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ABSTRACT

We have developed an automated image analysis system (WINGMACHINE) that enables rapid,

highly repeatable measurements of wings in the family Drosophilidae.  A simple suction device

allows video images to be taken of the wings of live flies.  Low-level processing is used to find

the major intersections of the veins.  High-level processing then optimizes the fit of an a priori

model of wing shape.  The result is a B-spline approximation to the positions of all the veins and

the edges of the wing blade that utilizes 50 control points. The combination of handling, imaging,

analysis, and editing of the resulting data has been reduced to an average of about 1 minute per

wing.   The repeatabilities of 12 vein interesections averaged 86% in a sample of flies of the

same species and sex.  Comparison of 2400 wings of 24 Drosophilid species shows that wing

shape is quite conservative within the group, but that almost all taxa are diagnosably different

from one another.  UPGMA clustering of the species suggests that wing shape retains some

phylogenetic structuring, although some species have shapes very different from closely related

species.  The WINGMACHINE system facilitates artificial selection experiments on complex

aspects of wing shape.  We selected on an index which is a function of 14 separate measurements

of each wing.  After 14 generations, we achieved a 15 S.D. difference between up and down-

selected treatments.  Our approach to image analysis may be applicable to a variety of biological

objects that can be represented as a framework of connected lines.  The use of high-level analysis

based on a priori information about shape deserves much wider application in morphometrics.  

Keywords: [Morphometrics; image analysis; wing venation; Drosophilidae; morphological

evolution.]



3

Many endeavors in biology are limited by a combination of the number of specimens that can be

measured, and the amount of information that can be extracted from each one.  Examples include

biodiversity surveys (Weeks and Gaston, 1997), quantitative trait locus studies  (Liu et al., 1996),

and artificial selection experiments (Weber and Diggins, 1990).   Consequently, automated

methods for measuring the morphology of specimens have long been desired by systematists,

geneticists and evolutionary biologists.

Advances in technology and manufacturing of digitizing equipment and video cameras

have greatly increased the ease with which landmarks or outlines can be recorded, especially in

organisms (or parts thereof) where the specimen is readily projected into two dimensions  (Rohlf,

1993).  In some cases, the combination of specimen handling, imaging and feature extraction can

be very rapid.  Good examples include the extraction of outlines from high contrast objects such

as leaves (Jensen et al., 2002) or shells (Ferson et al., 1985).  In many other cases internal details

of a specimen are of primary interest, or the form of the organism precludes such a simple

approach.   Sophisticated automated systems have been devised to extract such information

(Zhou et al., 1985), but none appear to have been widely used.  As a result, in the vast majority of

morphometric studies, considerable effort on the part of the observer is still required in the

measurement of each specimen.  Despite the fact that digitization is far quicker than manual

measurement and recording of data, it can still be the limiting step in many morphometric

studies.  The preparation of the specimen for measurement may also be quite time-consuming.

Here we report on our largely automated system for recovering the locations of wing

veins of flies in the family Drosophilidae. Drosophilid wings are an unusually favorable subject

for automated image analysis.  This is first because of the wealth of interesting and accessible
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biological questions that can be addressed with their wings.  The function of wings for flight is

clear, although they also function as sense organs (Dickinson et al., 1997), and in courtship. The

nominate genus Drosophila includes the model organism D. melanogaster, as well as many other

species that are preadapted to laboratory culture. Second, Drosophilid wings are quite easy to

measure and handle because they are two-dimensional, translucent and  relatively sturdy,  having

evolved to withstand large forces. As a result of these factors, Drosophilid wings are widely used

for the study of the genetics of development, morphometrics and evolution (e.g. (Cowley et al.,

1986; Garcia-Bellido and de Celis, 1992; Stark et al., 1999; Gilchrist et al., 2000; Klingenberg

and Zaklan, 2000). 

The current standard approach to the measurement of Drosophila wings is to mount

detached wings, then digitize the positions of vein intersections manually (e.g. Klingenberg and

Zaklan, 2000; Zimmerman et al., 2000).  Weber  (1988) devised a complex apparatus to

immobilize the wing of a live, intact fly, and project its image onto a digitizing tablet, thereby

shortening handling time.  Using this apparatus, Weber was able to perform a comprehensive

series of selection experiments that demonstrated that the wings of D. melanogaster could readily

evolve counter to the allometry within the species (Weber, 1990, 1992). 

In this paper we describe the hardware and software that together make up the automated

wing measurement system, which we call WINGMACHINE.  The WINGMACHINE allows the

measurement of 100 pieces of information from the wing of a living specimen in one every

minute. Our approach to feature extraction is unusual in basic biological applications in

employing an a priori model as part of feature extraction.  We report the repeatability of the

resulting data, and briefly describe results from comparison of species and an artificial selection



5

experiment.

SPECIMEN HANDLING

To handle specimens, we devised the simple ‘wing grabber’ suction device shown in Fig. 1.  This

is a simplified version of the apparatus used by Weber (1988). Vacuum is provided by a small

pump (1/8hp 22 l/min Welch dry vacuum pump 2522B-01). The flies to be measured are

anaesthetized on a standard CO2 stage. The operator then takes the wing grabber in one hand,

while maneuvering the target fly with a small paintbrush in the other hand.  Once the wing

grabber is properly positioned with the slit directly behind the fly and parallel to its wings, the

operator places one figure over the top hole of the grabber, increasing the suction through the slit

and sucking one wing into the grabber. Releasing and recovering the opening permits

repositioning of the fly until a single wing is clearly visible, as shown in Fig. 2a.  The wing

grabber with attached fly is then positioned on the stage of a macroscope (see below) and a video

image recorded.  When suction is relaxed, the fly is pulled from the wing holder and put aside to

recover consciousness. This operation takes a few seconds, so the fly is still anaesthetized despite

being removed from the CO2 flow. Operators usually become moderately proficient at this

operation after a few trials, and expert with a few hours of experience.  The amount of vacuum is

adjusted to a level where the wing is readily grabbed without folding the wing by varying the

input of the pump or the width of the slit.

After a few hours of operation, the slide and coverslip become too dirty for further use. 

At this point, the brass fitting is detached from the putty holding it in place, and a clean cover slip
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is attached to a new slide using fresh double-sided tape. A ring of putty is then placed over the

gap between slide and coverslip and the brass fitting reattached. 

IMAGING

We have constructed three imaging systems with different hardware and front-end software

programs.  The key requirements of the system are that it produce a monochrome digital image, 

record two landmark locations and associate both with other recorded information about the

specimen.  To calibrate the size of the image, a stage micrometer is digitized before wings are

imaged.  

Both of our current systems use an Optem Zoom100 macroscope interfaced with ½ inch

monochrome CCD video cameras and a frame grabber board in a Windows  computer. 

Recording information about each image requires programmable software.  ImagePro Plus 4.0 

(Media Cybernetics, 1999), an expensive image analysis program that includes a full-featured C-

based programming language, is readily adapted for this purpose.  In addition, we also use Scion

Image (Scion Corporation, 2001), the commercial Windows version of NIH Image. While Scion

Image is available without charge, it can only be used with a Scion frame grabber board.  Scion

Image has very minimal programming and output capability, so recording specimen information

requires the use of a companion C++ program we have written. 

Once an image is obtained, contrast is adjusted using the automatic algorithm in each

software package. The operator then records the positions of two landmarks, the distal edge of

the humeral break, and the tip of the fissure between the alula and the posterior edge of the wing
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blade. The recording programs automatically zoom the image to these areas in turn to improve

accuracy. The image is saved as a TIFF file, and the associated identification, landmark

coordinates and scale information written to another file.  

FEATURE EXTRACTION 

The heart of the image analysis system is a C program called FINDWING, which takes

the TIFF image and the associated coordinate information and produces a cubic B-spline

approximation to the position of all the wing veins distal to the line between the user-supplied

landmarks, as shown in Fig. 2f. The key to the success of this algorithm is its use of an a priori

B-spline model (Lu and Milios, 1994) which is matched to the image of the wing.  An example

of this model is shown in Fig. 3.  B-splines do not pass through their control points (shown as

squares in Fig. 3), although they do pass through a point half way between adjacent control

points. By convention, the end of the spline curve is represented as a control point (shown as

circles in Fig. 3), and the interpolating function adjusted to compensate. 

FINDWING combines basic image processing of the wing image to facilitate the

registration and modification of the a priori model.  FINDWING proceeds in four major steps:

preprocessing, production of a skeletonized binary representaion, registration of the intersections

of the skeleton with the joins in the a priori model, and fitting of each spline curve to the

preprocessed image.  These steps are illustrated in Fig. 2. 

In the preprocessing step, the raw image matrix (Fig. 2a) is inverted, subjected to a 3X3

median filter, and then subtraction of a gray scale opening (an erosion, followed by dilation using
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the same dimension of operator) to obtain the image Fig. 2b.  These two operations largely

remove small-scale features that form the uninformative background of the image. This matrix is

used as input for both the skeletonization and fitting steps below. 

To obtain a skeletonized binary image, the preprocessed matrix is thresholded, holes

between features filled (Fig. 2c), the resulting features skeletonized (Fig. 2d), then short line

segments are removed (Fig. 2e).  The parameters of each of these operations, such as the size of

the opening filter and the cutoff for thresholding are under the control of the operator. The

intersections (joints) of the remaining lines in this step are used as input for the registration step.

For registration, the image is first flipped to the standard orientation shown in Fig. 2 if

necessary.  Each observed joint is then tested to see if it is far enough from the landmark at 6 to

potentially be either point 1 or 2.  If it is, then the direction from the joint to landmark is used to

define an affine transformation (translation, rotation, x and y scaling and shear) of all the

observed joints. The nearest joint to the set of reference joints in this transformed space is then

tentatively assigned the identity of that point, and the least squares deviation of this configuration

from the model computed.  The affine transformation that results in the best fit by least squares is

then assumed to be the correct one.  Reference systems based on both points 1 and 2 are

evaluated in this way to guard against the case where no joint corresponding to one of these

points is detected.

Finally, from the starting point defined by the best affine transformation of the model, the

fit of each of the nine model curves is optimized using an approach based on that of Lu and

Milios (1994).  This approach treats the coordinates of the control points as variables, and does

not fix the locations of the knots.  The fit of the curve is optimized by maximizing the brightness
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of the pixels  under the curve in the inverted image (Fig. 2b).  The brightness (b, range 0 to 255)

of each pixel is transformed to “energy” E as  and this matrix

smoothed.  The energy of a spline curve is the sum of the energy of each point under the curve. 

This energy is maximized by solving for the gradient vector of each control point with respect to

E, then updating the set of control points using a variable step size. When this step converges to a

solution, the resulting set of 100 parameters is output.  

The output of FINDWING is a file giving the model parameters for each wing, and a

TIFF image with the model overlayed on the raw image (Fig. 2f).  This model is readily used to

solve for derived measurements of any aspect of wing form defined by the model.  We have

principally analyzed the locations of vein intersections using a geometric morphometric

approach, but any parameters measurable from the original vein structure, such as lengths,

perimeters, areas or angles, can be recovered from the model.

The fitting parameters currently implemented in FINDWINGS work well on

monochrome images that are 316 by 240 pixels.  We expect that parameters giving good fits for

other image sizes could be found, although we have not yet done so.  

RUNNING FINDWING 

The success of FINDWING in fitting a model depends on the initial model parameters furnished

the program, and a large set of fitting parameters that can be altered by the user.  To maximize

the success of the splining process, the model and fitting parameters often must be altered for
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each batch of wings according to species or lighting conditions.  Finding an appropriate set of

parameters is a matter of trial and error, aided by examining the results of intermediate

processing steps (Fig. 2).  Fitting parameters that are frequently altered include the dimension of

the open radius used in preprocessing, and the threshold used to create the binary image for

skeletonization.  The same model parameters are frequently successful for species with similar

wing shapes.  When a new model is needed, it is usually quite easy to find, as even a poor set of

initial model parameters will result in a good fit to a minority of wings in a sample.  Use of any

of these successful output parameter sets as the initial model usually results in suitable fit to the

majority of images in subsequent runs.  Alternatively, a new model can be created by digitizing a

likely set of control points, based on the properties of  B-splines (Fig. 3).  

We use FINDWING for both batch processing of large sets of wings, and for real- time

interactive processing of single wings.  When the goal of a study is to characterize variation

among individuals or taxa, batch processing is more rapid than real-time processing.  Real-time

processing is convenient during a selection experiment, where a decision about whether to use an

individual as a parent must be made rapidly.  An important advantage of real time processing is

that the operator can immediately examine the fit and if necessary alter the fitting parameters and

rerun FINDWING until a suitable fit is achieved.  The cost is the time that the operator puts into

this checking and rerunning process.  The run time of FINDWING itself is less than a second per

wing on current Windows-based processors.  In batch mode, one set of fitting parameters will

typically produce excellent fits for 95 to 98% of the specimens.  When used in batch mode, an

experienced operator can image about 1 fly every 40 seconds.  In real-time applications, this is

slowed to about 1 fly per minute.
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When processing wings in batch mode, an important challenge is finding those cases

when the fit of the model to the image is deficient.  In all batch applications, we have been

interested in the coordinates of landmark points, rather than curve locations per se.  Since the

vast majority of wings spline properly, examining each image is exceptionally tedious. To

automate this process, we examine only multivariate outliers.  The locations of the twelve labeled

landmarks shown in Fig. 3 are first identified as the intersections of the appropriate model

curves.  Landmark coordinates are then aligned using the generalized least squares fit in tpsRegr 

(Rohlf, 1998b).  Potential outliers are then flagged with Rousseeuw’s minimum volume ellipsoid

(MVE) algorithm  (Rousseeuw, 1985; Rousseeuw and van Zomeren, 1990), as implemented in

the S-Plus program cov.mve (Insightful Corporation, 2001a). MVE uses the Mahalanobis

distance based on a robust estimate of the covariance matrix to detect outliers, thus preventing

outliers from masking their own presence.  The unaligned landmark coordinates from each

outlier model are displayed along with the raw wing image in the digitizing program tpsDig

(Rohlf, 1998a), and landmarks dragged to their proper locations using a mouse, if necessary. This

procedure finds both abnormal wings and cases where the model does not fit well.

Real-time processing is currently implemented through the C++ program SELECTOR

that uses the output of a Scion Image macro and runs FINDWING and ACDSee, a tiff viewer 

(ACD Systems, 2001).  Batch processing is implemented through a series of S-Plus scripts

(Insightful Corporation, 2001b) that spawn the necessary programs FINDWING, ACDSee,

tpsRegr and tpsDig.  These scripts are currently being ported to R, the share-ware

implementation of S.   Compiled code for FINDWING, the S-Plus scripts, and example data are

available at http://www.bio.fsu.edu/~dhoule/Software/ .  The source code for FINDWING is
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available from the first author. 

REPEATABILITY

To assess the repeatability of the WINGMACHINE  system, we repeatedly imaged and analyzed

the wings of Drosophila melanogaster generated as part of a much larger quantitative genetic

study (Mezey and Houle, 2003).  One hundred thirty-five D.  melanogaster  females were

captured in Wabasso, Florida in March 2002 and their offspring pooled to form a laboratory

population.  In August 2002, five males from this population were each mated to three virgin

females, and their offspring reared on standard cornmeal-sucrose-brewer’s yeast medium at

25°C.   A sample of offspring from these crosses were measured over a period of 9 days by five

operators. Flies were measured between 2 and 11 days of adult age.   In each case, the upper side

of the left wing was imaged.   Male flies (N=87) were imaged an average of 3.3 times, and

female flies (N=92)  an average of 2.7 times each, for a total of 535 wing images.

Variance component estimates for each sex separately showed that the variances did not

differ significantly, so the sexes were analyzed together. Variance components for centroid size

and the coordinates of the 12 landmarks were estimated in the SAS program MIXED  (Littell et

al., 1996; SAS Institute, 2002), with sex as a fixed effect and fly and operator as random effects. 

Variance components for the x and y coordinates of each point were summed to obtain the point

variance estimates shown in Table 1. Significance of the main effects at each point was tested by

MANOVA in GLM (SAS Institute, 2002). 

As expected, female wings are on average larger than male wings (centroid size 1201 vs.
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1036 :m), and the mean location of all of the landmarks also differs between the sexes at

P<0.0001. The repeatability of centroid size within sexes is very high at 96%.  Table 1 also

shows the among fly variance component over sexes, and the proportion of the within-sex

variance that this represents.  The average repeatability over all 12 points is 82%. The least

repeatable points also tend to have the least variance, so the proportion of the total variance in

locations that is fly variance is a little higher at 86%.  Point 5 is the least accurately captured

(repeatability 47%), which is not surprising as this curve does not follow the entire length of the

costal vein.  This was a deliberate choice in the design of the program, as there is a large break at

the end of the costa that is quite difficult to spline around.  When point 5 is removed from

consideration, the average repeatability rises to 85%.  Operator effects are significant for the

majority of the points, but represent less than 1% of the total variation among images.  Point 6,

one of the initial landmarks entered by the operator, has the largest operator effect, but this is still

only 3.2% of the total. 

Another potential source of error is the choice of the initial model and fitting parameters. 

To investigate this, we took the images from the above data set measured by one operator

(N=179), and splined and corrected them using two different sets of initial model parameters and

four different sets of fitting parameters in a total of five combinations. After the editing process,

repeatabilities across this set of measurements are considerably higher, totaling 93%, as shown in

the final column of Table 1. Mean differences among parameters are slight, and generally not

significant.   Even when models based on the wings of three different species are used for the

initial models (D. melanogaster, virilis, and affinis), total repeatability only declines to 91%.  As

above, points 5, 11 and 12 again have relatively low repeatabilities. 
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SPECIES DATA

One important use of high dimensional phenotypic data that an automated system can produce is

investigation of the relationship between phylogeny and phenotypic evolution. For example,

discrepancies between phenetic and phylogenetic relationships may indicate taxa where evolution

has been unusually rapid or unusual in some other way.  

To investigate the ability of the wing machine system to measure other species, we

imaged individuals of 24 species in the sub-family Drosophilinae of the family Drosophilidae,

listed in Table 2. Species were chosen to represent a wide diversity of taxa in the traditional

genus Drosophila, along with a few outgroup taxa.  Stocks were obtained through collection, or

through the Drosophila Species Stock Center, then at Bowling Green.  Specimens were mostly

reared in our laboratory on either cornflour-sucrose, or banana-molasses medium according to the

recommendations of the Stock Center (currently at http://stockcenter.arl.arizona.edu/). 

Individuals of Scaptodrosophila stonei, Zaprionus sepsoides, Z. inermis and  D. micromelanica

did not reproduce in our hands, and so wings of individuals emerging from vials sent by the stock

center were imaged.  Individuals of D. melanogaster were drawn from two populations: a wild

collection from Whitby, Ontario Canada; and a long-term laboratory population (IV)  (Houle and

Rowe, 2003).  All specimens were imaged and splined by one operator.  Splining model and

fitting parameters were adjusted for each species to maximize the success rate as judged by the

operator.  The result was that a different model was used for each species. Discriminant analysis

was carried out in Proc Discrim in SAS (SAS Institute, 2002), while UPGMA was carried out

with “agnes” in S-Plus (Insightful Corporation, 2001a).
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Despite the great interest in the genus Drosophila as a model for genetics, development

and evolution, there is still considerable doubt over the correct phylogeny within the genus and

the Drosophilinae.  Fig. 4 presents a phylogenetic hypothesis for the taxa in our sample, showing

some major unresolved issues.  The consensus phylogeny of Remsen and O’Grady  (Remsen and

O'Grady, 2002) was used as the basis for the hypothesis, supplemented by other results for the

more closely related taxa (Powell and DeSalle, 1995; Tatarenkov and Ayala, 2001; O'Grady and

Kidwell, 2002). 

The aligned and size-adjusted landmark coordinates for all 2406 individuals measured are

shown in Fig. 5. Overall, the positions of landmarks are quite conservative, with considerable

overlap in landmark positions among species. Wing shape in the Drosophilinae provides an

example of relative stasis.  

Despite the impression of stasis, linear discriminant analysis of the aligned data, plus

centroid size indicates that taxa are usually diagnosable: When a random half of the data is used

to train the discriminant function, the error rate in assigning specimens in the remaining,

evaluation data set to species is only 4%, compared to 3% in the training data set itself.  The vast

majority of classification errors are between two closely-related species pairs: D. melanogaster

and simulans, and  algonquin and athabasca in sub-genus Sophophora. D. robusta and hydeii in

subgenus Drosophila are also frequently confused, despite being less closely related.  The wide

taxonomic sampling in our data set suggests that a randomly chosen set of species would be less

diagnosable. 

  Ordination of the data along the first and third linear discriminant axes is shown in Fig.

6. The first and third axes explain 33 and 13% of the variation respectively. The second
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discriminant axis (which explains 20% of the variation) is not shown, as it largely serves to

separate the divergent D. guttifera from the other species. Examination of the ordination shows

some support for the major hypothesized species groups. In this projection, subgenus

Sophophora and the virilis-repleta clade of subgenus Drosophila are reasonably tightly grouped. 

The hypothesized immigrans clade, however, is spread across the entire space.  In particular D.

guttifera is very far removed from other members of this clade. 

This impression is confirmed when the species are clustered based on the aligned

landmark data, as shown in Fig. 7.  Most members of the sub-genus Sophophora cluster together,

with the exception of D. willistoni.    D. busckii from subgenus Dorsilopha also clusters with the

Sophophorans. The very closely related pairs (D. melanogaster and simulans, and  algonquin and

athabasca) are also very similar in wing shape.  The virilis-repleta clade is also grouped together

in general, although in this case with interlopers Z. sepsoides and D. falleni. The more closely

related taxa in this clade are not generally most similar in wing shape.   As in the discriminant

projection, the immigrans clade is not recovered in the cluster analysis, with representatives

scattered across the dendrogram.  The two Scaptodrosophila group together. 

Overall, the results suggest that wing shape retains a good deal of phylogenetic structure,

but with cases of marked discordance.  The case of D. guttifera is particularly suggestive, as it is

one of few continental Drosophila species with marked wings (a series of 11 small melanized

spots scattered along the long veins).  Perhaps sexual selection is responsible both for these

display traits and for the very unusual shape of wings in this species.  On the other hand D.

nebulosa also has melanized wings, but a typical wing shape.  D. willistoni has very unusual

wings for the otherwise conservative sub-genus Sophophora.  Careful study of the speciose
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willistoni subgroup may suggest hypotheses about the causes of its divergent wing shape. 

Convergence in wing form is suggested by the similarity of phylogenetically distant taxa, such as

D. busckii grouping within the Sophophorans.

SELECTION ON WING SHAPE

Wing size or shape has long been a popular target for artificial selection experiments   (e.g.

Reeve and Robertson, 1953; Waddington, 1953) due to the relative ease with which wings can be

measured.  For measurement of simple characters, such as length, our automated system offers

few  advantages.   For some questions, however, it is advantageous to be able to readily construct

complex selection indices that capture many aspects of variation.  For example, to test whether

arbitrary aspects of form can respond to selection,  Weber (Weber, 1990, 1992) selected on six

ratios of lengths between landmarks on the wing.  Remarkably, all six ratios were readily able to

evolve away from the allometric relationship they showed within species.  The spline models we

fit to each wing allow the instantaneous calculation of any function of wing shape. 

As part of an experiment to assess the role of epistasis in evolution, we are using the

WINGMACHINE system to select on a complex index of wing shape. The base population for

this experiment is the IV laboratory population (Houle and Rowe, 2003).   For the purposes of

this experiment, we needed to select on two initially uncorrelated but highly heritable traits. To

choose appropriate traits, we obtained wing data from parents and offspring of 57 full-sib

families (N=470 offspring).  Exploratory analyses of a variety of shape measures in this

population suggested a suitable pair of traits. 
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 Trait S1 is defined as the standardized average distance between veins L3 and L4 distal to

the proximal crossvein.  See Fig. 2a for the vein terminology used.  Veins L3 and L4 lie on either

side of the anterior/posterior compartment boundary, the origin of morphogens that structure the

development of the wing (Held, 2002).  To calculate S1, we took ten evenly spaced points along

the length of L3 distal to the crossvein, and solved for the distance to the closest point on L4. 

The average of these distances was then standardized by wing area.  Trait S2 is the average of the

distance that the crossvein lies along long veins L4 and L5, standardized by the total length of

that vein. The crossveins are determined relatively late in disk development, and involve genes

different than those that set up the A-P boundary that may affect S1   (Held, 2002).  S1 and S2 are

therefore probably affected by different developmental processes. Traits S1 and S2 had high

heritabilities (0.54 ± 0.05; 0.64 ± 0.06 respectively) and additive genetic coefficients of variation

typical of those found in fly wings (1.5% and 1.6%;  Houle, 1992).  As expected given their

different developmental origins,  S1 and S2 have a non-significant additive genetic correlation

(rA= 0.12). 

The selection index used for artificial selection was I= 2.6S1 + S2.   S1 was weighted 2.6

times as much in the index as S2 so that the intensity of selection on each trait would be equal. 

We formed two replicate populations by a random division of flies in the IV population, then

founded three treatments in each replicate: selection up, selection down, and a control.  Each

generation, in each of the four selected treatment/replicate combinations 100 virgin flies were

measured, and the 20 most extreme chosen as parents of the next generation.  

Figure 8 shows the highly significant 15 S. D. divergence in trait values achieved between

these selected lines in 15 generations. The realized h2 for the selection index averaged over
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treatments and replicates was 0.38, lower than that in the base population.  Examination of Fig. 8

shows that this is due to a combination of asymmetry between selected directions (Down

responded at a rate less than Up), and reduction in response with increasing number of

generations in the Up lines.

DISCUSSION

Our automated wing analysis system WINGMACHINE, successfully fulfils its intended purpose

as a means of rapidly gathering repeatable high-dimensional phenotypic data.  We have shown

that the system is useful for characterizing variation among Drosophilid species, and that it

facilitates artificial selection experiments on complex aspects of wing shape. 

Dryden and Mardia (1998) divide image analysis into “low” and “high-level” operations.

Low level analysis involves local operations on small numbers of pixels, such as filters and edge

detection.  High level analysis involves detection and fittting of large-scale features of an image.

Sophisticated Bayesian high-level analysis is becoming common in bio-medical imaging 

(Dryden and Mardia, 1998, Chapter 11).  Our use of an a priori model of wing shape that is

deformed to optimize fit to each image is a simple example of high-level analysis.  

Prior to developing this approach, we devoted considerable effort to developing a feature

extraction system based entirely on low level analysis.  These efforts were frustrated by several

aspects of wings.  The leading veins are thick and exhibit high contrast, while the trailing edge of

the wing does not.  Second, lighting across the image is uneven. Third, small flaws in the image,

such as dust or hairs, or in the wing itself, such as small nicks, are hard to automatically
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disentangle from wing features.   All of these frustrate simple edge detection and tracing

algorithms.  WINGMACHINE successfully splines wings that are both damaged and dirty.

Similar complications are common in most biological imaging problems.  Our success in

implementing high-level analysis suggests that it could be useful in a large number of image

analysis applications in basic biology. 

More specifically, our approach may be directly extensible to other objects that can be 

summarized as a framework of intersecting lines, such as leaf veins and edges, scales or feathers.

The specification of a model with different vein or edge topologies than in Drosophila wings is

readily accomplished.  While the precise low and high-level fitting algorithms in our software are

specifically tailored to Drosophila wings, we are optimistic that these could be modified to fit

models of very different structures.  

In comparison with the more widely used hand-digitization of wing landmarks (e.g. 

Zimmerman et al, 2000; Klingenberg and Zaklan 2000) the WINGMACHINE approach has the

advantage of great speed, both in handling the specimens, and recovering quantitative

information from them. An experienced operator spends on average about 1 minute per specimen

in total.  This speed comes with some disadvantages.  While the repeatabilities of most

landmarks are quite high, human observers can in some cases do much better.  If the goal is to

characterize the mean of a population (such as a family or a species), there is a simple tradeoff

between speed and accuracy: if it takes x times as long to measure an image by hand, then it will

be worthwhile to do so if the measurement error of the automated system is greater than x times

the measurement error achieved by hand.  

The structure of the model chosen for fitting and the details of image processing
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determine the precise locations of the curves and interesections recovered.  The result is that the

landmarks, for example, are frequently not as a human observer would place them.  For example

point 3 (see Fig. 3 for definition of landmarks) is repeatably placed on the wing margin just

above the intersection with L3, while point 2 is placed directly at the intersection of L4 and the

margin.  Point 11, the intersection of L2 and L3  has relatively low repeatability because it is

recognized as the intersection of the curves along these veins, rather than as the sinus formed by

the interior outline of the veins, as a human observer would naturally do.  This feature of the

model potentially creates bias if a particular feature of the wing is of primary interest.  

A third disadvantage is that the WINGMACHINE may fail for wings of species with

highly melanized spots at vein interesections, for example the “picture-winged” Hawaiian

Drosophila. Initial attempts to spline wings of D. grimshawi have such a high error rate that

hand-digitization is simpler and less time-consuming.  On the other hand, melanization seems to

be dependent on rearing conditions, and we have had good success with lighter individuals of

another picture-winged species,  D. gymnobasis.

Ultimately, our understanding of biological systems needs to encompass the relationships 

between molecular and phenotypic data.  Much attention is now focused on high throughput

genomic techniques such as sequencing, expression microarrays and proteomics.  To take

advantage of this avalanche of genetic data, comparable efforts will be needed to characterize the

whole-organism phenotype, what might be called phenomics (Houle, 2001).  The

WINGMACHINE is an example that serves to illustrate both that phenome level efforts are

possible, and just how far short of comprehensive knowledge they fall. 
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Table 1. Repeatabilities of centroid size and landmark positions in the Wabasso population of

Drosophila melanogaster.   Centroid size is in units of :m.  Point locations are in units of mean

centroid size/1000.

 

Differencea

|&-%|

Among

fly

varianceb

Percent of within-sex variance

Over repeated

imaging

Over

fitting,

models

Trait % Fly

%

Operator % Fly

Centroid size 164.83 517.21 96.2 0.5 99.5

Landmark: 1 3.32 52.67 90.2 1.1 *** 97.4

2 6.83 22.54 91.1 0.0 96.7

3 4.18 21.78 89.5 0.3 � 96.7

4 11.68 75.15 91.6 0.9 *** 96.1

5 3.44 14.32 46.9 2.4 � 72.6

6 3.16 11.71 75.7 3.2 *** 94.6

7 4.60 39.82 94.3 0.2 ** 97.8

8 2.19 43.83 95.2 0.2 *** 98.0

9 1.42 24.57 90.6 0.9 *** 96.3

10 2.61 26.74 91.7 0.4 *** 97.5

11 2.17 7.67 64.5 1.6 *** 78.7

12 4.08 12.39 65.8 0.6 *** 71.0

Landmark total 355.17 86.0 0.8 92.7
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* P<0.05; ** P<0.01; *** P<0.001.

aDistance between mean locations of each point. All differences between the sexes are significant

at P<0.0001. 

bAll among fly differences are significant at P<0.0001. Point variances are the sums of variance

components in the x and y dimensions.  
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Table 2. Taxa included in the multi-species data set.  Genus designations follow the stock list of the Tucson Drosophila Species Stock

Center (http://stockcenter.arl.arizona.edu/). 

Genus (subgenus) species Code Collection Locale Stock No. N

Drosophila (Sophophora) algonquin ALG Toronto, Ontario, Canada – 64

Drosophila (Sophophora) athabasca ATH Toronto, Ontario, Canada – 76

Drosophila (Sophophora) melanogaster MEL See text – 192

Drosophila (Sophophora) simulans SIM Toronto, Ontario, Canada – 114

Drosophila (Sophophora) nebulosa NEB San Jose, Costa Rica 14030-0761.1 97

Drosophila (Sophophora) willistoni WIL Royal Palm Pk., Florida, USA 14030-0811.2 88

Drosophila (Sophophora) sturtevanti STU Montecristi, Dominican Rep. 14043-0871.11 102

Drosophila (Sophophora) saltans SAL San Jose, Costa Rica 14045-0911.0 104

Drosophila (Drosophila) virilis VIR Pasadena, California, USA 15010-1051.0 109

Drosophila (Drosophila) americana americana AME Millersburg, P.A., USA 15010-0951.3 113

Drosophila (Drosophila) hydeii HYD Toronto, Ontario, Canada – 180

Drosophila (Drosophila) repleta REP Barbados 15084-1611.0 108
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Table 2, continued. 

Genus (subgenus) species Code Collection Locale Stock No. N

Drosophila (Drosophila) micromelanica MIC Santa Rita Mts., Arizona, USA 15030-1151.0 31

Drosophila (Drosophila) robusta ROB Lake Champlain, Vermont, USA 15020-1111.1 108

Drosophila (Drosophila) falleni FAL Toronto, Ontario, Canada – 95

Drosophila (Drosophila) guttifera GUT Austin, Texas, USA 15130-1971.0 103

Drosophila (Drosophila) immigrans IMM Tofino, B.C., Canada – 101

Drosophila (Drosophila) sulfurigaster SUL Kuala Lumpur, Malaysia 15112-1811.0 109

Drosophila (Dorsilopha) busckii BUS Tofino, B.C., Canada – 101

Hirtodrosophila pictiventris PIC Great Inagua Is., Bahamas 12000-0072.0 113

Zaprionus inermis ZIN Koutaba, Cameroun 50000-2746.0 12

Zaprionus sepsoides ZSE unknown 50000-2744.0 21

Chymomyza procnemis CPR Oahu, Hawaii, USA 20000-2631.1 106

Scaptodrosophila stoneii STO Tehran, Iran 11010-0041.0 44

Scaptodrosophila lebanonensis casteeli LEB Veyo, Utah, USA 11010-0011.0 98
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FIGURE CAPTIONS

Fig. 1.  Wing grabber. (a) Separated into components; (b) cross-section of assembled grabber. 

Fig. 2. Steps in image processing. Raw image (a) is reversed, then filtered to minimize background

features (b), then thresholded, and holes filled (c), features are skeletonized (reduced to 1 pixel

width) (d) and short segments pruned away (e). The intersections of these lines are used to register

the model with this image, and the model modified to fit the grey scale image in (c). The final result

with the spline model overlayed on it (f).  The white circles are the two landmarks digitized by the

operator. Wing is from the Wabasso population of D. melanogaster. 

Fig. 3. A B-spline wing model.  Circles are the ends of splines, and the large filled circles are the

landmarks analyzed.  The squares are the internal control points of the splines.  The long veins are

labeled according to the standard ‘genetic’ nomenclature used in the paper.  The model is optimized

for a wing of  Drosophila affinis.

Fig. 4. Phylogenetic hypothesis for the taxa in this study.

Fig. 5.  Aligned species data. Black circles represent the mean locations of landmarks in each

species; grey dots are the positions of each of the landmarks in each of the 2406 specimens. The

wing used as the basis for the line drawing was chosen to be as close as possible to the tangent or

reference configuration.
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Fig. 6. Ordination of species data on the first and third discriminant axes. Gray dots are individuals,

while large symbols denote species means. 

Fig. 7.  UPGMA dendrogram of taxa based on mean wing shape. 

Fig. 8. Response to 14 generations of selection on the wing shape index.  Two replicate populations

were selected up, and two were selected down.  Wings of female flies from an up-selected (upper)

and down-selected (lower) population at generation 14 are shown.



Houle et al. Fig. 1. Wing grabber. (a) Separated into components; (b) cross-section of assembled grabber.



Houle et al. Fig. 2  Steps in image processing. Raw image (a) is reversed, then filtered to minimize background features (b), then 
thresholded, and holes filled (c), features are skeletonized (reduced to 1 pixel width) (d) and short segments pruned away (e). The 
intersections of these lines are used to register the model with this image, and the model modified to fit the grey scale image in (c). The final 
result with the spline model overlayed on it (f).  The white circles are the two landmarks digitized by the operator. Wing is from the Wabasso
population of D. melanogaster.
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Houle et al. Fig. 3. A B-spline wing model.  Circles are the ends of splines, and the large filled circles are the landmarks analyzed.  
The squares are the internal control points of the splines.  The long veins are labeled according to the standard ‘genetic’ nomenclature 
used in the paper.  The model is optimized for a wing of Drosophila affinis.



Houle et al. Fig. 4. Phylogenetic hypothesis for the taxa in this study.
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Houle et al. Fig. 5. Aligned species data. Black circles represent the mean locations of landmarks in each species; gray dots 
are the positions of each of the landmarks in each of the 2406 specimens. The wing used as the basis for the line drawing 
was chosen to be as close as possible to the tangent or reference configuration.
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Houle et al. Fig. 6. Ordination of species data on the first and third discriminant axes. Gray dots are individuals, while 
large symbols denote species means. 



Houle et al. Fig. 7. UPGMA dendrogram of taxa based on mean wing shape. 



Houle et al. Fig. 8. Response to 14 generations of selection on the wing shape index. Two replicate populations were 
selected up, and two were selected down.  Wings of female flies from an up-selected (upper) and down-selected (lower) 
population at generation 14 are shown.
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