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ABSTRACT 
S. Wright suggested an  estimator, i, of the  number of loci, m, contributing  to  the  difference in a 

quantitative  character between two differentiated populations, which is calculated from  the phenotypic 
means and variances in the two parental populations and  their  FI  and F2 hybrids. The  same method 
can  also be used to estimate m contributing  to  the genetic  variance within a single population, by 
using divergent selection to  create  differentiated lines from  the base population.  In this paper we 
systematically examine  the utility and problems  of this technique  under  the influences  of  unequal 
allelic effects and initial allele frequencies, and linkage, which are known to lead i to  underestimate 
m. In addition, we examine  the effects  of  population size and selection intensity during  the  generations 
of  selection. During selection, the  estimator i rapidly approaches its expected value at  the selection 
limit. With  reasonable  assumptions about unequal allelic effects and initial allele frequencies, the 
expected value  of i without  linkage is likely to be  on  the  order of one-third of the  number of  genes. 
The  estimates  suffer most seriously from linkage. The practical maximum expectation of i is just 
about  the  number of chromosomes,  considerably less than  the  “recombination  index” which has been 
assumed to  be  the  upper limit. The estimates are also associated with large sampling variances. An 
estimator of the variance  of i derived by R. Lande substantially underestimates  the  actual variance. 
Modifications to  the  method can ameliorate some  of the problems. These include using F3 or later 
generation variances or the  genetic variance in the base population,  and replicating the  experiments 
and estimation procedure. However,  even in the best of circumstances, information  from TG is very 
limited and  canbe misleading. 

T he  number of genes that  contribute variance in 
a  quantitative  character has important implica- 

tions for evolution and  for plant and animal breeding. 
The simplest and least expensive methods  for estimat- 
ing this number involve observing the means and 
variances of differentiated  populations  and  their hy- 
brids. Several statistical methods  for  estimating  the 
“effective” or “minimum”  number of loci segregating 
have been proposed (e.g., CASTLE 192  1; STUDENT 
1934; PANSE 1940;  PARK  1977a; JINKS and TOWEY 
1976; COMSTOCK and ENFIELD 1981). The original 
method of WRIGHT (in CASTLE 1921),  as  elaborated 
by WRIGHT (1968), is the simplest and most  widely 
used method. WRIGHT’S method  relates the difference 
in the means of two inbred lines to  the variance of 
their F2 and backcross populations.  LANDE (198 1) 
pointed out  that WRIGHT’S  method could also be used 
with outbred populations. He suggested that  the same 
method  could  be  applied  to artificially selected lines 
(high and low) from  a single base population. 

Since one of the main assumptions of WRIGHT’S 
method is that  one  parent  contains all the increasing 
alleles and  the  other  parent contains all the decreasing 
alleles, the use of selected lines directed  at  making 
this assumption true is very appealing. Other assump- 
tions in WRIGHT’S method are additive  gene  action, 
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unlinked loci, and equal allelic effects at all  loci.  Many 
authors have addressed the effects of relaxing each of 
these assumptions in turn (SHULL 1921; WRIGHT 
1968; FALCONER 1981;  LANDE  1981; MATHER and 

JINKS 1982). The relaxation of several of these as- 
sumptions simultaneously has not been explored. 
Nevertheless, it has long been clear that when these 
assumptions are violated the  method substantially 
underestimates the  true  number of loci. 

When lines are created by selection it is tempting 
to assume that  the assumption of fixation of increasing 
alleles in high lines and decreasing alleles in  low lines 
is assured.  However, in the small populations of typical 
artificial selection experiments,  genetic  drift may have 
an  important effect on fixation probability for loci of 
small effects. In  addition,  departures  from  the  other 
assumptions have an impact on the process of fixation, 
beyond their impact on  the estimation process. In this 
paper we explore  the utility of selection lines for 
estimating  the minimum number of  loci as  a  function 
of linkage and  the distributions of allelic effects and 
frequencies in the base population. We will, however, 
keep the assumption of additive allelic effects. 

An additional issue is the sampling variance of the 
estimation process. LANDE  (1  98 1)  derived  an  approx- 
imate expression for  the sampling variance of the 
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effective number of loci, and pointed out  the  need 
for modest sample sizes during estimation. We report 
here simulations which emphasize the  magnitude of 
sampling variance. 

When all  of these  factors are considered simulta- 
neously it is clear that  WRIGHT'S  method is more  apt 
to be misleading than illuminating. 

WRIGHT'S  METHOD 

WRIGHT'S  method involves the  means, Ph and P I ,  

and variances, u i  and a:, of the  parents  from  the high 
and low populations, respectively, and  the variance 
uEp, of their  F2. The estimate, i, of the  number of 
loci is given by 

where u: = uE2 - ( u i  + u : ) / 2  [see LANDE (1981)  and 
WRIGHT ( 1  9 6 8 )  for details]. There  are  other methods 
of determining cr: including the use of backcrosses 
and  FI (COCKERHAM 1986)  but all provide the same 
theoretical value in our context. 

Equation 1 would give the  number of loci, m, by 
expectation, if the  four assumptions mentioned in the 
introduction  hold. Deviations from  the assumptions 
will usually cause an underestimate of the  number  of 
loci, so WRIGHT'S  method is usually said to estimate 
the effective or minimum number of  loci. 

DIVERGENT  SELECTION 

Consider a base population in  which m loci each 
with two alleles are segregating. Alleles are additive 
within and between loci. For the  ith locus the geno- 
typic effects and frequencies in the population are 
given as 

Genotype AiAi Aiai U ~ U ,  

Initial Frequency p' 2p,q, q' 
Effects ai 4 2  0 

We assume that a, and p i  are independent  and are 
distributed  among loci  with density function f ( a ) ,  
0 < a < 03, and Pr(f), respectively. 

We consider  continuous  truncation selection for 
high and low values of the quantitative  character  from 
the base population.  Mutation is ignored. 

Estimation  from  the fixed selection lines 
(at selection limit) 

Let us first consider the selection limit without 
linkage. Let uih and vil be the indicator variables for 
the  ith locus  with the  properties  that 

1 if the allele Ai 

0 otherwise 
is fixed in the high line 

and 

1 if the allele Ai 

0 otherwise. 
Ull = is fixed in the low line 

Then we have 8 ( V i h )  = 8 ( v , ? h )  = uih and 8 ( v i l )  = 
8 ( u : )  = u,l, where u i h  and u,l are  the probabilities of 
the allele Ai being fixed in the high and low lines, 
respectively, at  the selection limit, and 8 denotes 
expectation. The difference between the means of the 
high and low lines, aside from  experimental error, is 

P h  - Pl = (vlh - V i l ) &  ( 2 )  
where  the  summation is taken over all  loci. Both 
parental and F1 populations have no genetic variance 
and  the genetic variance in the F2 is 

U: = (Vih + Vil - %ihUil)U?/8 (3) 

because the  chance of F1 individuals being heterozy- 
gous for  the ith locus is vih(1 - u,l) + vil(1 - V i h )  and 
the allele frequency is $4 for all  loci segregating in the 
FB. The expected value of i in this context is then 

This expectation is difficult to analyze in general. 
However, the  ratio of expectations 

is easier to analyze, and it has the  property  that 

8 ( i )  5 & < a(m) + 1 

when the allelic effects and initial frequencies are 
constant  among loci (see APPENDIX). As selection in- 
creases, & converges to 8(6). This suggests that & is 
a  good  approximation of 8( i ) .  Assuming that  the 
fixation status of one locus is independent of that  at 
other loci, and  that allelic effects as well as initial 
frequencies are  independent  among loci, 

after  taking the expectation with respect to v .  
In this paper we would like to express results as the 

proportion of  loci detected, i .e. ,  8 ( i ) / m  or &/m.  In- 
stead of analyzing 8 ( i ) / m ,  we will, however,  define 
the  proportion of  loci detected as 

which ranges  from 0 to 1 .  The above analysis indicates 
that 

Z 5 8 ( i ) / m  5 &/m 
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TABLE 1 

Expected proportion, Z, of the loci detected for various values 
of S(= Nsa) and p from Equation 8 

S p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 

1 0.351 0.338 0.299 0.231 0.133 
2 0.733 0.711 0.643 0.518 0.314 
4  0.962 0.950 0.904 0.795 0.549 
6 0.994 0.990 0.971 0.908 0.698 
8  0.998 0.997 0.991 0.958 0.797 

10 0.999 0.999 0.997 0.981 0.863 

for  equal allelic effects and initial frequencies. Our 
simulations, shown in Table 2 ,  suggest that this ine- 
quality also holds when these assumptions are relaxed. 
The difference  between Z and h/m is at most llm. 

The next  step is to evaluate Z. The fixation proba- 
bilities in the high and low lines are given, by the 
diffusion approximation, as 

1 - e-2NsaP 
u h  = 1 - e-2Nsa 

and 
1 - e2NsaP 

u1 = 1 - e2Nsa 

(KIMURA 1957), where N is the effective population 
size, s = l/a, L is the standardized selection differential, 
and u is the phenotypic  standard  deviation in the base 
population. When a and p are constant among loci, it 
is  easy to show that 

e - 2 N ~ a p  + e - 2 N s a ( I - p )  

z = 1 -  1 + e - 2 N s ~  (8) 

which increases as Nsa increases and decreases as p 
deviates from 0.5 (see Table 1 ) .  

Effects of variation of allelic effects: Variation of 
a among loci  is expected  to  decrease  the  proportion 
of  loci detected. But the distribution of a is generally 
unknown. To analyze the effect of inequality of allelic 
effects among loci on Z, we assume that a is distributed 
among loci with the gamma  distribution 

p P , P - 1  
f(.) = O S a < a c ,  o < p < a c ,  (9) 

r(P) 
scaled to have a  unit  mean, which does  not  influence 
the following results. This distribution has been used 
by KIMURA (1979) and HILL (1982). For this distri- 
bution s ( a ' )  = 1 + 1/P and  the variance, V(a) ,  is l/P. 
Consequently, V(a)  decreases as P increases without 
change in the mean. The parameter P can then be 
regarded as a  measure of the equality of allelic effects 
at  different loci (HILL and RASBASH 1986). When 
P + 00, the distribution  converges to  the case of equal 
allelic effects. 

With this distribution 

dl = 1- 1 - e-ZNsa .f(.> da 
1 - e-2Nsap + e-2Nsa - ,-ZNsa(1-p) 

m 

and 

. u ' ~ < u )  da 

+ G 2 ( r +  l ) - G z ( r -  1 + p )  
- G ( T - p ) - G 2 ( T + p ) - G 2 ( r +  1 - P ) )  

where S = N s [ S ( U ~ ) ] ' ~ '  and 
-6-i 

G i ( r )  = 

Thus 

Note  that when selection is very strong (S + w), 

Figure 1A plots the curves of Z against S for  differ- 
ent /3 with p = 0.5. It is apparent  that  the variation of 
a among loci can substantially decrease  the  proportion 
of loci detected. With P = 1, no  more  than half of the 
loci can be  detected in any case. The limiting values 
of Z for given P are achieved in  most  cases at  about 
S = 8. The curve with /3 = 1000 approximates the 
curve given by (8). 

Effects of variation of initial allele frequen- 
cies: The distribution of p among loci depends  on  the 
history of the population.  For  instance, if the base 
population is from  an unselected equilibrium popula- 
tion,  the  distribution of p is likely to be U-shaped. In 
this case, given that each locus in the base population 
has only two alleles segregating, the probability func- 
tion of allele frequencies is given by 

z = [ a ( a ) ] ' / s ( a ' )  = P/(1 + P). 

f o r p  = j / 2 T ,  j =  1 ,  2 ,  . . . ,  2 T -  1 ,  
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where T is the initial sample size of individuals and 
l i . 2 ~  are Stirling’s numbers of the first kind (EWENS 
1972). Z is then given by 

To see the effect of variation of p on 2, we plot the 
graphs of 2 against S in Figure  1  for p constant (A), 
binomially (B), uniformly (C) or neutrally (T = 20) (D) 
distributed with mean allele frequency = 0.5 for  the 
gamma distribution of a.  These distributions  repre- 
sent  four  different modes of variation of p .  

When p varies among loci  in the base population, 
there is some further  reduction in 2. The decrease is 
negligible when p ’ s  are binomially distributed, modest 
when p ’ s  are uniformly distributed  and drastic when 
p ’ s  are neutrally  distributed. 

Note  that when p is neutrally  distributed  among 
loci, Z depends also on T. As T increases, Z decreases 
for given S (Figure 2) because in the  neutral case the 
probability masses are piled up  at  extreme allele fre- 
quencies, notably at 1/(2 T )  and 1 - 1/(2 T ) ,  and, as 
T increases, the mean fixation probability decreases if 
S is kept  unchanged.  However, it should  be  pointed 
out  that in reality an increase of T will be likely to 
increase the  parameter S, as well as the  number  of 
genes in the sample and  the probability of multiple 

1 10 100 
S 

FIGURE 1 .-Effects of variation 
of allelic effect, a, and initial allelic 
frequency, p ,  on the expected pro- 
portion of loci detected, Z, at the 
selection litnits without linkage. Z is 
plotted against S for the gamma 
distribution of a with /3 = 0.2, 0.5, 
1, 2, 5 and 1000 for p constant (A), 
or binomially (B), uniformly (C) and 
neutrally (T = 20) (D) distributed 
among loci with f~ = 0.5. 
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FIGURE 2.-Effect of sample size, T,  on the expected proportion 
of loci detected, 2, for neutral initial allele frequencies and the 
gamma distribution of a with /3 = 1 and 1000. 

alleles at  the loci  in the sample, and will thus still be 
likely to increase the  number of  loci detected. We 
have not  included  these complications in our analysis. 

Estimation from unfixed selection  lines 
(in transient states) 

LANDE (1981) showed that WRIGHT’S method  for 
the minimum number of loci  also applies to parental 
populations still segregating  for the loci  of interest. 
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This raises the question as to how long divergent 
selection must continue  before  the  estimate is close to 
that  at  the selection limit. 

Let ph, and pl,  be the allele frequencies of a locus in 
the high and low lines at  the t th  generation  after 
divergent selection. Equivalent to (7), 2, in transient 
states can be  expressed  as 

It initially takes the expected value of zero. 
When selection is  weak (S  << l), we know that  the 

divergent selection response, R, = a[@*, - p,,)a], 
increases at  the  rate  (1 - and  the  denominator 
of (1 2 )  (which is the second  moment of the selection 
response distribution) increases at  the same rate as 
well. Consequently, we expect  that 2, will increase at 
the  rate ( 1  - under weak selection. 

As S increases, the time  needed  to  reach  the limiting 
value decreases. This can be  evaluated by numerical 
analysis.  We have numerically evaluated  (1 2) by using 
transition probability matrices. Our method is similar 
to HILL and RASBASH (1986). The results are pre- 
sented in Figure 3 in terms of the time to  reach 90% 
of 2, t o . @ ) ,  at  the selection limit, as  compared  to  the 
same time  for R, to,9(R). 

When a is constant, Z approaches its limit more 
rapidly than R for  both p initially 0.5 and neutrally 
distributed,  reflecting  the fact that  the  denominator 
of (1 2 )  does  not increase as fast as R. Variation of the 
initial allele frequencies  prolongs  both to.9(Z) and 
t O . g ( R ) .  This is expected since the speed of increase of 
the mean and variance (related  to  the  second  moment) 
of selection response decreases as the initial allele 
frequencies  deviate  from 0.5. 

When a varies among loci, is affected  rela- 
tively little, but t o . g ( Z )  increases significantly. When 
allelic effects are unequal  among loci, a  large  propor- 
tion of the initial selection response is due  to  the 
alleles with relatively large effects. The change of the 
mean of the initial response is thus  proportional to 

1 0   1 2   1 4   1 6   1 8 2 0  

S 

FIGURE 3.-The time required to reach 
90% of Z, hq(Z). (A) and R,  to @), (B). The 
;Illelic effect, a ,  is either 1 or gamma distrib- 
uted with = 1 ,  and  the initial allelic fre- 
quency, p ,  is either 0.5 or neutrally  distrib- 
uted with T = 20. Most calculations  were 
done by using N = 20. For some large S 
values N = 40 or 80 were used to improve 
precision. 

the magnitudes of these allelic effects, but  the change 
of the second moment is proportional to square  of 
these effects, so the  denominator of ( 1 2 )  increases 
faster  than R. When initial allele frequencies also vary 
among loci, to.g(Z) increases further. 

These results are  for unlinked  genes.  With linkage, 
the  transient  behavior of 2 is very different. 

Linkage effects 
Linkage of genes influencing the  character also 

causes +i to underestimate the actual  number of genes. 
Its effect is two-fold. It  reduces the  divergent selection 
response and also at  the same  time inflates 052. Linkage 
inflates alf due  to  the linkage disequilibrium in the Fz 
gametes, 

where rlj  is the recombination rate between loci i and 
j .  The reduction in response due  to linkage is not very 
significant for  large  numbers of chromosomes if genes 
are randomly located in the  genome (ROBERTSON 
1970),  but  the inflation of a: can be substantial. 

The linkage disequilibrium among  genes in the high 
and low lines brought  about by selection also changes 
a: by the  amount 

if alf is estimated as a:, - 1/2(u; + a;), where D,j,, and 
DtjI are  the linkage disequilibria between loci i and j 
in the high and low  lines respectively. Our analysis 
indicates that this part of the effect is always trivial 
for  populations initially in linkage equilibrium. In  the 
following analysis we exclude  from a: the  component 
due  to  the linkage disequilibrium in the high and low 
lines. 

Following the same argument leading to (7) and 
(12), the  proportion of loci detected with linkage can 
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be expressed as 

which reduces  to (1 2) when genes are unlinked.  Note 
that  the  expectation is taken  over  the whole genome. 
Considering  the fact that genes located on different 
chromosomes are randomly associated, the expecta- 
tion can also be taken in two parts, within and between 
chromosomes, with appropriate weights. Suppose that 
there  are M haploid chromosomes in the genome with 
the  kth  chromosome having the map  length ck and 
xgl ck = C. Assuming the genes to be randomly 
located in the  genome, we expect  that there  are m(m 
- 1) CEl c : / C 2  within-chromosome pairs and m(m - 
1)( 1 - zEl c:/C2) between-chromosome pairs among 
m(m - 1 )  pair joint-product  terms  [deduced  from 
multinomial distribution]. Then  the weight for  the 
within chromosome  component is Cf’I c : / C 2  and  for 
the between-chromosome component is ( 1  - 2;1”=l 

Equation 13 is a very complex function. Most of the 
complexity is brought  about by the unknown expected 
allele frequencies with linkage. Before we analyze the 
behavior of this equation, let us first develop  a limit- 
ing,  but useful, argument  about  the selection limit. 

Limiting argument: At the selection limit with 
large S ,  Z can be  approximated as 

c:/c 2 ) .  

by letting plhr  - pait + 1, where f is the  average 
recombination  frequency  between all pairs of loci. By 
our assumption of random allocation of genes in the 
genome, (1 - 2;)  = (2C - M + e-2‘k) / (2C2)  for 
HALDANE’S (1 919) mapping  function rii = 0.5( 1 - 

) where dtj is the  map distance between loci i and 
j (FRANKLIN 1970). The above  equation  thus suggests 
that, if m >> M ~ ( U ~ ) / [ ~ ( U ) ] ~  = M(l + p) /p,  i (= Zm) 
has an  upper  bound 

For  example, if each chromosome has the same  map 
length c (C = M c ) ,  this bound is 2c2M/(2c - 1 + e“‘). 
For c = 0.5, 1 and 1.5 Morgan, it is 1.36M, 1.76M 
and 2.19M respectively. Variation of chromosome 
map  lengths will reduce this bound. 

This expected  upper  bound is substantially less than 
the  number of chromosome segments segregating in- 
dependently in one  generation, i.e., the “recombina- 
tion index” of DARLINGTON (1937), which equals the 
haploid number of chromosomes plus the mean num- 
ber of recombination  events per gamete. For instance, 

Drosophila melanogaster has three  regular  chromo- 
somes  (with map  length 0.66, 1.08 and 1.06 Morgan, 
respectively) and a dot chromosome.  Taking  into ac- 
count  that males have no recombination, our bound 
is about 3.68, but  the  “recombination  index”  for D. 
melanogaster is 9. For maize, the  bound is about 18 
and  the “recombination  index” is 36 (LEWIN 1980). 
However, Equation 14 is deduced by assuming that 
genes are randomly located in the genome.  Nonran- 
dom  distribution  of  genes will generally further lower 
this bound.  In  the case  of the equal spacing of genes 
along  the  chromosomes, the expected  upper  bound is 
the same as (1 4). 

Theoretically, rit can exceed (14) by using the ge- 
netic variance in FS, F4,  or later  generation popula- 
t.ions to estimate a:, since the  genetic variance in the 
F2 population due  to  the linkage disequilibrium be- 
tween loci i and j is reduced in each generation by a 
proportion  rij. Averaged over loci, the linkage dise- 
quilibrium in F, ( t  2 2) generation is proportional to 

8[(1 - r)f-2(1 - 2r)] 

= - 4 2  1 - 4 
c ( t  - 1) 

- 1 1 -  1 ( t  ; 1 )  1 -2;-2Jc 

c22t-yt  - 1) , = 1  

for  a  chromosome with map  length c, if genes are 
assumed to be  randomly located (see FRANKLIN 1970). 
This  rate of reduction is not  as  large as that given by 
the average  recombination  frequency between genes 
within chromosomes; but  the linkage disequilibrium 
can still decrease substantially. There  are, however, 
two disadvantages in using FS or later  generation 
variances to estimate a:, beyond the  extra cost of 
continuing  experiments  for  more  generations. First, 
if the  random  mating  population is not  large, the 
genetic variance is also expected to decrease due  to 
drift.  This  part of the  decrease  needs to be  corrected 
in estimating a:. Second, as the genetic variance de- 
creases, the sampling variance of estimates increases. 

Returning  to  the effect of linkage on 2, we need to 
assess the  expected value of Equation 13 under a 
variety of assumptions. This was done by simulation. 

SIMULATION 

Methods 
The simulations consisted of three parts: the for- 

mation of a base population with the desired  param- 
eters;  the selection of replicate samples from this 
population for high and low phenotypic values, which 
we refer  to as the selection process; and obtaining 
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means and variances for  the  parental, F1,  and F2 
populations, which we refer  to as the estimation  proc- 
ess. 

The base populations  were  formed by assuming that 
m loci were segregating for two alleles. Allelic effects 
were either  constant or drawn  from  a gamma distri- 
bution with 0 = 1. Allele frequencies either  started  at 
0.5 or were drawn  from EWENS’ (1972)  neutral allele 
frequency  distribution with 2T = 80. Loci were either 
unlinked, or assigned map positions at random on 
chromosomes of length 100 cM. For pairs of loci on 
the same chromosome, r was calculated using HAL- 
DANE’S mapping  function.  For each replicate selection 
run, map positions, allelic effects and allele frequen- 
cies were chosen for each locus. The expected  additive 
genetic variance was calculated, and  the environmen- 
tal variance, a:, was then chosen to yield either  the 
desired value of S = N ~ [ 2 ] ” ~ / a  or a  heritability, h2 ,  
of 0.25. 

T o  model the selection process, an initial sample of 
genotypes was drawn  from this conceptual base pop- 
ulation, assuming gametic-phase equilibrium.  Pheno- 
types were assigned by adding  a  random  normal  de- 
viate with variance af to  the sum of the allelic effects 
for each genotype. Truncation selection for  high and 
low phenotypes was then  carried  out on this initial 
sample. Gametes  were  drawn and combined at  ran- 
dom (with selfing permitted)  from selected parents  to 
yield offspring genotypes. T o  model the estimation 
process, gametes were drawn at random  from  the 
entire selection population to  form n parental  geno- 
types, and  then  from these  parents to form n F1 and 
F2 individuals. The means and variances of the  appro- 
priate  populations were then calculated. 

f i  was calculated in two ways. In the first case, the 
genotypic values in the  parental,  F1  and F2 populations 
were used to calculate fi. This estimate, called kg, 
includes the effects of linkage and gametic disequili- 
brium on the estimates, but  ignores the sampling of 
phenotypes. The second estimate, called m p ,  was cal- 
culated  from the sampled  phenotypes, as in an  actual 
experiment of this type, 

(Ph - PJ - (ah‘ + d ) / n  m, = 
Sa: 

which is equivalent to equation  (1) with a  correction 
for  the  numerator. The parameters a:, a;, and a: 
were  estimated using weighted least squares (COCK- 
ERHAM 1986). 

Results 
Comparison of analytical  and  simulated re- 

sults: TO check the accuracy of our simulations and 
the analytic results, we compared Z, calculated from 
(1 I), with observed .i? and mg/m from simulations of 
unlinked loci, where kg is the mean of Gg. These 
comparisons are shown in Table 2. We consider selec- 

TABLE 2 

Comparison of analytical  predictions (1 1) and  simulations 
results for 10 unlinked  loci 

Distribution of  

Allele Allelic 
frequencies  effects S 2 i hgjm + SE 

C;onstant Constant 1 0.352 0.352 0.400 f 0.0072 
4  0.962  0.952 0.972 f 0.0070 

16  0.999  1.000 1.025 f 0.0098 

Ganlma 1 0.185  0.168 0.252 fO.0044 
4 0.411 0.405 0.500 f 0.0069 

16 0.490 0.498 0.576f  0.0102 

Neutral  Constant 1 0.144  0.145 0.182 f 0.0043 
4 0.496 0.456  0.469 f 0.0079 

16 0.770 0.743 0.769 f 0.0127 

Gamma 1 0.078 0.072 0.133 f 0.0028 
4 0.211 0.190 0.271 f 0.0053 

16 0.348  0.348 0.415 k 0.0101 

For a  given S value,  the total population  size  and  the  proportion 
selected  were  chosen  to yield a  reasonable  heritability. For S = 1 ,  
4, and 16, the total population  size was 10, 20, and 60; the 
proportion  selected was 0.2,0.5 and 0.5; and  simulation  replications 
were 1000, 500 and 200, respectively. 

tion to fi5ation for  populations initially segregating at 
10 loci. 2 was obtained by substituting  observed av- 
erage fixation probabilities and allelic effects into 
equation (7). The observed agrees well with the 
expected Z. As exeected  from comparison of equa- 
tions (4) and (7), 2 5 mg/m in most cases, and  the 
estimates of mg/m exceed .i? by something less than 
l/m. These results even hold for  unequal allelic effects 
and initial frequencies. 

Linkage  effects: The effects of linkage were inves- 
tigated by simulations utilizing 10 loci, which were 
assumed to be  either  unlinked, or randomly  distrib- 
uted on one,  three  or ten chromosomes. Figure 4 
shows the  ratio mg/m at fixation as a  function of S .  As 
expected, linkage substantially reduces mg/m. In the 
extreme case where all ten loci are distributed in one 
chromosome, linkage essentially dominates the esti- 
mation;  population size, selection intensity, allelic ef- 
fects, and allele frequencies all become unimportant. 

Figure 5 shows the ratios of observed  components 
of 2, calculated as in Equation 13, with  all ten loci on 
a single chromosome to  that when all  loci are un- 
linked. The ratio of components for  the selection 
response ([( p z h  - pS)( p j h  - fijl)a,a, I ) ,  and  for  the 
added F2 genic variance ([( p i h  - p i l )a i ]2 )  are approxi- 
mately one, while the  denominator of (13),  the real- 
ized added F2 genetic variance (including linkage dis- 
equilibrium), is substantially increased with linkage. 
This  agrees with ROBERTSON’S (1970) conclusion that 
linkage tends to have small effects on selection re- 
sponse. The reduction in hg from linkage is essentially 
all due  to linkage disequilibrium in the F1 gametes. 

An investigator who wants to estimate i i  will not 
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FIGURE  4.-The  effect  of  linkage  on &/m at fixation  when m = 

10. Thick solid lines denote unlinked loci, thin solid lines loci 
randomly  located  on ten  chromosomes, dashes three  chromosomes, 
dotted lines one  chromosome. Diamonds denote cases where allelic 
effects are assumed to be equal and initial allele frequency is 0.5. 
Squares  denote cases where allelic effects were  drawn  from  the 
gamma  distribution with p = 1,  and allele frequencies  were  drawn 
from  the EWENS' distribution (T = 40). To achieve  a given S value 
while preserving a  reasonable  heritability, the total population size 
during selection and  the  proportion selected  were varied. The 
proportion selected was 0.2 for S = 1 and 0.5 otherwise. For S 
values 1, 2, 4, 8, 12, and 16, the total population size was chosen 
to be 10, 10, 20, 30 and  40, respectively.  Selection replicate 
numbers were 300, 250, 200, 100, 100 and  100, respectively. 

know the  magnitude of S in  his experiments because 
the actual number of loci, their allele frequencies, and 
allelic effects are unknown.  However, the  number of 
chromosomes will usually be  known, and heritability 
may be  estimated. Consequently a  clearer idea of the 
utility of this method is gained by examining the effect 
of changing the actual number  of loci, m, on rii when 
chromosome  number and heritability are fixed. Fig- 
ure 6 shows m g  as a  function of m for  three linkage 
regimes. With linkage, as m increases, m g  underesti- 
mates m by a greater  and  greater  amount,  and be- 
comes nearly constant.  Consequently, when m > M, 
m g  is quite insensitive to  the actual number of loci. 
Note  that  does not become very close to  the  upper 
bound implied by Equation 14, even when there  are 
20 loci on only three chromosomes. For  constant  map 
length of 1 Morgan assumed here,  the  upper  bound 
is 5.3 for M = 3, and  17.6  for M = 10. These results, 
borne  out by additional simulations not shown, indi- 
cate  that m g  = M when m > M .  

With linkage, the time  required to obtain  90% of 
the limiting value of Z, to.&), is shorter  compared 
with that with random  recombination, especially when 
S is small or m is large. Also, t o . g ( Z )  is much less than 

with linkage (Table 3). This is partly because 
the expected 2 is smaller with linkage and partly 
because linkage disequilibrium in the F:! after crosses 
of high and low lines builds up gradually as selection 
proceeds and linkage has little effect on selection 
response. 

7 1  

2 4 - 

2 3 -  

Y 

2 -  

1 -  

0 2 4 6 8 10 1 2  14 1 6  
, 77 
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FIGURE 5.-Ratio of components  of 2 at fixation when ten loci 

are linked on a single chromosome  to  that when ten loci are 
unlinked. Dotted lines denote  the  numerator of Equation 13, 
dashed lines [ ( p , h  - p,,)a,I2, the  genic F:! variance, and solid lines the 
denominator of Equation 13. Diamonds  indicate  equal  allele fre- 
quencies and effects, and  squares variable allele frequencies  and 
effects,  as  described in the  legend of Figure 4. Populations sizes are 
as in Figure 4. Selection  replicate numbers  were 1,000, 1,000, 500. 
300, 300  and  200 for the six S values graphed. 

Sampling variance of tii: There  are  three sources 
of sampling which contribute  to  the sampling error of 
estimates of rii in our simulations. They  are (i) the 
sampling of the initial population (initial allele fre- 
quencies, effects, and  map positions); (ii) the variation 
in chance of fixation of alleles; and (iii) the sampling 
of phenotypic observations. Table 3 shows the ob- 
served  standard deviations of estimates of rii from 
simulations. An estimate, G G ~ ,  of standard deviation 
of riz given by LANDE (1981), which approximates the 
sampling standard deviation in the process of estima- 
tion, is also listed in the  Table. Generally the  standard 
deviation of rii,, ukp, is large and can be very large 
when m < M ,  so m p ,  the mean of m p ,  may be very far 
from kg. This large variance is not primarily due  to 
the sampling of parameters or  to  the selection process. 
With samples of the size we have used, the sampling 
variance due  to  the sampling of genetic  parameters 
and selection process, ai-, is usually  small and  can be 
ignored.  In almost all  cases it accounts  for less than 
1% of the variance. The enormous variance of mf is 
largely due  to a small number of  cases where a: is 
very near 0, leading to estimates of kP with  very large 
absolute values. Typical distributions of observed a: 
and riip are plotted in Figure 7. The distribution of us 
is not significantly different  from  normal,  but overlaps 
zero. This suggests that simply discarding  those few 
estimates of a, with negative or very small values might 
substantially improve precision. Table 3 also shows 
summary statistics when all values of h i p  which are 
negative or more  than 100  are discarded. This does 
indeed lower the variance,  but also slightly biases the 
mean upward. As CARSON and LANDE (1 98 1) pointed 
out,  the problem of a, overlapping 0 leads LANDE'S 
sampling variance to substantially underestimate the 
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FIGURE 6.-hg as a function of m. Lines were selected until 

fixation or 200 generations had passed. Thick solid lines are for 
unlinked loci, thin solid lines for ten chromosomes,  and dashed 
lines for three chromosomes. Diamonds denote equal allelic effects 
and  frequencies,  and squares variable allelic effects  and  frequencies. 
Values are means of 300 replicates. 

observed variance. This is true even after  the  data is 
censored and when the variance due  to sampling of 
genetic  parameters  and selection is removed. 

Since the variance due  to  the selection process is 
relatively small, we investigated the effect of obtaining 
replicates from  the same selected populations,  then 
using averaged estimates of the  numerator  and de- 
nominator to obtain m p .  We simultaneously investi- 
gated  the effects of estimation replicate sample size n 
and replicate number y on ckp for  a  fixed  total sample 
size ny. To  do this, we used a slightly different simu- 
lation scheme, which does  not  include the selection 
process. In these simulations, loci were assumed to 
have previously been  fixed for  appropriate  alternate 
alleles. The environmental variance was chosen so 
that  a  population which segregated for  the allelic 
effects represented, assuming either equal initial fre- 
quencies or neutral initial frequencies, would have a 
heritability of 0.25. Estimates of a,' and (ph - pr)2 
were calculated by weighted least squares within each 
replicate,  then  averaged  over y replicates. Figure 8 
summarizes the results with m = 20. The total sample 
size shown in the abscissa is n times y. The value of y 
can then  be seen by dividing ny  by n, depicted in the 
figure. For example,  for  the  curve of n = 32, y ranges 
from  1  to 7. The standard deviations in the  figure 
were calculated from  at least 200  observations. 

For unlinked loci, in part A of Figure 8, ckP de- 
creases almost linearly with ln(ny). For  a given number 
of individuals measured, ukp decreases somewhat if 
those individuals are analyzed in several replicates. 
However, there is still substantial variance, even at 
the largest total sample size, 2048. Unless sample size 
is approximately 500  or  more,  the empirical confi- 
dence  intervals of mp do  not,  on  the average,  exclude 
0. The situation is somewhat  different  for  the case 
where all 20 loci are assumed to fall on three  chro- 

If Gene  Numbers 243 

mosomes, as in part B of Figure 8. Here replication 
during estimation has less effect.  Increasing sample 
size beyond 5 12 has little effect. With three chromo- 
somes, the  genome behaves like three loci, each with 
relatively large effects. This reduces  both hip and ukp. 

DISCUSSION 

Our results suggest that  WRIGHT'S  method is of 
little value in estimating the  number of  loci influenc- 
ing  a  quantitative  character. Linkage effectively pre- 
vents the  expectation of such estimates from  exceed- 
ing  the  number of chromosomes, and sampling vari- 
ance may  easily prevent one  from  concluding that  the 
number of  loci is even that  large. 

Ironically, our results also show that divergent se- 
lection is useful to validate the assumption of 
WRIGHT'S method  for  estimating  the  number of loci 
that high and low valued alleles are fixed in the 
appropriate populations. However,  for the reasons 
given above, the many estimates of the  number of 
genes based on WRIGHT'S method using one way or 
divergent selection must still be  considered suspect. 

The problem of linkage may be partially compen- 
sated  for if we use the variances from F3 or later 
generations  for  estimating a,', instead of the F2 vari- 
ance. The gametic disequilibrium in the F2 will be 
reduced by recombination, which  allows a,' to ap- 
proach the genic variance in the population, and  the 
value of i will increase correspondingly. The value 
of this approach is counteracted by drift in the hybrid 
populations. It has been suggested that  the additive 
genetic variance in the base population can be used as 
an  estimate of a,', which  may be  free  from  the influ- 
ence of gametic disequilibrium (COMSTOCK 1969; 
PARK 1977a;  FALCONER 198 1). This requires, how- 
ever,  that  the allele frequencies in the base population 
be known. The only  case when this could be true is 
following a cross between completely inbred lines, 
which would itself introduce disequilibria in the pop- 
ulation. 

Sampling variance of the estimate is the second 
major problem with WRIGHT'S  method. Part of the 
problem is that  the  denominator of Equation  1 can 
easily be negative, or very small. This is particularly 
true with short  term selection lines which have not 
diverged  enough. This problem will be substantially 
less if the parental means are many phenotypic  stand- 
ard deviations apart, as is true  for  the examples in 
LANDE  (1981).  When negative estimates occur, it is 
usually interpreted as a violation of some assumptions, 
rather  than a possible consequence of sampling vari- 
ance. When such estimates are simply discarded, this 
biases the remaining sample. Both large sample size 
and replications of the estimation process are useful 
in preventing this. With replication, we have shown 
that  averaging the  numerator  and  denominator of 
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TABLE 3 

Effect of phenotypic  sampling  during  estimation 

Censored 0 < + L ~  < 100 
Genera- 
tions to 
90% of  

frequency” M m mg mP d, a- “g aip ZP u*p P(OK)d 2 R 
Allelic  effects, 

Constant m 3 3.036 17.575 0.000 0.397 173.233 1.872 5.390 8.464 0.943 3  6 
20 18.607 76.932 1.215 3.044 573.554 4.704 20.806 13.700 0.897 13  17 

10 3 2.805 8.151 0.415 0.569 46.372 1.568 4.745 8.643 0.970 3  6 
20 9.527 10.685 1.256 1.824 41.092 1.404 11.554 7.712 0.993 10 17 

3  3 2.322 1.907 0.507 0.572 66.750 1.084 2.977 2.904 0.957 2  6 
20 4.432 4.688 0.460 0.732 1.576 0.411 4.688 1.380 1.000 6  17 

Variable m 3 1.721 1.985 0.608 0.645 4.405 0.684 2.093 1.620 0.973 5  5 
20 5.808 5.349 1.601 1.784 107.341 0.909 6.976 5.605 0.973 13  12 

10 3 1.646 1.889 0.532 0.575 33.966 0.608 1.989 1.751 0.987 5  5 
20 4.583 4.627 1.233 1.379 57.503 0.692 6.172 8.053 0.983 11  12 

3  3 1.480 2.490 0.481 0.513 10.270 0.538 1.820 1.667 0.970 4  6 
20 3.018 3.224 0.625 0.753 2.824 0.363 3.357 1.663 0.997 9  12 

Three hundred replicates of the selection process for each parameter set were generated. The best 8 out of 40 individuals were chosen 
during  the selection process, which continued until fixation or 200 generations had passed. For estimation samples of 100 individuals in the 
parental, F, and F.L populations were used. Heritability was assumed to be 0.25 in the base population. 

a Constant: p = 0.5, a = 1; Variable: p from EWENS’ distribution, and a gamma distributed. 
* Standard deviation of G assuming infinite sample size during the estimation process. 
‘ Expected standard deviation of Gp from LANDE’S approximate formula. 

Proportion of replicates where 0 < G, < 100. 
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FIGURE 7,”Typical distributions of observed cry and Gp from 
simulations. Allelic effects and frequencies were assumed to be 
equal initially. The total population size during selection is 40. The 
proportion selected is 0.2. m = 10. n = 100. Simulations were run 
until fixation or 200 generations passed. Of the 500 replicates 
obtained, 12 yielded  values  of 6, C -50 and 32 estimates > 50. 

Equation 1 over replicates decreases the variance of 
&. However, one of the appealing  features of 
WRIGHT’S method is that it can be estimated  from 
data commonly collected. If experimentalists are will- 
ing to spend  considerable  efforts  attempting to esti- 
mate  the  number of genes, we feel that it would be 
best to investigate alternative  methods using genetic 
markers (see below), rather  than  doing large repli- 
cated crosses of the  sort we have investigated. 

LANDE (1981) has given an  approximate sampling 
variance for estimates of & which takes into  account 
only the variation stemming  from the process of esti- 
mation, assuming that a: is greater  than 0. With 
divergent selection, the variation in selection response 
also contributes  to  the sampling variance of the esti- 
mate. The small magnitude of the selection replicate 
standard error presented in Table 3 suggests that this 
additional  source of error is not large for reasonable 
parameter combinations. Even allowing for this, the 
values  in Table 3 make it clear that LANDE’S sampling 
variance substantially underestimates the actual vari- 
ance. The large discrepancies in Table 3 are  due  to 
estimates of very large  absolute value when a: is near 
0. However,  approximately 90% of our estimates do 
lie within two of LANDE’S standard  errors of the ex- 
pected value  of 6 (results  not shown), which is in 
agreement with CARSON and LANDE’S (1984) analysis 
based on bootstrapping resampling. So Ghp does have 
some utility in  assessing the reliability of m p .  

One positive result  from our analysis is that selec- 
tion can rapidly generate  populations whose expected 
6 are close to those at fixation. The expected value 
of 6 initially approaches its limit more rapidly than 
selection response does. The half-life of selection re- 
sponse for typical selection experiments is about 0 .2N 
to  0.4N  generations (FALCONER 198 1). For & the half- 
life is usually  less than 0 .2N generations  for S > 4. 
The 90% life for 6 is usually  less than 1.5N genera- 
tions, especially in the  presence of linkage (Table 3). 
At any rate,  for many selection experiments with 
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kp, censored to exclude values of 
k, c -100 or  >loo, for rn = 20, as a 
function of replicate size, n, and esti- 
mation replicate number, y. Allele fre- 
quencies m d  effects are assumed 
equal. Part A is for unlinkled loci, and 
part B is for three chromosomes. 
Lines are labeled with  values  of n. 
See text for further explanation. 
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modest effective population sizes,  less than 10-20 
generations of selection are enough to achieve most 
of the limiting estimate of 7ii. Selection for  longer  than 
this does  not  provide  much gain based on the original 
genetic  variation.  Longer selection will tend  to include 
the variation due  to new mutations (HILL 1982; EN- 
FIELD and BRASKERUD  1989). 

We have ignored two common  features of genetic 
systems  in this paper. The first of these is dominance, 
and  the second is natural selection. Both would tend 
to  prolong  the  time  to  approach limiting estimates of 
7ii as alleles with deleterious effects tend  to be reces- 
sive. Dominance may either increase or decrease the 
expectation of rii (MATHER and JINKS 1982), while 
countervailing  natural selection will usually decrease 
it by preventing fixation of deleterious alleles. How- 
ever,  both of these effects would tend  to be  overshad- 
owed by linkage if the  number of loci is large. 

In  addition to WRIGHT’S method,  there  are also 
many other statistical methods of gene  number esti- 
mation, in particular  those of PANSE (1 940),JINKS and 
TOWEY (1 976)  and COMSTOCK and ENFIELD (1981). 
Some statistical methods are  just variations of 
WRIGHT’S method,  sharing  some of its properties  and 
problems (e.g., STUDENT 1934; COMSTOCK 1969;  PARK 
1977a,b; FALCONER 198 1).  Compared with WRIGHT’S 
method, PANSE’S method, which  uses the variance of 
the Fa generation,  does  not have much  advantage, 
and is more sensitive to changes in the  parameters, 
and  more laborious to estimate (MATHER and JINKS 
1982). COMSTOCK and ENFIELD (1981)  proposed  a 
method  to  estimate  gene  number with multiplicative 
gene effects, which also uses divergent selection and 
subsequent crosses. They did  not analyze the effect of 
linkage on the estimate. This effect must be  large 
since the genetic  variance in the base population, 
which results from  a cross between two inbred lines, 
is used, and  the biases caused by deviations from  the 
assumptions are unknown. MAYO and HOPKINS (1  985) 
showed that this method has the  problem  that it is 
very sensitive to small changes in the parameters. 
JINKS and TOWEY’S method involves the  determina- 
tion of the  proportion of individuals in the F, gener- 
ation of a cross between two inbred lines that are 

1 0 0  1000 

nY 
heterozygous at  one locus, at least, by an assay of their 
F t + 2  grandprogeny families. They assume that prog- 
eny from  the F2 generation  on are obtained by selfing. 
As t increases, the estimate increases, because of re- 
combination.JINKS and TOWEY’S method  tends  to give 
larger estimates than WRIGHT’S method in their  ex- 
periments,  but is still a kind of minimum as it is under 
the influence of linkage (HILL and  AVERY 1978). The 
estimate has the problems  that it is much susceptible 
to selection for  heterozygotes or against deleterious 
recessives at linked genes  (HILL and  AVERY  1978).  It 
is also very sensitive to unequal allelic effects and 
becomes very inaccurate for large  gene  number 
(MAYO 1987). 

While animal and plant breeders  need  to  be most 
concerned with  loci  which currently  segregate in pop- 
ulations, the goal of estimating  gene number in an 
evolutionary  context is yet one  step  more complex. In 
the long term, it is the  number of loci capable of 
expressing the type of variation studied which is of 
interest, rather  than  just  the  number which currently 
do. Even  with a  good  estimate of the  number of loci 
segregating in a  population, it is necessary to make 
assumptions about  the mechanisms maintaining  that 
variation,  including such factors as effective popula- 
tion size,  in order  to estimate the  number of  loci 
capable of influencing the  character. 

Estimation of  gene  number is a  long  standing  prob- 
lem. Despite its obvious importance in animal and 
plant  breeding  and in understanding  evolutionary 
processes, we are still painfully short of a reliable 
method  to do it. This is discouraging  for all of us who 
depend  on such estimates to design and  perform ex- 
periments or build models. There may be no practical 
alternative to  the  enumeration of  loci using expensive, 
labor-intensive techniques  that utilize genetic  markers 
(SAX 1923; THODAY 196 1 ; TANKSLEY, MEDINA-FILHO 
and RICK 1982; EDWARDS, STUBER and WENDEL 
1987; PATERSON et al. 1988;  LANDER  and BOTSTEIN 
1989).  In  particular, the quantity of molecular mark- 
ers which we can now imagine locating makes efforts 
of this kind conceivable. However, since the technique 
can only locate genes  segregating for alleles with 
relatively large effects, we must have some knowledge 



246 Z.-B. Zeng, D. Houle  and C. C.  Cockerham 

of distributions of  allelic effects before we can estimate 
the  number of genes. 
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APPENDIX 

C. J. JIANG 

Let the allelic effect, a, and initial frequency, p ,  be of fixation for  the loci can be  summarized as follows: 
constant  over loci. At the selection limit, the  outcome 

Class  Low line High line No. of  loci Probabilitv 
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where uh and ul are the probabilities of an allele with 
effect a being  fixed in the high and low lines respec- 
tively. Thus uh - UI = (x - ?)a, a: = (x + y)a2/8 and 

m = -  (x - r)' 
X + Y  

By the assumption that  the fixation status of one locus 
is independent of that at  other loci, x and y are 
trinomially distributed with the probability 

Pr(x, y I m) = PXQY( 1 - P - Q)"-"'. m! 
x!y!(m - x  -y)! 

Since 

= m(P + Q )  - 48- 
X + y '  

we need only evaluate the last term. 

8- XY 

X + Y  
m = x -  XY m !  

x + y x!y!(m - x - y)! 

P"QY(1 - p - Q)"Y 

= P Q  i - 1 m!  
X + y (x - l ) ! (y  - l ) ! (m - x - y)! 

pX-1Qu-l(l - p - Q)m-x-y 

Letting w = (x - 1 )  + (y  - 1 )  and P I  = P + Q and 
translating the trinomial  distribution of x and y to 
binomial distribution of w give 

m-2 1 m 
= P Q  x - e( 1 - Pl)""' 

e+'( 1 - Pl)m-w-2 

w=o w + 2 w!(m - w - 2)! 

(w + l)m! 
(w + 2)!(m - w - 2)! 

(w + 2 - l)m! py+2(1 - pl )m-w-2  

(w + 2)!(m - w - 2)! 

- (0 - 1)- PY(1 -PI)" 

-(' - l ) l ! (m  - I ) !  PI( 1 - Pl)m-l 

m! 
O!m! 

m! 

="- mpQ PQ ( 1   - ( 1  -P-Q)"). 
P + Q  (P+Q)' 

Thus 

8(6) = 
m(P - Q)' I 4 ~ 4  

P + Q   ( P +  Q )  
'[ 1 - ( 1  - P - Q)"]. 

The ratio of expectations is 

8 ( x  - y)2 

8(x + Y) 
&,= 

Since p (  1 - p )  5 P 5 1 and 0 5 Q 5 p (  1 - p ) ,  it is easy 
to show that 

8(k) 5 &, < 8(k) + 1 .  


