ŝ2=nÞ

f ðx j u0Þ
f ðx j u0Þdx

�
Yn

i¼1

1

N

XN
j¼1

f ðXi;j j uÞg ð�yi jXi;j ; ŝ
2=nÞ

f ðXi;j j u0Þ
: ð10Þ

To account for lognormal error, a similar algorithm can
be described. The algorithm utilizes a special case of im-

portance sampling, where samples are drawn from a
fixed distribution f(x j u0) to approximate a likelihood
over a range of u’s. Importance sampling is a commonly
used Monte Carlo technique in population genetics (e.g.,
Griffiths and Tavaré 1994, Section 7). While Kassen

and Bataillon (2006) use a numerical technique to ap-
proximate the likelihood rather than importance sam-
pling, the two methods are in fact equivalent.

To gauge how susceptible the algorithm is to Monte
Carlo error, simulations were performed with N¼ 10,000
under the null hypothesis, where k ¼ 0, t ¼ 1, s ¼ 0.1,
and a sample size n ¼ 20. The algorithm provided rea-
sonable estimates of the parameters (t̂ ¼ 1:0274, k̂ ¼
0:0195). Note the coefficient of variation (s/t¼ 0.1) rep-
resents measurement error less than what is expected to
influence the results of the test (see Figure 4). The Monte
Carlo error, due to the approximation in Equation 10, for
the estimates of the parameters and the log-likelihood
achieved a coefficient of variation ,5 3 10�5 and 4 3

10�5, respectively. In a second example, we simulated a
sample of size n¼ 20 from the null model with k¼ 0, t¼
1, and s ¼ 0.3. Note that the coefficient of variation in
this example is much larger (s/t¼ 0.3) yet the algorithm
still was able to recover reasonable estimates of the
parameters (t̂ ¼ 0:7110 and k̂ ¼ 0:2437). The Monte
Carlo errors for the estimates and log-likelihood were
again more than three orders of magnitude smaller than
the parameters, 1 3 10�5 and 1 3 10�4, respectively. The
results of these two simulations suggest that the algo-
rithm as described is suitable for maximum-likelihood
methods with N remaining computationally tractable.

SIMULATION RESULTS

Optimization in a multidimensional parameter space
that contains a boundary restriction on the values of
the parameters can prove to be difficult. To simplify
the computational burden of optimizing the likelihood
equations, we make use of a reparameterization of the
GPD (Davison and Smith 1990; Grimshaw 1993). Let
l ¼ �k/t. Note that if l was known then the MLE for
k can be written

k̂l ¼ 1=n
Xn

i¼1

lnð1� lXiÞ:

Now, substituting l and k̂l into the log-likelihood for
the GPD we arrive at the reparameterization,

‘ðX j l; k̂lÞ ¼ � n �
Xn

i¼1

lnð1� lXiÞ

� n ln � 1

n

Xn

i¼1

1

l
lnð1� lXiÞ

 !
:

This form allows for single-dimensional optimization of
the log-likelihood over the single parameter l, which is
more reliable and computationally efficient, although
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under this reparameterization it is not possible to restrict
values of k , �1. All of the calculations in this section
were conducted using the freely available statistical package
R (R Development Core Team 2006). Log-likelihoods
were optimized with the Nelder–Mead algorithm. Im-
plementations of the test with and without measurement
error are available from the author’s web site at http://
www.uidaho.edu/� joyce/lab page/computer-programs.
html.

Power vs. sensitivity: Two types of statistical analysis
based on simulations are presented. We present a power
analysis, summarized in Figure 3 and sensitivity analyses,
summarized in Figures 2 and 4. Power analysis deter-
mines how many data are needed to distinguish between
the null model and alternatives. Estimating the power of
a statistical test requires simulating many data sets under
various alternatives to the null model. In contrast, sen-
sitivity analysis involves simulating data under the null
model, where the structure of the data is included in the
simulations. In one set of simulations, we add measure-
ment error to each observation and in another we shift
each data point by a percentage of the mean, equivalent
to censoring the small selection coefficients. In essence,
we simulate data under the null hypothesis k ¼ 0 and
then transform this simulated data set to make it appear
more like data that might arise in an experiment.

In the language of statistical inference, power analysis
is concerned with avoiding type II errors. A type II error
occurs when one accepts the null model when an alter-
native is more appropriate. Power is one minus the prob-
ability of a type II error. Sensitivity analysis is concerned
with evaluating how much the probability of a type I er-

ror is inflated when the structure of the data is ignored.
A type I error occurs if we incorrectly reject the null
model. If the null model is an appropriate description
of the data, but the data include measurement error or
exclude small-effect mutations, then failing to account
for these effects will inflate the type I error rate.

Power analysis: The critical value of the test statistic
was calculated for sample sizes considered typical of a
single experiment or obtainable by pooling experiments,
n ¼ 10, 20, and 30. For comparison, larger data sets of
size 50 and 100 were also simulated. This calculation was
performed using 10 million replicate simulations. For
each replicate, a data set of size n was simulated ac-
cording to the null hypothesis where k ¼ 0 and t ¼ 1.
The LRT statistics from all such replicates generate an

Figure 3.—The power of the GPD likelihood-ratio test. The
null hypothesis is the exponential distribution corresponding
to k ¼ 0 and the type I error was set at a ¼ 0.05. Power was
calculated for the test for sample sizes of n ¼ 10, 20, 30, 50,
and 100. Critical values of the test statistic were estimated by
10 million simulations. One million replicate tests were per-
formed for each point and power was taken as the percentage
of tests that correctly rejected the null hypothesis.

Figure 4.—The impact of ignoring measurement error.
Data were simulated under the exponential distribution
and both normal errors (A) and lognormal (B) were included
in the simulations of each data set. The likelihood-ratio test
was performed for the exponential against a GPD ignoring
measurement error in the data. The type I error was plotted
against the coefficient of variation for the distribution of mea-
surement error.

Testing the Domain of Attraction for Fitness Distributions 2447



empirical distribution of the test statistic that allows for
an approximation of the critical value for a given type I
error rate a. Simulations were then performed to estimate
the power of the test against a GPD alternative at varying
values of the shape parameter, �1 # k # 1.

Note in Figure 3 that for a sample of size 10, k ¼ 0 is
virtually indistinguishable from k . 0. For 0 , k , 0.8,
the percentage of simulated data sets that reject the
Gumbel domain is �0.05, exactly the type I error rate
(a ¼ 0.05) of the test when k ¼ 0. When k ¼ 1 the GPD
reduces to the distribution with similar tail properties as
the Cauchy distribution, well known for having a heavy
tail. When k ¼ 1, the tail of the distribution is so heavy
that both the mean and the variance of the distribution
are infinite. However, a sample of size 10 drawn from the
GPD with k ¼ 1 will produce samples that are distin-
guishable from the exponential distribution only 20%
of the time. Power increases appreciably for a sample of
size 20, but a sample of size 50 is required to get reason-
able power. However, if we consider k , 0 then we see
that even a sample size as low as 10 has reasonable power.
The case of k ¼ �1 corresponds to the uniform distri-
bution, and 60% of all samples of size 10 drawn from
the uniform distribution are distinguishable from the ex-
ponential under the GPD likelihood-ratio test.

Sensitivity analysis: Ignoring the fact that small-effect
mutations are missing from the data has a major impact
on the data analysis. We outline above a simple adjust-
ment to account for this missing data. Figure 2 shows the
implications associated with failing to make this adjust-
ment. The type I error increases dramatically as the shift
size increases. The effect on the type I error rate is less
pronounced when using the GPD alternative over the
gamma.

The test is fairly insensitive to ignoring measurement
error under both lognormal and normal error struc-
tures (Figure 4). A coefficient of variation as high as 20%
has virtually no effect on the probability of a type I error.
We did not assess the effect of measurement error on
power. The measurement error in the fitness assay can
be reduced through replication.

CONCLUSION

The distribution of beneficial fitness effects for new
mutations remains the primary unknown in emerging
theories of adaptation. Thus far, theoretical work has
relied heavily on the assumption of an exponential tail
for fitness distributions (i.e., the assumption of a Gumbel-
type fitness distribution). This assumption has arisen in
studies of clonal interference (e.g., Gerrish and Lenski

1998; Rozen et al. 2002; Kim and Orr 2005) and in the
development of the mutational landscape model of ad-
aptation (e.g., Gillespie 1983, 1984, 1991; Orr 2002,
2003b; Rokyta et al. 2006). Justification for this assump-
tion is provided by an appeal to EVT, and we have pre-
sented a framework for testing the Gumbel hypothesis

firmly grounded in EVT. Furthermore, we have described
methodology for overcoming the difficulties inherent
in testing this assumption. As beneficial mutations are
assumed to be rare, the power of our statistical test may
be low due to small sample sizes. Therefore, to improve
power, it may become necessary to pool data across ex-
periments involving different starting genotypes or un-
der different selective conditions. However, as indicated
in Figure 3, the power to distinguish between the Gumbel
domain of attraction and the truncated alternatives within
the Weibull domain is quite high, even for small sample
sizes. Small-effect mutations may be difficult to detect
experimentally, and thus we have described a method
for shifting data to remove them from consideration.
Small-effect mutations can be problematic in two ways.
In experiments such as that described by Rokyta et al.
(2005), which rely on mutations fixing in experimental
populations, selection will favor large-effect mutations,
and the number of replicate experiments necessary to
identify small-effect mutations may be prohibitively large.
In experiments involving the identification of beneficial
mutations either through screening random mutations
or mutations found to be beneficial under different con-
ditions from those used to measure fitness (e.g., Sanjuán

et al. 2004; Kassen and Bataillon 2006), it may prove
difficult to distinguish small-effect mutations from neu-
tral or slightly deleterious mutations due to measurement
error. In both cases, shifting the data eliminates the issue
at the cost of only a single degree of freedom.

We envision this test as being most useful for experi-
mental microbial evolution studies, because these systems
allow the isolation of a number of beneficial mutations
from a single ancestral background and, through se-
quencing, the identification and verification of those
mutations. Previous studies identifying beneficial muta-
tions have been quite labor intensive, involving either
long fixation times (Rokyta et al. 2005) or screening a
large number of mutations (Sanjuán et al. 2004; Kassen

and Bataillon 2006). However, the framework we have
described will allow testing of beneficial mutations iden-
tified through gain-of-function experiments (Ferris et al.
2007). In these types of experiments, microbes are ex-
posed to conditions under which the ancestral genotype
cannot grow. For example, Bull et al. (2000) isolated
mutants of the phage fX 174 capable of growing at 45�,
a temperature at which wild type fails to grow. The same
type of experiment can be done by isolating, for exam-
ple, antibiotic resistance mutations in bacteria or host
range mutations in a virus. The difficulty with these ex-
periments is that the wild type has a fitness near or at
zero, and there may be many mutations that confer a
slight advantage but not enough for measurable growth
(i.e., colony or plaque formation). Since the ancestral
genotype cannot grow, it might appear that this type of
data violates an underlying assumption used to justify
EVT—that the wild type is already well adapted to the
current environment and thus its fitness along with the
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fitnesses of all one-step beneficial mutations are in the
tail of the fitness distribution. However, we are concerned
only with whether or not beneficial mutations are in the
tail of the fitness distribution, not whether the ancestral
genotype is in the tail. If we think of creating an ordered
list containing the fitness of each one-step mutant, listed
from largest to smallest, the beneficial mutations that
formed plaques or colonies would be at the top of the
list. If the beneficial mutations represent a small subset
among all possible mutations, then they meet the cri-
teria of being in the extreme right tail of the fitness dis-
tribution. For example, if an experiment is replicated
20 times and the same five mutations are observed four
times each, then this would suggest that there are only
a small number of beneficial mutations. By establishing
ahead of time that the number of adaptive changes is
relatively small, and by shifting fitnesses appropriately,
one can confidently use the tests described here for
beneficial mutations observed through gain-of-function
experiments. It is important to note we are not limited
in shifting relative to the genotype with the smallest
observed fitness and can in fact shift relative to any ob-
servation deemed far enough out in the tail to warrant
the use of EVT. Thus, not only does the methodology
described provide the appropriate test for the type of
tail distribution, but also it allows experimentalists to
use simple but powerful gain-of-function techniques for
isolating beneficial mutations, greatly facilitating the
characterization of the distribution of beneficial fitness
effects.
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