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Abstract The form of an organism is the combination of

its size and its shape. For a sample of forms, biologists

wish to characterize both mean form and the variation in

form. For geometric data, where form is characterized as

the spatial locations of homologous points, the first step

in analysis superimposes the forms, which requires an

assumption about what measure of size is appropriate.

Geometric morphometrics adopts centroid size as the nat-

ural measure of size, and assumes that variation around the

mean form is isometric with size. These assumptions limit

the interpretation of the resulting estimates of mean and

variance in form. We illustrate these problems using allo-

metric variation in shape. We show that superimposition

based on subsets of relatively isometric points can yield

superior inferences about the overall pattern of variation.

We propose and demonstrate two superimposition tech-

niques based on this idea. In subset superimposition,

landmarks are progressively discarded from the data used

for superimposition if they result in significant decreases in

the variation among the remaining landmarks. In outline

superimposition, regularly distributed pseudolandmarks on

the continuous outline of a form are used as the basis for

superimposition of the landmarks contained within it.

Simulations show that these techniques can result in dra-

matic improvements in the accuracy of estimated variance-

covariance matrices among landmarks when our assump-

tions are roughly satisfied. The pattern of variation inferred

by means of our superimposition techniques can be quite

different from that recovered from full generalized Pro-

crustes superimposition. The pattern of shape variation in

the wings of drosophilid flies appears to meet these

assumptions. Adoption of superimposition procedures that

incorporate biological assumptions about the nature of size

and of the variation in shape can dramatically improve

the ability to infer the pattern of variation in geometric

morphometric data.
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The form of an organism is its combined size and shape.

By definition, shape consists of those aspects of form that

remain when size is removed (e.g., Mosimann 1970). A

wide variety of biological problems concern the evolution

of mean form and the role of variation in form in evolution,

genetics, development and disease. Biologists are inter-

ested in studying the causes and consequences of variation

in form. For example, we would like to detect whether

shape changes with size (that is whether shape is allome-

tric), and more interestingly describe what it is about shape

that changes with size. Alternatively we might want to

study changes in shape due to a genetic difference. The first

question again is whether form differs between genotypes,

but once that is answered it would be of great value to be

able to infer which parts of form are affected by a genetic

change.

In this paper we call attention to the fact that while the

first question—Is there variation?—can be answered

unambiguously with current approaches, the second—What

about shape varies?—cannot. Traditional multivariate

analyses do not take advantage of the spatial information in
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the data, or are confounded by it. Methods that do take

the spatial nature of the variation into account, geometric

morphometrics (Bookstein 1991, 1996; Rohlf and Marcus

1993; Adams et al. 2004; Zelditch et al. 2004) or Euclidean

Distance Matrix Analysis; EDMA (Lele 1993; Lele and

Richtsmeier 2001; Lele and McCulloch 2002; Richtsmeier

et al. 2005), can answer the first question but are technically

blind to the second.

The fundamental source of this limitation is that the

spatial data at the heart of morphometrics do not come with

a natural coordinate system common to all specimens. The

data themselves must be used in some fashion to infer a

common coordinate system, and this process certainly

confounds variation at different homologous points in the

form (Bookstein 1986; Rohlf and Slice 1990; Goodall

1991; Lele 1993; Lele and McCulloch 2002; Richtsmeier

et al. 2005). The result is that morphometric data is only

considered to be suited to testing hypotheses about mean

form—for example, ‘Do two groups differ in shape?’, or

‘Does mean shape change in a consistent way with a

covariate? Hypotheses about the nature of variation in

form, such as the relative variability of different parts of

the form, are considered to be outside the purview of sta-

tistical tests in geometric morphometrics because estimat-

ing rotation and translation, the ‘nuisance’ parameters, plus

scaling or size requires four degrees of freedom for planar

data, but information about every point is still required for

estimation of the covariance matrix, which is therefore not

fully estimable without a priori information. This is known

as the identifiability problem (Lele 1993; Lele and

McCulloch 2002).

Despite these widely known difficulties, the intuition is

widespread that the patterns of covariance revealed by

geometric morphometrics really are meaningful, at least as

a tool for hypothesis generation. A compelling sign of this

is the widespread utilization of visualizations of variations

in particular directions in morphospace. If that intuition is

taken seriously analyses should be developed that take

advantage of the real information that is present, even if it

is confounded to some extent by the superimposition

algorithm used.

Furthermore, just as we know that geometric morpho-

metric techniques cannot in general recover the true pattern

of variation and covariation, we know that they can do so

for the particular pattern of variation that corresponds to

the assumptions that are employed in the analysis. The

most widely used superimposition approach is generalized

Procrustes superimposition (GPS), in which the set of

nuisance parameters is chosen to minimize the sum of

squared distances between the points of each configuration

and a mean form, subject to a particular definition of

scaling (Gower 1975; Rohlf and Slice 1990). While this

choice of a least-squares criterion suggests that the goal of

this transformation is statistical in nature, it is justified

instead because it places the landmark configurations in a

particular space of all possible rearrangements of k points

in d dimensions. This space is related to Kendall shape

space (Slice 2001), and has a convenient geometry for

some kinds of questions. Nevertheless, the pattern of var-

iation among landmarks following GPS will accurately

reflect the pattern of variation if the variation in form

reflected in each point is isotropic (equal and uncorrelated)

(Dryden and Mardia 1998).

This suggests that if appropriate a priori assumptions

about the pattern of variation are made the identifiability

problem can be partly or wholly overcome (Goodall 1995),

and the pattern of variation interpreted. Some attempts

have been made to move in that direction. Goodall (1991,

1995) proposed estimation of variance-covariance matrices

by iterative superimposition based on Mahalanobis (vari-

ance weighted) distance, rather than Euclidean distance.

More recently, a maximum likelihood approach has been

implemented for 3-D data using constraints on the pattern

of covariation around each landmark, and the distribution

of size and the eigenvalues (Theobald and Wuttke 2006).

We will not solve this problem here. Our purpose is first

to call attention to the problem. Second we propose two

related exploratory approaches that modify the GPS

approach based on simple biological assumptions about the

nature of variation in form. These can improve our ability

to draw inferences about changes in form if our assump-

tions about the way that form changes are correct.

The Problem

A Simple Example

We start by examining a simple data set that contains one

landmark that varies allometrically as well as four that are

isometric. Consider a set of square forms of different sizes,

where the four corners are used as landmarks. In addition,

we place one landmark along the outline of the square at a

constant distance from one of its corners, as shown in

Fig. 1a, ensuring that the relative position of this fifth point

changes relative to the other points; that is, it is allometric.

Because the true center of the form is equidistant from the

four corners, a ‘biological’ measure of size is based on just

the four corners. With this true model for size and variation

shape in mind, we can superimpose the forms using gen-

eralized Procrustes superimposition (GPS) on just the

corner landmarks. The scaling, translation and rotation

parameters fit from these four points are then used to place

the fifth point. This superimposition recovers a pattern of

variation that reflects the model we used to generate the

data, as shown in Fig. 1c; the four corner landmarks align
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perfectly, and all of the shape variation is in the fifth point.

Because the true ‘natural’ center of the form is equidistant

from the four corners, centroid size calculated based on just

the four corner points corresponds to an intuitive measure

of linear size.

The results of GPS of all five points suggest quite a

different pattern of variation. Figure 1b shows the GPS

superimposed data, with the outlines of the largest and

smallest square and the midpoints of all squares drawn in.

Most noteworthy is that all five landmarks now show

substantial variation due to the spreading out of variation

present in the fifth landmark. The addition of the fifth

landmark has affected the estimation of all three sets of

nuisance parameters. The effect on centering and rotation

are immediately clear from the figure. Less obvious is that

the sizes of the forms are also affected. When centroid

sizes are adjusted to the same value, the square with the

largest area is shown as smaller, whereas the originally

smallest square is now the largest, because the pattern of

allometry locates the fifth landmark relatively farther from

the centroid as size increases.

The behavior of these data under GPS is a function of

several well-known properties. The first is the inability of

general superimposition algorithms to recover a known

covariance structure because of the identifiability problem.

Second, the intuitive center of the object (the center of the

square) is not located at the centroid, the average position

of the landmarks. Third the intuitive definition of size

based on the overall size of the object (in this case a

dimensions of the square) differs from centroid size. The

last two issues are one important justification for the advice

to find a set of landmarks that are well spaced on the form

(Bookstein 1991).

Note that even if we did not know the true model for the

relationship between shape and size (that is, we did not

have access to Fig. 1a), two aspects of the data could point

us in the direction of the true, underlying model. First, even

with the five-point-superimposed data, the fifth point is

clearly more variable than the others. Second, if the area or

outlines of the forms have some biological meaning,

superimposition based on just the outlines will be intui-

tively appealing. Goodall (1991) perceptively noted that

‘‘data come with a perturbation to the coordinate frame, but

also with clues, at least partially independent of the land-

mark data, to the correct registration. An example of such

clues is the outline of bones, between the landmarks which

are at the sutures of the bones.’’

Allometry and Superimposition in Drosophilid Wings

We next consider a set of real data on the form of dro-

sophilid wings that shows patterns of variation that we

believe are similar to those in the simple example above. A

typical Drosophila wing is shown in Fig. 2a. The topology

of five longitudinal veins (the first being the leading edge

of the wing) and two crossveins is almost invariant in the

family Drosophilidae. We use a semi-automated system to

fit a series of B-splines to the vein structure (Houle et al.

2003), as shown in Fig. 2b. Our previous work in this

system (e.g., Mezey and Houle 2005) has been based on the

set of 12 vein or edge/vein landmarks shown in Fig. 2a.

We have now ported the WINGMACHINE software

described in Houle et al. (2003) to Java (Sun Microsystems

Inc. 1992–2006) and enhanced it to allow us to edit the

splines directly; the landmarks are extracted from the

spline data (van der Linde and Houle 2004–2008). In

implementing the techniques described below, we have

developed Geometrics (van der Linde 2005–2008) and

Spline packages in Java, based on published algorithms

(Siegel and Benson 1982; Rohlf and Slice 1990; Goodall

1991; Akca 2003; Rohlf and Bookstein 2003).

To investigate the superimposition issues that arise as a

result of allometric variation in drosophilid wings, we

haphazardly chose, from a much more extensive data set,
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Fig. 1 Five-landmark test data set. a Data as generated. The variation

in the corner points (squares) is isometric, whereas the variation in the

last point (circles) is allometric. Centroid size ranges from 1 to 6.8.

b Generated data superimposed by GPS on the basis of all five points.

The solid line is the largest individual, the dashed line the smallest.

The circles in the middle represent the positions of the centers of the

squares. c Generated data superimposed on the basis of the four

isometric corner points
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four species that differ widely in mean centroid size (CS):

Scaptodrosophila dorsocentralis (mean CS = 1.44 mm),

Drosophila (Sophophora) equinoxialis (CS = 1.96 mm),

Zaprionus ghesquierei (CS = 2.73 mm), and Drosophila

(Idiomyia) soonae (CS = 3.98 mm). Drosophila soonae

was obtained from the Drosophila species stock center;

D. equinoxialis was collected in Panama by D.H.;

S. dorsocentralis and Z. ghesquierei stocks were furnished

by Jean David. All data were obtained from lab-reared

flies. Twenty-five individuals of each species were used in

the following analyses.

The GPS superimposed data are shown in Fig. 3a.

Several aspects of this superimposed configuration are

noteworthy. First, the amount of variation inferred for each

landmark varies markedly. In particular, landmark 4 at the

upper left of the figure has far more variance than the other

landmarks, to the point where the among-species variation

is great enough to result in four discrete clusters of points.

Some of this pattern is caused by the clumping of land-

marks at the proximal end of the wing, on the right side of

Fig. 3a, but note that landmarks 2 and 3, which are even

more distal than 4, have far less variation. Landmarks 7 and

8 are also noticeably more variable than the other land-

marks. Second, the species means for all the landmarks

show a directional change correlated with size, implying

existence of allometry in the original point configurations.

This allometry is confirmed by regression of shape on

centroid size (performed in Rohlf 2003), which

convincingly rejects the null hypothesis of isometry

(Wilk’s K = 0.012, df 20, 68, P = 0.001 by permutation

test). Third, the areas enclosed within the outlines of the

species mean wing shape differ strikingly. As with the

simulated data, the shape space inferred by GPS results in

the comparison of species at different adjusted wing areas,

and one that reverses the size relationships among species.

Clearly the pattern of allometry is such that at least some of

the central landmarks are more displaced from the centroid

in larger species.

Dealing with the Problem

Departures from Isometry

Current morphometric practice deals with the situation

shown in Fig. 3a in several ways. First, one might be content

with the verbal description of what one can infer about how

shape changes with size, given one’s knowledge or intuition

about the properties of GPS, such as we have constructed

above. To this description, one can add resuperimpositions

of the data using other algorithms, such as a resistant (Rohlf

and Slice 1990; Walker 2000) or two-point registration, with

more interpretation. Third, one might instead analyze these

data with a superimposition-free approach, such as EDMA

(Lele and Richtsmeier 2001; Richtsmeier et al. 2005), which

forgoes much of the opportunity to visualize and interpret

the pattern of covariation. Our major interest is to determine

the causes of variation in shape, at both the developmental

and the evolutionary levels. A crucial step in doing so is to

generate hypotheses about the true pattern of variation and

covariation in form.

In the Introduction we noted that GPS is constructed to

place morphometric data in a geometric space with par-

ticular properties and is thus not considered by its leading

proponents to be an estimation procedure. We and others

(Theobald and Wuttke 2006) explicitly break with this

tradition because our goal is to estimate the variance-

covariance matrix of variation in form—that is estimation.

For this purpose we need to make assumptions about some

aspects of that variation, which we refer to as biological

assumptions. We want to adapt the GPS approach, insofar

as possible, to our inference problem. In this new context,

GPS uses assumptions that can be interpreted as biological

assumptions—namely that variation in isotropic. Here we

try to adapt the machinery of GPS to mitigate the impact of

this clear departure of GPS from biologically motivated

assumptions. Biological variation is certainly not isotropic.

When the assumptions of the superimposition algorithm

correspond to the actual distribution of the data, the known

pattern of variance and covariance among points can be

recovered. Our proposed approach is then to seek the

Fig. 2 A typical Drosophila wing. Analysed landmarks (top) and

clamped quadratic B-splines with control points (bottom)
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Scaptodrosophila dorsocentralis
Drosophila equinoxialis
Zaprionus ghesquierei
Drosophila soonae

a

c

b

d

Fig. 3 Superimpositions of

individuals by various

techniques. The solid line (solid
circles) represents the average

Scaptodrosophila
dorsocentralis (the smallest

species); the dashed line (open
triangles) represents

Drosophila soonae, the largest

species. The centroid is at the

junction of the horizontal and

vertical gridlines.

a Superimposition by traditional

GPS. b Superimposition by

traditional GPS, but with

landmarks 4, 7, and 8 omitted.

c Superimposition by

generalized procrustes analysis

with 12 pseudolandmarks

representing the outline.

d Superimposition by

generalized oblique analysis

(GPS with affine component)

with 12 pseudolandmarks

representing the outline
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subset of information about the form that corresponds best

to the assumptions of GPS, then to superimpose all of the

data on the basis of this subset of points. This would be

fully justified under the following assumptions. First, we

assume that there are a subset of landmarks that have

isotropic variation with respect to each other. This might be

the case if digitizing error is the only source of variation in

that subset. Second, we assume that other landmarks have,

in addition to isotropic error, additional biological varia-

tion, perhaps due to allometry. Thus those points with the

lowest inferred variation are most likely to correspond to

those with isotropic error, and could correspond to the

assumptions of GPS. When allometry is demonstrated, as

in the fly wing data, we exclude from the superimposition

those points that show the highest level of variation in

shape space. The result is analogous to the use of two-point

registration (Bookstein coordinates), but where the number

of points used may be more than two.

We hasten to point out that for biological data the true

pattern of covariance is unknown and that no subset of

points need correspond to the assumptions of GPS. Results

recovered using our approach are exploratory. A key issue

is what this method recovers when the full set of

assumptions above in not justified, for example, if all

points are allometric, but some are more allometric than

others. We predict that our procedure should lead to

improved inferences about the source of variation in shape

in such cases, an assertion we investigate with simulated

data below.

We discuss two variants of this basic approach. The first

is a simple algorithm for determining which of the land-

mark points should be excluded from the set of points used.

We call it subset superimposition. Second, we propose that,

when data about the outline of the form are also available,

using the outline as the basis for superimposition may

substantially improve our estimate of the covariances

among the landmarks. We call this procedure outline

superimposition.

Subset Superimposition

Under a null hypothesis of isometry, where all landmarks

have the same variance-covariance pattern and the same

relationship with size, each landmark is expected to con-

tribute equally to the residual Procrustes sum of squares

(PSS). Conversely, if a particular landmark is more allo-

metric than the remainder, then superimposition of the

remainder without reference to the allometric point will

result in an improved fit of the overall superimposition.

This process can be repeated until the user judges that a

more satisfactory superimposition is obtained. It is easy to

imagine how this process proceeds for the simulated data in

Fig. 1. In the absence of knowledge about the true model,

one would superimpose these data using GPS of all five

points, producing the inferred pattern in Fig. 1b. The

results clearly show that the non-corner landmark has far

more variance than any of the other points. This point is

then removed from set used to estimate the nuisance

parameters, and GPS repeated. This results in Fig. 1c, in

this case an obviously superior superimposition. In cases

where a subset of the landmarks follows a common pattern

of variation, and where this pattern seems to reflect the size

of the form accurately, the following algorithm will yield

an improved superimposition.

Algorithm: Subset Superimposition

Consider data on n configurations in the positions of k

landmarks in 2 dimensions. Arrange these coordinates into

n k 9 2 configuration matrices Xi–0. Landmarks are

removed sequentially, so at the mth iteration, only k - m

points remain, and the configuration matrix Xi-m used for

superimposition has dimension k - m 9 2. Each iteration

consists of the following steps:

1. Perform a generalized Procrustes superimposition of

the forms Xi�m, to obtain the superimposed, scaled,

configurations X�i�m and a mean or tangent shape �X
�
m.

2. Decompose the Procrustes sum of squares (PSS) into

the parts due to each of the k - m landmarks. The sum

of squares for the jth landmark is the jth diagonal

element of the point-wise SSCP matrix D2 ¼
Pn

i¼1 X�i � �X
�� �

X�i � �X
�� �t

h i
, termed D2

j . The trace

of D2 is the overall PSS.

3. Examine the distribution of the PSS values to deter-

mine whether removing a point is justified. We discuss

possible criteria below.

4. Identify the most deviant D2
j , then remove the jth row

from all of the Xi�m to yield configurations Xi� mþ1ð Þ.
Increment m and return to step 1.

5. Once the stopping rule in step 3 is satisfied, the original

configuration matrices Xi�0 are scaled, translated, and

rotated with the nuisance parameters estimated during

the final Procrustes superimposition step on the config-

urations Xi�m to yield the final superimposed and scaled

configurations X�i and tangent shape �X
�
:

There are several alternative choices for stopping cri-

teria for step 3. The first alternative is an intuitive one,

based on changes in PSS as a function of deletion step, m.

This yields a plot analogous to a scree plot of eigenvalues,

as shown in Fig. 4 (dashed line). With our selection

algorithm, PSS must decrease with each successive dele-

tion of a point. This plot gives an indication of the change

in variance, potentially representing a gain in isometry,

with each successive deletion. For the drosophilid data in
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Fig. 4, deletion of points 4, 7, and 8 results in a very large

reduction in PSS. The resulting superimposition with

points 4, 7, and 8 omitted is shown in Fig. 3b.

A potential disadvantage of this intuitive approach is

that users may feel free to choose the degree of deletion

to yield particular results. To avoid this, it might be better

to choose an algorithmic approach a priori. One algo-

rithmic approach could be based on statistical testing of

the underlying homogeneity of variances assumption of

Procrustes superimposition. Under the null hypothesis,

D2
1 ¼ D2

2 ¼ . . . ¼ D2
k . We propose using the results of a

Levene test for equality of these variances. When the test

is significant, one deletes an additional point in step 4 of

the algorithm. If the test is not significant, one obtains the

final estimates of shape in step 5 of the algorithm. This

approach may ultimately lead to a large number of sta-

tistical tests, which can be partially compensated for by

dividing the critical P value of each test by the number of

tests (m ? 1). This alone will not yield correct probabil-

ities, as subsequent tests are not independent. The value of

having an algorithmic stopping rule may outweigh the

statistical uncertainty. A potential problem with this

stopping rule is that the null hypothesis of equal Pro-

crustes sums of squares (PSS) at each point is not nec-

essarily met for any pair of points. An alternative stopping

rule is to complete the deletion algorithm down to some

arbitrary fraction of points, such as one half, with no

statistical testing.

We applied this algorithm to the Drosophila data, and

Fig. 4 shows PSS among the landmarks used at each iter-

ation of the analysis. Levene tests remained significant at

each step, so that stopping criterion was never satisfied.

The reason is clear on a log scale, where the decrease in

PSS is approximately linear (Fig. 4, solid line).

Performance of Subset Alignment for Simulated Data

We investigated the properties of subset removal on simu-

lated data for which the correct model is known. The data

were modeled on the basis of the change in a reference form

R (of dimension k 9 2) as a function of an underlying size

variable S. The mth dimension of landmark j in individual i is

Xijm ¼ RjmS
Ajm

i þ Bjm þ EijmSi

where A is a matrix of allometric coefficients, B is a matrix

of constant deviations from the reference (as in point 5 in

Fig. 1), and Ei is a matrix of multivariate normal deviations

with distribution N 0;Rð Þ. This procedure generates ideal

data where the nuisance parameters of translation and

rotation are absent.

We then calculated estimates of the variance covariance

matrix of the landmarks using different superimpositions.

We estimate the true model covariance matrix, P, after

scaling the configurations by the parametric size S�1
i Xi;

which is equivalent to using a superimposition based only

on isometric points. To assess the performance of super-

imposition algorithms, we subjected the unscaled forms

either to simple GPS or to the subset superimposition

algorithm, then estimated the covariance matrix P̂. To

judge the performance of the superimposition algorithm,

we estimated the scaled mean square error of P̂ as

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pk

i¼1

Pk
j¼i pij � p̂ij

� �2
h ir

�pij k k þ 1ð Þ=2
;

where �pij is the mean of the unique elements of P. Under a

perfect superimposition, MSE reaches zero.

In our simulations we allowed subsets of n \ k points to

show different degrees of allometry, while the remaining
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k - n points were isometric. The increment in the allometry

of each point varied from a and incremented the degree of

allometry. In each set of simulations, we constructed a k 9 2

matrix A of allometric coefficients aij. For simplicity, we

assumed that the x and y coefficients were equal (ai1 = ai2).

The degree of allometry of the ith point is calculated as

aij ¼ tþh
ei�curvature�1

en�curvature�1

� �

for i�n and

aij ¼ t for i [n

where h indicates the maximum difference in allometry

between the points. When t = 1, points with i [ n are

isometric. The curvature parameter controls the rate at

which allometry changes with i. When curvature is near 0,

the increment is linear in i. As curvature increases away

from 0, the allometry is an accelerating function of i.

Our first set of simulations was of situations where four

of the eight points were isometric (t = 1, k = 8, and

n = 4), and subset superimposition was expected to per-

form well. In each simulation, we chose 30 different sizes

uniformly distributed between 1 and 3.9. For each param-

eter combination, we simulated 50 configurations. Fig-

ure 5a shows the number of points that are dropped when

the Levene test criterion is used for various values of height

and curvature, average of 50 replicas per combination of

height and curvature. When the points are clearly allome-

tric, the algorithm drops all of the allometric points, but

this outcome becomes less likely as the degree of allometry

becomes smaller. Figure 5b compares the MSE of the

inferred variance covariance matrices for the full set of

points under GPS and after application of the subset algo-

rithm with the Levene test as a stopping rule. Subsetting

never results in a worse fit to the true covariance matrix,

and it leads to a dramatic increase in accuracy when the

variance in allometry of the points is large.

In our second set of simulations, we modeled a worst-

case scenario for our algorithm, where all points depart

from isometry, half with allometric coefficients greater

than one and half less than one, corresponding to a set of

landmarks that do not represent overall size well. In these

cases, MSE generally increased after subsetting (Fig. 6).

To summarize, subset alignment uses the relative con-

tribution to the Procrustes sum of square of each landmark

to determine which landmark to drop from the analysis, in

order to obtain a subset of landmarks that potentially

approximates the isotopic error distribution assumed by the

Procrustes analysis. The simulations showed that this

algorithm improved estimates of the variance-covariance

matrix when the relative contribution to the Procrustes sum

of squares differed between points, the isometric points

contributed less variation. As expected, when the relative

contribution to the Procrustes sum of squares is roughly

equal for each landmark, no such clear improvement

occurred. Note that our algorithm could retain a subset of

covarying allometric points, and through that, result in the

dropping of the isometric points when the overall set of

landmarks do not adequately reflect size.

Outline Superimposition

Our second proposal for dealing with allometry is to use

the outline of the form as the basis for superimposition of

the landmarks. This approach was suggested by our fly

wing data, where we automatically estimate both outlines

and landmarks in the same step, as shown in Fig. 2b.

Examination of the wings of the four species in our data set
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suggested to us that species varied less in the overall shape

of the wing than in the arrangement of the landmarks. To

determine whether this was the case, we generated 12

evenly spaced pseudolandmarks along the outline of the

longest curve that mostly traces the wing outline. We then

used GPS to superimpose the configurations of 12

landmark plus 12 pseudolandmark points simulta-

neously using either the 12 landmarks (Fig. 3a) or the 12

pseudolandmarks (Fig. 3c) to estimate the nuisance

parameters. The squared Procrustes sum of squares of the

12 pseudolandmarks in this shape space was indeed

only one-eighth that of the landmarks (9.82 9 10-4 vs

7.86 9 10-3). This lower Procrustes sum of squares for the

outline is not due to geometric constraints. To fit this curve

adequately, we use 14 spline control points, so the 12

pseudolandmarks cannot express all of the information in

the spline model of this curve. Unlike the pseudolandmarks

discussed by Bookstein (e.g., 1991), neither end of this

curve is defined by landmark points, so the autocorrelation

between landmarks and pseudolandmarks is reduced.

When outline data have this reduced variance relative to

landmarks, or where the outline naturally captures bio-

logical size, superimposition using only the subset of

pseudolandmarks on the outline may be informative. The

full set of superimposed configurations can be analyzed as

with any subset-superimposed data. An alternative is to

discard the pseudolandmarks after superimposition and to

analyze only the landmark data. In this case the data used

to superimpose the forms are not directly confounded with

the data to be analyzed, although of course covariance

between the outline and landmarks will cause dependence

between the two. This approach has the additional advan-

tage that the landmark covariance matrix is potentially of

full rank.

The results of outline superimposition for the drosoph-

ilid data are shown in Fig. 3c. They are similar to those of

subset superimposition, in that the variation in the allo-

metric landmarks identified has increased, whereas the

variation in the isometric landmarks has been reduced. One

attractive property of this superimposition is that the sizes

are scaled to match our intuitive notion of wing size based

on wing area. The centroid is now close to the biological

midpoint of the wing. This result is functionally appro-

priate, as the lift-generating properties of wings are deter-

mined almost entirely by their planar form (Dickinson et al.

1999). Inspection of the mean outlines of each species

suggests an allometric relationship between the affine

components of the outlines, where smaller species have

rounder wings. A model that fits affine parameters can also

be incorporated into the superimposition (Rohlf and Slice

1990; Rohlf and Bookstein 2003); the results are shown in

Fig. 3d. Incorporation of the affine component into the

outline superimposition reduces the PSS by 79% compared

to the outline superimposition and by 97% relative to the

landmark superimposition.

Simulation results (not shown) confirm that outline

superimposition performs much better at recovering the

true variance-covariance pattern than does GPS when the

outline is isometric and some or all of the landmarks are

allometric.
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Projections of Kendall’s Shape Space

Shapes exist in a curved space called Kendall’s shape

space, but many statistical methods assume that the data

occur in Euclidean space, so determining whether distances

between forms in the curved shape space are well

approximated by distances in the linearized space tangent

to the mean form in the sample is of interest. If these

distances are highly correlated, then standard statistical

tests are justified. We estimated these correlations for the

Drosophila data set after GPS, subset, and outline super-

impositions. For each superimposition, the R2 values were

essentially perfect (R2 = 0.999 or higher). A similar pic-

ture arose from the simulated data, for which we calculated

correlations for various extreme cases. Each of these cases

resulted in very high correlations whether traditional

(0.9926 and higher) or subset superimpositions (0.9939 and

higher) were used. In general, superimpositions of the

simulated data based on the subset method resulted in

higher correlations between shape space and tangent space

than those based on all landmarks.

Discussion

As currently practiced, the analysis of shape data by geo-

metric morphometrics is well suited to testing hypotheses

about mean shapes but not to consideration of hypotheses

about the variation in shape. Many biological questions,

such as the causes of variation and the evolution of shape,

are therefore outside the purview of current analyses. This

situation is clearly not necessary: If one has a model of how

variation is produced, it can be used as the basis for mor-

phometric analyses, and its adequacy can be tested in

various ways.

A key element in this situation is that the goal of

the most widely used analysis of morphometric data, the

generalized procrustes superimposition, is to locate the

measured forms in a particular geometric space (Bookstein

1991; Zelditch et al. 2004), rather than to estimate the

pattern of variation and covariation in form. To some, this

suggests that an entirely new approach needs to be taken if

the goal is to estimate variation. While this will likely

prove to be true we are interested in the analysis of data

now. We have instead proposed modification to the Pro-

crustes approach that can improve its ability to estimate

variation under some circumstances.

We have suggested two modifications of Procrustes

superimposition techniques that are justified by some

simple assumptions about variation in form: that specific

parts of form are often strikingly allometric in comparison

with the overall form. These relatively allometric parts are

detectable by the large residual variation of landmarks in

those regions after Procrustes superimposition. When these

assumptions are correct, our simulations show that super-

imposition using a subset of landmarks can dramatically

improve our ability to infer the pattern of variation and

covariation in shape and therefore help to generate

hypotheses about the causes of variation.

Our interest in this problem was sparked by the contrast

between the attention paid to detecting allometry in Pro-

crustes-superimposed geometric morphometric analyses

and the fact that allometry is a violation of the isotropy

assumption implied by the superimposition algorithm. On

the other hand, the assumption that the covariation around

each landmark is homogeneous used in both EDMA and

Theobald and Wuttke’s (2006) is clearly not general. In

particular, the automated method we use to recover land-

mark positions on Drosophila wings (Houle et al. 2003)

makes this assumption unattractive for our data.

Our first proposed technique, subset superimposition,

will result in improved inference when landmarks differ in

the degree of allometry and the majority of points are

isometric. Our second proposed technique, outline super-

imposition, can result in an improved inference of variation

for several reasons. First, it can be considered a special

Scaptodrosophila dorsocentralis
Drosophila equinoxialis
Zaprionus ghesquierei
Drosophila soonae

Fig. 7 Size-restored

drosophilid data. Superimposed

individuals by generalized

oblique analysis (GPS with

affine component) with 12

pseudolandmarks representing

the outline. Symbols as in Fig. 3
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case of subset superimposition and is justified if the pattern

of variation in the outline is more consistent with isometry

than that in the landmarks. Second, in some cases, the

outline is the natural locus of the function of the form, so

inferring changes in shape relative to the outline of the

form will be of biological interest.

The differences between the inferred pattern of covari-

ation obtained with the standard generalized Procrustes

(GPS) and that obtained by subset or outline superimpo-

sition can be quite large. For example, the implied pattern

of variation in the wings of four species of drosophilid flies

derived from traditional GPS superimposition, shown in

Fig. 3a, differs dramatically from that achieved with subset

(Fig. 3b) and outline superimposition (Fig. 3c). Most

notably, we can infer that landmarks 1, 4, 7, and 8 show

much more allometric variation than is implied in the

superimposition based on all the landmarks. Both alterna-

tives result in measures of size that more closely reflect the

overall size of the wing blades, a valuable feature given the

functional significance of the area of the wing. Figure 7

shows the result after the size component of the shape data

was restored. Lines fitted through landmarks 1, 4, 7, and 8

are not going to the centroid, indicating allometry.

These inferred results are interpretable in terms of

known aspects of wing development in Drosophila. The

positions of landmarks 1 and 4 are influenced by variation

in the decapentaplegic (dpp) pathway, which locates veins

II and V along the anterior–posterior axis of the wing,

relative to an important developmental boundary that runs

just posterior to vein III (Held 2002; de Celis 2003).

Increased dpp activity relative to the rest of the wing would

move the intersections of both veins II and V more prox-

imally. The acute angle with which vein II meets the wing

margin dictates that landmark 4 will undergo the largest

change in position. The determination of the crossveins

occurs much later than that of the long veins (Held 2002),

so again the positions of landmarks 7 and 8 could plausibly

be decoupled from growth of the rest of the wing.

Our proposed modifications of superimposition tech-

niques are not entirely novel. Slice (1998) implemented the

possibility of subset superimposition by allowing the user

to designate primary points, which are used for superim-

position, and secondary points that are not, but we can find

no discussion of criteria for choosing such points. Buckley

et al. (1999) noted discrepancies in the variances of land-

marks after Procrustes superimposition, and discarded

those with the largest residuals before analysis.

Resistant-fit superimposition (Siegel and Benson 1982;

Rohlf and Slice 1990; Verboon and Gabriel 1995; Dryden

and Mardia 1998) can improve superimposition when a

distinct minority of points shows anomalous patterns of

variation, as in the well-known ‘‘Pinocchio case’’, where

one landmark covaries with size very differently from

others. Although resistant-fit algorithms do allow detection

of such cases (Rohlf and Slice 1990; Walker 2000), in

principle such a point-wise difference in variance would be

better dealt with by a point-wise weighting scheme (e.g.,

Theobald and Wuttke 2006), as resistant-fit algorithms can

use different subsets of points to locate each configuration

in shape space. Resistant-fit is thus an exploratory tech-

nique easier to justify as a method for dealing with outliers

(e.g., Dryden and Walker 1999) than as an estimation

procedure. Resistant-fit did not perform well in a simula-

tion of more a complex case with many degrees of varia-

tion in allometry (Walker 2000).

Although we are confident that these subset alignment

techniques will prove useful in a variety of data sets, we are

well aware that they may not always be appropriate, for

example, when the form studied has a complex relationship

with size, as in the simulations represented in Fig. 6.

Ultimately, what we wish to do is to infer and test a bio-

logical model of the underlying transformations that

explain the pattern of variation observed in the data (e.g.,

Zelditch et al. 1990; Richtsmeier et al. 2005; Klingenberg

2009). This process has been attempted surprisingly rarely,

in part because practitioners are all too aware of the

dependence of inferred variation on the assumptions used

to superimpose the data sets.

Finally, we want to emphasize that, while we have

confined our analyses and interpretations to allometric

variation in shape, the kinds of approaches we take here

are applicable to other patterns of variation in shape. Even

in the absence of size variation or allometry, biological

questions often invite the interpretation of local variation,

and the formulation and testing of hypotheses about that

variation. The current dismissal by many leading theorists

in geometric morphometrics of attempts to infer patterns

of variation in shape impoverishes the field by excluding

many compelling questions from consideration. As the

widespread utilization of visualizations in geometric

morphometric studies demonstrates, the intuition is

widespread that the patterns of covariance revealed really

are meaningful, at least as an exploratory technique. If

that intuition is taken seriously analyses should be

developed that take advantage of the real information that

is present, even if it is confounded to some extent by the

superimposition algorithm used. We hope that our modest

proposals for alternative approaches to superimposition

will help spur full consideration of this deep and impor-

tant problem.
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