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Morphological allometry refers to patterns of covariance between body parts resulting from variation in body size.
Whether measured during growth (ontogenetic allometry), among individuals at similar developmental stage (static
allometry), or among populations or species (evolutionary allometry), allometric relationships are often tight and
relatively invariant. Consequently, it has been suggested that allometries have low evolvability and could constrain
phenotypic evolution by forcing evolving species along fixed trajectories. Alternatively, allometric relationships may
result from natural selection for functional optimization. Despite nearly a century of active research, distinguishing
between these alternatives remains difficult, partly due to wide differences in the meaning assigned to the term
allometry. In particular, a broad use of the term, encompassing any monotonic relationship between body parts, has
become common. This usage breaks the connection to the proportional growth regulation that motivated Huxley’s
original narrow-sense use of allometry to refer to power–law relationships between traits. Focusing on the narrow-
sense definition of allometry, we review here evidence for and against the allometry-as-a-constraint hypothesis.
Although the low evolvability and the evolutionary invariance of the static allometric slope observed in some studies
suggest a possible constraining effect of this parameter on phenotypic evolution, the lack of knowledge about selection
on allometry prevents firm conclusions.
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Introduction

Allometry, in a broad sense, refers to the positive
relationships generally observed between body size
and other organismal traits. Allometry is important
because variation in a wide variety of morpholog-
ical, physiological, and life-history traits is highly
correlated with variation in organism size.1–3 These
relationships generate intuitive hypotheses for un-
derstanding trait variation; for example, the fact that
elephants are larger than mice can be used to explain
why the brain mass of elephants is larger than the
brain mass of mice. In many cases, however, traits
do not enlarge proportionally to overall size, but in-
stead follow a power–law function of the form Z =
aXb (Box 1), where the trait value is Z, the body size

is X, and a and b are parameters describing the re-
lationship. If b = 1, the trait changes in proportion
to body size, a condition referred to as isometry.
When b � 1, trait size and body size will vary in
different proportions and the shape of the organism
will change with a change in size. For example, it has
been argued that brain mass in mammals scales with
body mass with a coefficient b � 0.75;4 as a result, for
the same unit increase in body mass, a larger organ-
ism will have a smaller increase in brain mass than
a smaller organism. Consequently, relative to body
mass, the brain mass of an elephant is about 14 times
smaller than that of a mouse, while the brain mass
of a human is similar to that of a mouse. Although
allometry (b � 1) is often contrasted with isome-
try (b = 1), the study of allometry includes both
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isometric and allometric relationships. Analyzed on
a log scale, allometric relationships become linear:
log(Z) = log(a) + b × log(X), where log(a) is the
allometric intercept and the allometric exponent b
is often called the allometric slope.

Because body size can vary with age or develop-
mental stage, across individuals, and across popula-
tions and species, three types of allometry have been
defined: ontogenetic allometry refers to the relation-
ship between the trait and size during growth; static
allometry refers to the relationship between the trait
and size observed across individuals measured at a
similar developmental stage; and evolutionary al-
lometry refers to the relationship observed among
population or species means.5–7

Allometric relationships often fit very precisely
over large size ranges, which may be found across
ontogeny or across species. Furthermore, ontoge-
netic and static allometric slopes usually vary little
among closely related species.5 These observations
support the idea that allometric relationships may
reflect strong physical, physiological, or other bi-
ological mechanisms that constrain the rate and
direction of evolution.5,8–12 Accordingly, allomet-
ric relationships have been taken as prime evidence
against the dominance of natural selection as an evo-
lutionary force.13 A role for allometric constraints
has been widely accepted for physiological and life-
history traits,14,15 but has been more controversial
for morphological traits, where allometries are usu-
ally thought of as a result of different body parts
being under common growth regulation (see Box 1).

The alternative is that natural selection persis-
tently favors the particular scaling relationships that
are observed between traits and size. This hypothe-
sis is at least implicitly accepted in traditional stud-
ies of functional allometry.2 For example, the re-
lationship between the cross-sectional area of the
skeleton with body mass in terrestrial vertebrates
may be explained with respect to optimal alloca-
tion, balancing the chances of breakage—favoring
a robust skeleton—and the costs of locomotion fa-
voring a lighter skeleton.16 Accordingly, several au-
thors have thought that allometric slopes evolve
adaptively.17–20 In this context, the evolution of the
static allometry of primary and secondary sexual
characters has been a popular topic. Secondary sex-
ual displays have been predicted to evolve steep
slopes (i.e., positive allometry: b > 1) under handi-
cap models,17,18,21–23 while male genitalia have been

predicted to show negative allometry (b < 1) due to
stabilizing selection on trait size.19,24,25

In principle, it should be possible to distinguish
between constraint and selective explanations for
allometric relationships by quantifying the evolv-
ability of allometry and the selection acting upon
it. The predictions from this can then be compared
with observed patterns of evolution in allometry.
The general prediction is that a constrained allome-
try will either be incapable of evolving (an abso-
lute constraint26) or that fitness will decrease so
rapidly when moved away from the optimal value
that the possible advantages of the altered allometry
would not outweigh the fitness costs. Unfortunately,
despite renewed interest in the last two decades,
progress in understanding the evolution of mor-
phological allometry has been slow. A key reason
for this is the rise of a very general notion of allom-
etry that encompasses any monotonic relationship
between trait size and body size27,28 (Box 1). The
consequence of this is that many studies of allome-
try become studies of shape evolution that are not
directly informative about the existence or the evo-
lution of the scaling relations that are the essence
of the original meaning of allometry (Box 2). Im-
portantly, the hypothesis that traits are constrained
to follow a power law is not directly tested by stud-
ies of variation in or evolution of shape in gen-
eral. Our aim in the current review is to develop
predictions from the constraint and selection hy-
potheses on morphological narrow-sense allome-
tries and review the recent literature in light of these
predictions.

Evolutionary constraint and allometry

Evolutionary constraints are processes that preclude
a trait from reaching a phenotypic optimum or slow
down its evolution toward this optimum.29,30 De-
pending on the perspective and processes involved,
many types of constraint have been defined.30–32 Al-
lometry has been classified as a developmental con-
straint, that is, a constraint imposed by the devel-
opmental architecture in the production of variant
phenotypes.11 Although developmental constraints
may themselves result from selection,33,34 they may
still limit the direction of phenotypic evolution.
Such a perspective of allometry as a developmen-
tal constraint corresponds to the view defended by
early students of allometry and heterochrony who
explained patterns of species divergence as changes
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Box 1. Narrow-sense and broad-sense allometry: conceptual and methodological
issues

In recent years, the term allometry has been used for any type of monotonic relationship between two
morphological variables, independent of the scale on which these variables are expressed. This broad
definition of allometry is inconsistent with the biological interpretation of morphological allometry originally
suggested.10,112 Huxley10 showed that if an arbitrary trait Z and body size X grow at different rates but under
the control of a common growth parameter G, such that dX/dt = �XG, and dZ/dt = �ZG, where � and � are
specific constants for X and Z, respectively, and t the time during growth, the relationship between Z and X
follows a power law Z = AXb, where A is a constant that depends on the initial values of Z and X, and b = �/�.
On a log scale, this relationship is linear z = a + bx, where z = log(Z), x = log(X), a = log(A). A later
generalization of this model showed that whenever two or more variables are connected in a dynamic
synergistic system controlled by one variable, their relationship follows an allometric relationship.113

Therefore, allometry in its narrow sense is defined by two parameters of a power function that can be
expressed as the intercept a, and the slope b, of a linear regression on log scale. When the explanatory variable x
is mean centered, the intercept a becomes the elevation of the static allometry, that is, the trait size at the
population mean body size.114–116 By using linear regression on log-transformed data, the size of the trait on
the y axis (response variable) can be predicted from the size of the trait on the x axis (predictor variable).
Consequently, the choice of the predictor variable is not arbitrary but reflects our knowledge or intuition that
variation in this trait will more accurately reflect differences in the growth parameter G than will variation in
the trait used as a response variable. Body size or some proxy measurements are generally used as a predictor
variable under the assumption that variation in these traits best reflects variation in overall growth (see Box 2
for a brief discussion on size).

The specific statistical model that should be selected to estimate allometric slope and intercept has been the
subject of long debates. Packard suggested that the estimation of these parameters should be done from a
power function fitted on arithmetic scale.117,118 This approach would be justified if the processes producing the
error (the variation not explained by the model) act in an additive manner. Although this may be the case for
measurement error, it is most likely that biological error will be generated by multiplicative processes similar to
those responsible for the growth of the trait.119 Because most of the error in the response variable is likely to be
of biological origin, estimates produced by linear regression on log scale should better estimate the true
relationship than those produced by a power model fitted on arithmetic scale. Both approaches are valid,
however, and the choice of model should ideally be conducted with proper modeling of both biological and
measurement error, when those can be distinguished.

Major-axis and reduced major-axis regression are often used in place of ordinary least-squares regression to
estimate allometric parameters. This practice seems based on the belief that these procedures correct for
observational errors in the predictor variables or that they are more appropriate when there is no causal
direction to the relation between the traits in question. It is important to realize that neither of these methods
provides sensible estimates of allometric regression slopes when there is biological error (i.e., biological
deviations from the allometric line) in the model.105,120 These models compute slopes, but these slopes are not
proper estimates of the exponent b of the narrow-sense allometry. A dramatic consequence of the reduced
major-axis regression is that strong allometries are typically found even in the total absence of covariance
between the two traits.

Finally, we notice that ignoring the consequences of trait dimension on the allometric slope has led to some
erroneous statements in the literature on allometry. For example, a positive allometry between testes size and
body length has been reported in the Hottentot golden mole (Amblysomus hottentotus) as an exception to the
one-size-fits-all hypothesis.121 However, this positive allometry was most likely generated by the difference in
dimension between the traits (body length – length vs. testes mass – volume).

in timing or rate of development along constant
ontogenetic trajectories.5,8,10,35,36

The introduction of the quantitative genetics
framework in the study of allometry6,37–39 shifted

the hypothesis of allometry as a constraint from
a developmental to a genetic perspective. Genetic
constraints occur when the amount or pattern of
genetic variation limits or channels the response to
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Box 2. From bivariate to multivariate allometry: drifting away from Huxley’s model

Jolicoeur122 suggested analyzing multivariate relative growth using the first principal component (or
eigenvector) of the variance–covariance matrix of log-scaled trait values (herein referred to as PC1). He
showed the relation between this approach and the Huxley model,10 arguing that the trait’s loadings on PC1
are equivalent to their allometric exponents. This approach formalized multivariate isometric variation as a
PC1 vector with all elements or loadings equal to 1/�k, where k is the number of traits measured. Variation
along such a {1/�k, . . . , 1/�k} vector is associated with variation in organism size, assuming an isometric
relationship of all parts to size. Group difference in multivariate allometry is commonly estimated as the angle
between two within-group PC1 in the multivariate space.6,79 This approach has been used to describe the
plasticity of static multivariate allometry of Drosophila exposed to different environmental conditions94 or to
investigate the diversity of allometric variation among species.123,124 However, the biological meaning of the
PC1 loadings in this approach is not equivalent to that of the standard regression estimates (i.e., Huxley’s
allometric exponent). Instead, these estimates are the slopes of the regressions of standardized trait variables
on size, as defined by PC1. Therefore, the ratios of the loadings between pairs of variables do not correspond to
their bivariate allometric coefficient as estimated by standard regression procedure (Box 1) but to the ratio of
their respective covariances with PC1. This can be interpreted as the relative change in the two traits for a given
change along PC1.6 However, the orientation of the PC1 vector in the morphospace will vary with an increase
in trait(s) variance even if covariances are kept constant.

This raises the problem of the use of an adequate definition of size in the study of its relation with shape (see
Bookstein125 for review). The two most commonly used approaches for estimating size are the PC1-as-size
approach described above and Mosimann’s126 definition. Mosimann defined size as any function G of the
measurement vector x that satisfies the property: G(ax) = aG(x), G(x) having the same dimension as any
element of x. Indeed, shape being on a ratio scale, multiplication of each element of the ratios by a constant a
does not change shape, and G is uncorrelated with any ratios under fully isometric multivariate variation. It is
worth noticing that Huxley10 already defined traits’ growth rates as affected by a common growth factor (G)
that vanishes when the growth rates of the traits are put in relation to each other in the exponential
relationship (Box 1).

Contrary to the PC1 approach, this geometric definition of size is not directly dependent on the
variance–covariance properties of the studied samples. As a measure of size, geometric morphometrics
conventionally use centroid size (CS), the square root of the sum of squared distances of a set of landmarks
from the centroid of the entire landmark configuration. Although this choice does not generally rely on
biological arguments, CS corresponds to a size vector, according to Mosimann’s definition. The Procrustes
superimposition algorithm scales landmark coordinates with CS, providing Mosimann’s shape vectors. The
effect of CS on remaining shape variation therefore corresponds to multivariate allometry.

Under specific conditions, a multivariate regression of shape on size, both on log scale or mean scaled,
represents the multivariate approach that is most closely related to the original bivariate model from Huxley.
On the other hand, the broadly used geometric morphometric approach abandons the notion of trait for a
notion of shape analyzed as a whole and hampers interpretations of allometry in a context of relative growth.

selection.30 Although these two perspectives are, in
fact, linked because genetic constraints must result
from developmental constraints, this change in per-
spective may have weakened the constraint hypoth-
esis, given the ubiquity of genetic variation generally
found.40 More recently, the hypothesis of constraint
due to low genetic variation has been refueled by
the realization that genetic correlations among traits
due to pleiotropy could seriously influence the di-

rection of phenotypic evolution,26,41–49 allometry
being a perfect example of such a constraint.

Testing whether allometry represents an evolu-
tionary constraint using quantitative genetics ap-
proaches requires quantifying the evolvability of al-
lometry and comparing the observed evolutionary
patterns with those patterns expected under specific
selection pressures. If we are to test the allometry-
as-a-constraint hypothesis, we should therefore
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answer the following questions: Is allometry evolv-
able? Does allometry constrain patterns of pheno-
typic evolution? Data on static allometry play a cen-
tral role for these questions, because it is the level
at which developmental constraints can be easily
measured and allows predictions about phenotypic
evolution.

Is static allometry evolvable?

Testing whether a trait is evolvable can be achieved
by quantifying either its propensity to vary (i.e., its
evolvability50) or its actual evolution, that is, quan-
tifying the changes in the trait when selected. In
the following section, after considering the possi-
ble sources of constraint and selection acting on
static allometry, we review evidence for both genetic
variation (evolvability) and evolutionary changes in
static allometry.

Sources of constraint
Evolution of static allometry depends on the evo-
lution of the static allometric slope and intercept.
One key challenge is that an individual organism
expresses neither a slope nor an intercept. Doing
standard quantitative genetics on these traits there-
fore requires groups of genetically related organisms
of different sizes or at least repeated parts of mod-
ular organisms. Several growth models have been
developed to explain how static allometry is gener-
ated from simple growth patterns.10,22,36,51,52 Using
these models, one can identify possible constraints
on the variation of static allometry.

From Huxley’s10 model of relative growth (Box 1),
it can be shown that when two traits expressed on
log scale present an ontogenetic allometry, such as
z = a + bx, with x and z varying during growth, the
static allometric slope at any specific time t can be
expressed as:

bs = b̄ + �(xt , a) + x̄t�(xt, b)

�2(xt )
, (1)

where b̄ is the ontogenetic allometric slope averaged
across all individuals (i.e., the mean ontogenetic al-
lometry of the population), and x̄t , the mean body
size at time t.53 This shows that the static allometric
slope is affected by both the average slope of the
ontogenetic allometry and the covariance between
the parameters of the ontogenetic allometry (slope
and intercept) and body size. Similarly, parameters
of the ontogenetic allometry will affect the average

value of the trait. This effect can be expressed with
respect to the mean trait at the population mean
body size x̄t in the following way:

z̄t = ā + E (bxt ) = ā + b̄ x̄t + �(xt, b), (2)

where ā is the average ontogenetic intercept across
all individuals. Therefore, a positive covariance be-
tween the ontogenetic slope and body size at stage
t will increase the trait mean value, while a nega-
tive covariance will decrease it. This model (Eqs. (1)
and (2)) illustrates how variation in the static allo-
metric slope and intercept can be generated by vari-
ation in the ontogenetic parameters. Importantly,
it also shows that when ontogenetic and static al-
lometries are different (�(xt, b) �= 0 or �(xt , a) �= 0
in Eq. (1)), invariance of static allometry across
populations with different mean body sizes implies
changes in the ontogenetic parameters.53 Compar-
ing ontogenetic and static allometries and estimat-
ing the variational properties of the ontogenetic pa-
rameters should therefore provide valuable insights
into the possibility for static allometry to evolve.

Different body parts do not always grow in con-
cert; some organs grow most rapidly early in devel-
opment (e.g., the mammalian brain54) while other
organs continue to grow even after overall body mass
has leveled off (e.g., appendages in holometabolous
insects,55 secondary sexual traits in vertebrates,56

and the special case of deer antlers57). Ontogenetic
allometries resulting from this type of growth pat-
tern are necessarily nonlinear51,52 and sometimes
the link between ontogenetic and static allometry
can be difficult to establish. Nevertheless, even in
such cases, the growth of the trait may be coor-
dinated with the expected or achieved body size,
despite the difference in the timing of growth (see
Bondurinasky and Day22 for such a model), and
variation in the trait growth sensitivity to the growth
of the whole organism could generate variation
in the allometric slope. The difference in sensitiv-
ity to insulin observed among imaginal discs in
holometabolous insects is an example of such a
process58 (and see below). In such cases, the lack
of genetic variance in trait growth sensitivity to the
size of the body, or the sharing of a large propor-
tion of the developmental pathway between the two
traits considered, may seriously constrain changes
in static allometry. Importantly, such constraints
would affect the allometric slope but not necessarily
the intercept (i.e., mean trait size).
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The final size of an organ may also be molded
by a secondary loss of part of the structure via
programmed cell death, apoptosis. For example, in
the horned beetle genus Onthophagus, programmed
cell death is responsible for sex- and species-specific
horn development, with thoracic horns being partly
or completely reabsorbed during the pupal stage.59

Similarly, the complex shape of the hindwing anal
lobe of the butterfly Battus philenor is generated by
apoptosis along the wing margin during pupal wing
development.60 In these cases, tight allometric rela-
tionships between traits molded by apoptosis would
reflect common regulation of cell death as well
as growth. It remains unknown, however, whether
traits regulated by apoptosis display tight allometric
relationships with body size. Head horns in male
Onthophagus taurus, for which a tight nonlinear al-
lometric relationship with body size is observed,61

show limited, if any, apoptosis.59 It is, therefore,
possible that programmed cell death is partly re-
sponsible (in species where it occurs) for the weak
allometric relationships observed between some
traits.

Sources of selection
Selection on trait and body size. Changes in the
allometric slope may occur as side effects of direc-
tional selection on trait or body size. According to
the above model (Eqs. (1) and (2)), ontogenetic
and static allometry should be similar, and changes
in body size should not affect the static allometric
slope in the absence of covariance between body
size and the ontogenetic parameters (Fig. 1, sce-
nario A). If the covariance between body size and
the slope or the intercept of the ontogenetic allome-
try is nonzero, changes in body size should generate
changes in static allometric slope (Fig. 1, scenario
B). Selection on the mean trait z̄t is expected to af-
fect either the mean ontogenetic intercept ā (Fig. 1,
scenario C), the mean body size x̄t (Fig. 1, scenario
A), the mean ontogenetic slope b̄, the covariance
between these last two terms, �(b, xt ), or any com-
bination of these parameters. Changes in static al-
lometric slope with increasing body size may also
occur if there is a nonlinear ontogenetic relation-
ship on a log scale between size and trait.53

Selection on the slope. The static allometric slope
can evolve because of selection on the slope itself,
with no change in x̄t or z̄t (Fig. 1, scenario D).
This can happen if the bivariate distribution of the

traits evolves to fit an adaptive ridge (Fig. 2A). We
can completely separate selection on the allometric
slope from selection on trait means by imagining an
adaptive landscape that selects on trait (co)variances
but not on trait mean (i.e., no directional selection).
Because trait means evolve more rapidly toward fit-
ness optima than trait variation, situations where
only the (co)variances continue to evolve should be
frequent. In theory, the presence of a selective ridge
should be sufficient to favor a particular slope. How-
ever, under such a scenario, the strength of selection
on the slope will be weak, because many individuals
at the center of the distribution (i.e., with noninfor-
mative genotype) have high fitness, and stabilizing
selection on one trait will lead to an indirect sta-
bilizing selection on the other trait (Fig. 2A). Al-
ternatively, selection for a decrease in trait variance
combined with selection to maintain the variance in
body size should lead to a decrease in the allomet-
ric slope, while selection for increasing variance in
trait size (e.g., disruptive selection) combined with
a decreasing variance in body size should increase
the allometric slope (Fig. 2B). However, strong dis-
ruptive selection balanced precisely to generate no
directional selection is probably an extremely rare
event in nature.

Verbal models of selection on allometric slope
have been proposed to explain the positive allometry
often observed in sexually selected traits.17,18,21,23,62

In these models, positive allometry evolves either be-
cause large males, presumably in better condition,
are able to invest more in costly traits, or because the
benefits of large traits increase with body size. The
combination of various selection regimes with an
allocation model of growth has suggested that the
conditions under which positive allometry evolved
were more restrictive than previously thought, but
that an increase in the relative fitness gain for larger
traits with an increase in body size should select for
positive allometry.22 Canalizing selection on trait
size, on the other hand, has been suggested to gen-
erate negative allometries (e.g., in male copulatory
organs in insects).19,25

The variational properties that generate variance
and covariance among traits are therefore central
to the evolution of static allometry. Some selection
experiments have suggested that variation may re-
spond to stabilizing and disruptive selection.63 It
remains unclear, however, how efficiently selection
can mold genetic and environmental variation,64–67
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Figure 1. Evolution of static allometry. The scenarios considered here correspond to the expected evolution of static allometry
from an ancestral state, depending on which parameters are constrained. Vertical and horizontal dashed lines represent the mean
trait value and body size. Body size is mean centered, so the allometric intercept represents the trait value at the population mean
(i.e., elevation of the allometric regression). In scenario A, both the slope and the intercept are constrained. Any change in body size
will generate a change in trait size, and vice versa. In scenario B, the slope and intercept evolve. This pattern may be generated by
the effect of a negative covariance between body size and the ontogenetic slope when selection on body size occurs. In scenario C,
the slope is the constraining parameter, while the intercept can change. Finally, in scenario D, only the allometric slope can evolve,
while the intercept (elevation) cannot.

and how covariation can respond to selection given
that covariation may change without changes in the
variational properties of individual traits. The evo-
lution of covariance between trait size and body size
directly links the evolution of the static allometric
slope with the evolution of the phenotypic and ge-
netic covariance matrices (P and G on log scale).
Theoretical and empirical work shows that genetic
covariances do evolve under selection,65,68–72 but the
responses to selection are likely to depend on ge-
netic details, and it is unclear how rapidly they can

take place. The various hypotheses listed here sug-
gest that, in many cases, selection on the allometric
slope is indirect and inefficient. If combined with a
low evolvability, this may result in slow and erratic
evolutionary changes in allometry.

Evolvability and evolution in static allometry
Because changes in ontogenetic allometry are
expected to induce changes in static allometry
(Eq. (1)), we first consider here evidence for the
evolution of ontogenetic allometry. Such evidence
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BA

Figure 2. Fitness landscape to change allometric slope via correlated selection on the trait and body size. (A) Selection is generated
by the difference in direction between the phenotypic regression and the adaptive ridge. Black dots represent selected individuals
(with the highest fitness). (B) Saddle fitness landscape that generates disruptive selection on one of the two traits (plus signs indicate
regions of high fitness).

is provided by several studies comparing ontoge-
netic allometries among sexes within73 or among
species.74–77 However, few studies have tested
the relationship between ontogenetic and static
allometry,6,7,78–80 and fewer have analyzed how
variation in the parameters of ontogenetic allom-
etry affects static allometry. The only study, to
our knowledge, that compared the relationship
between ontogenetic and static allometry among
populations53 showed that static allometry be-
tween caudal fin length and body length in female
guppies (Poecilia reticulata) was similar among three
populations despite differences in their mean on-
togenetic allometry. This resulted from a nega-
tive covariance between adult body size and the
steepness of the ontogenetic allometry, both within
and among populations. The relevance of these
results regarding the rate at which ontogenetic
allometry evolves is unclear, however, because
guppy populations from different drainages may
have been separated for hundreds of thousands
of generations.81 Furthermore, although individ-
ual variation in ontogenetic allometry has been
observed,53 the genetic basis of this variation re-
mains unknown. Overall, we found only one
study that reported heritability of ontogenetic
slopes. Atchley and Rutledge82 reported heritabil-
ities for chest circumference (h2 = 0.25 ± 0.07)

and tail length (h2 = 0.39 ± 0.08) on body
weight within six laboratory strains of rats se-
lected for larger or smaller weight. Interpreting
these results with respect to evolvability is diffi-
cult, however, because variance estimates were not
provided.

Microevolutionary changes in phenotypic and
genetic covariances among traits are suggested by
studies reporting rapid changes in P- or G-matrices
within populations,83–85 but these observations are
difficult to interpret with respect to evolution of
allometry because traits are not always strongly cor-
related in the first place and G-matrices are rarely
analyzed on log scale. Furthermore, studies ana-
lyzing changes in the P-matrix cannot distinguish
between environmental and genetic changes in the
patterns of covariation among traits.

Quantitative genetic estimates of genetic vari-
ance in static allometric slopes are scarce. We are
only aware of a single study reporting heritabili-
ties of allometric slopes measured on log scale.86

In this study, heritabilities of the static allomet-
ric slope between the length of several bones and
the cubic root of body weight, and between the
weight of internal organs and body weight, were
all statistically significant but relatively small (all h2

less than 0.20), despite being measured under lab
conditions.
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Alternatively, artificial selection can be used to
uncover genetic variation and covariation in quan-
titative traits.87 During the last two decades, several
authors have claimed to alter patterns of static al-
lometry by artificial selection. In addition, a few
artificial selection studies on size and experimen-
tal evolution have shown changes in the covari-
ance patterns between the size of some traits and
body size. Most of these studies have adopted the
broad-sense definition of allometry and are not di-
rectly informative about the evolution of narrow-
sense allometry.27,28 For example, several experi-
ments have exerted selection on the ratio between
two traits.88–90 Although changes in the intercept of
the relationships between traits on the arithmetic
scale have been observed in these studies, the au-
thors did not assess whether the allometric slope
evolved as well.

The only artificial-selection experiment on
narrow-sense allometry conducted so far combined
stabilizing and disruptive selection on body area and
caudal fin area in the guppy (poecilia reticulata) to
select for a change in static allometric slope91 (a
procedure similar to the one described in Fig. 2B).
Up and down selection on the allometric intercept
was also applied in two separate lines. After three
generations, the results suggested that the allomet-
ric slopes had very little capacity to evolve compared
to the allometric intercepts, but this conclusion was
weakened by the small number of generations of
selection.

In a selection experiment to increase or decrease
body mass in the moth Manduca sexta, static al-
lometry between wing mass and body mass became
steeper in the line selected for smaller body mass and
shallower in the line selected for larger body mass
after 10 generations of selection92 (and see Ref. 28
for reanalysis using standard regression). In a re-
cent experiment on the seed beetle Callosobruchus
maculatus, it was found that 21 generations of re-
laxed sexual selection had modified the allometric
relationship between two traits of the male genital
apparatus and elytron length.93 It has been argued,
however, that this finding is not very informative
about the evolution of allometry, because there was
a very poor fit to the allometric model in the first
place.28

One factor that has not been considered in these
last two experiments is the possibility of plasticity
in the allometric slope. Plasticity in allometric re-

lationships has been little studied, but two studies
clearly show that static allometry varies in response
to different environmental treatments.94,95 Simi-
larly, a selection experiment on Drosophila wings in
which selection was performed on the relative posi-
tion of some veins66,96,97 showed erratic, but some-
times statistically significant, variation in static al-
lometry (Fig. 3). The differences in slope could be,
if generations are observed in isolation, misinter-
preted as change in allometry due to selection. To
avoid such problems, we strongly recommend, dur-
ing selection experiments, to investigate the pos-
sibility of plasticity in the allometric slope and to
follow the changes in allometry from generation to
generation. Experiments that do not do this should
be interpreted with caution.

In recent years, developmental biology provided
particularly relevant observations regarding the
developmental mechanisms responsible for scal-
ing between appendage size and body size in
holometabolous insects (see Emlen and Allen55 and
Shingleton et al.98 for review). The first mecha-
nism involves the genetic regulation of growth rate
through regulatory genes, such as Decapentaplegic
(dpp) or Wingless (Wg), that affect cell proliferation
and differentiation. Genetic variation in these genes
may affect the pathway specifying the shape and rel-
ative sizes of domains within imaginal discs and af-
fect the size of the corresponding structure in adults.
Trait-specific variation in the duration of growth
may also affect scaling relationships between traits.
In holometabolous insects, growth via cell prolifer-
ation is promoted during the prepupal period by a
pulse of juvenile hormone and ecdysone. When ju-
venile hormone drops below a certain threshold, cell
proliferation ceases. Differences in threshold sensi-
tivity between imaginal discs may generate a dif-
ferent duration of growth and consequently a dif-
ferent size of the final trait. Trait-specific sensitivity
to insulin may also affect allometric relationships.
Insulin activates a signaling cascade by binding to
specific receptors that stimulate cell proliferation.99

Trait-specific modification of the signaling cascade
(e.g., by increased expression of insulin receptors)
can affect the size of specific imaginal structures
and therefore the allometric relationship with body
size. It remains largely unknown whether genetic
changes in any of these mechanisms could affect
the allometric slope and intercept, but recent work
on the insulin pathway has uncovered mutations
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Figure 3. Phenotypic plasticity in static allometry. The figure presents the variation in the slope of the static allometry between
wing size (estimated by the centroid size) and the interlandmark distance 2–12 (dashed line) in two populations of D. melanogaster
selected to increase (gray arrows, open dots) or decrease (black arrows, black dots) a selection index. Selection was performed for
26 generations. Idiosyncratic variation of the slope (estimated on 100 males at each generation) generates statistically significant
differences between selection lines at generations 4, 9, and 11 (indicated by asterisks). The data presented here correspond to the
LHM 1 replicate, but similar results were observed for the other three replicates: LHM 2, IV 1, and IV 2 (see Ref. 22 for more details
regarding the selection experiment).

at specific loci that could affect the organ sensitiv-
ity to insulin concentration and therefore affect the
slope of the static allometry58,100 (and see Shingleton
and Frankino101 for review). Although these studies
provide evidence for genetic variation in allometric
slope, it has also been suggested that this variation
results from complex genetic architecture that may
not easily respond to selection.86 Overall, quantita-
tive genetics studies provide conclusive evidence for
genetic variation in the allometric intercept, but not
for the allometric slope.

Does static allometry constrain phenotypic
evolution?

Theoretical considerations
Microevolutionary studies reviewed in the last sec-
tion suggest that the evolvability of the allometric
slope is low relative to the evolvability of the inter-
cept. At the macroevolutionary level, studies of the
allometry of secondary sexual characters show that
allometries of homologous traits can vary among
sexes from the same species or among species (see
Ref. 102 for review). Such information is, by it-
self, not very informative about the constraint hy-

pothesis because we do not know anything about
the strength of selection on the allometric relation-
ships, and the time scale for divergence can be very
long. Therefore, it remains unclear whether there
are meaningful evolutionary constraints due to al-
lometry.

In the absence of empirical knowledge regarding
selection on allometry, we are left with the option
of generating predictions on the basis of scenarios
where static allometry constrains phenotypic evolu-
tion under various hypothetical selection regimes.
In this context, a general prediction is that, if static
allometric parameters represent evolutionary con-
straints, they should shape patterns of population
and species divergence on some time scales.5,8 This
general idea was placed in a quantitative genetic
framework by Lande37,38 who showed how to pre-
dict the correlated response of trait size z to selec-
tion acting on body size x. In this special case, the
evolutionary allometric slope be along which popu-
lations and species evolve corresponds to the ratio
of the correlated response in z divided by the direct
response in x, that is, the slope of the genetic regres-
sion between the two traits: bs = �A(x, z)/�A

2(x),
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Figure 4. Static allometry as an evolutionary constraint. The various scenarios represent the effects of constraining parameters of
the static allometry on the evolutionary allometry, assuming that selective optima are spread more or less randomly in the bivariate
morphospace. In scenario A, neither the slope nor the intercept can vary. The divergence of population means follows the genetic
allometric regression. If the slopes of the genetic and phenotypic allometry are similar, evolutionary allometry (dashed line) will
follow the patterns of static allometry. In scenario B, the intercept is allowed to change but not the slope. Although such a pattern
may result from the evolution of the intercept itself, it may also result from the difference between the phenotypic and genetic
allometry. Scenario C presents a similar pattern but where selection does not favor any particular direction in the morphospace. In
scenario D, both intercept and slope can evolve (no constraint).

where �A
2(x) and �A(x, z) are the additive genetic

variance in x and the covariance between x and z,
respectively (Fig. 4, scenario A).

Because static allometry is defined at the pheno-
typic level, the static allometric slope bs combines
both additive genetic and residual variances
and covariances: bs = h2

(
�A (x, z) /�2

A (x)
) +(

1 − h2
) (

�R (x, z) /�2
R (x)

)
, where h2 is the her-

itability of body size x, that is, the ratio between
the additive genetic variance and the phenotypic
variance, and R denotes all other residual com-

ponents of the variance, including environmental
and nonadditive genetic variance (for justification,
see the Appendix). Under this scenario, static
and evolutionary regression coefficients, bs and
be, will be similar when bs = �A (x, z) /�2

A (x) =
�R (x, z) /�2

R (x). In this case, the genetic and
phenotypic variance–covariance matrices, G and
P, will be proportional for these elements. If this
condition is not fulfilled, evolutionary allometry
will not follow the trajectory defined by the static al-
lometry (Fig. 4, scenarios B and C38). Furthermore,
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if the additive genetic and residual contributions to
static allometry are different but remain constant,
the static allometric slope should remain constant
across populations and species while the intercept
will change (Fig. 4, scenarios B and C).

It is important to realize that when Lande’s
model38 is generalized to allow selection on trait
and size, and there is at least some additive genetic
variation in both, the means obtained in the long
term depend only on the selective optima for the
size and trait, and not on the patterns of covariance
between them.39 If this is the case, and if selective
optima are not systematically placed in the bivariate
morphospace, we expect no relationship between
evolutionary and static allometry (Fig. 4, scenarios
C and D). Scenario C in Figure 4 represents a situa-
tion where there is no genetic variation in the slope
but where the trait and body size means can evolve
more or less freely in the morphospace. This calls for
an alternative explanation for evolutionary allome-
try in which population divergence is not dictated
by patterns of genetic variation, but by patterns of
selection.

These considerations underscore the impossibil-
ity of testing the allometric constraint hypothesis
without knowing the patterns of selection acting
on the allometric relationships. As a result, our
interpretations of the macroevolutionary patterns
remain speculative. Although specific predictions
have been suggested regarding the effect of selec-
tion on allometric slope for genitals and secondary
sexual characters, these predictions only concerned
the type of allometry expected (positive or nega-
tive allometry), leaving unclear the expected rate at
which such patterns evolve. One possible exception
is a study on various species of stalk-eyed fly (Diop-
sidae) that estimated the rate of evolution of the
static allometry between eye span and body length
toward a predicted optimum, modeled as a func-
tion of the strength of sexual selection within each
lineage.103 This analysis showed that the static allo-
metric slopes were tracking the optimum, but that
the rate of evolution was slow, with estimated times
of 2–3 Myr for adaptation in the static slopes to
exceed ancestral influence on the trait.

Empirical patterns
Although many studies have compared relation-
ships between trait size and body size among pop-
ulations and species, a recent review by Voje et al.

identified only 10 studies with sufficient informa-
tion to compute interspecific variation in narrow-
sense allometric slopes and intercepts.28 Excluding
genital traits, this review revealed considerable inter-
specific variation in static allometric slopes across
species within genera (the median standard devi-
ation corrected for sampling error was SD = 0.27)
but very little across populations within species (me-
dian SD = 0.07). The patterns were quite similar for
the allometric intercept, with substantial variation
across species (median SD = 0.15) and much less
among populations (median SD = 0.02).

Because the slope and intercept are on differ-
ent scales, their levels of variation are not directly
comparable. To assess their relative importance, the
concept of conditional variance43,45 was used to es-
timate their influence on the evolution of trait size.
This allowed comparing the variation in slope and
intercept on a common scale (i.e., variance in trait
size).28 Using this method, it was shown that 74%
of the interspecific variation in trait size was asso-
ciated with changes in body size, while the contri-
bution of the static allometric slope and intercept
were more limited, with 13% and 29% of the log
trait variance explained, respectively (e.g., Fig. 5A).
The contributions of these three parameters to trait
diversification at the among-population level were
similar, with size variation explaining 71%, slope ex-
plaining 36%, and intercept explaining 40% of the
variation in trait size. However, as previously men-
tioned, much less variation in static allometry was
observed among populations, and the evolutionary
allometry was often very similar to the pattern of
static allometry28 (Fig. 5B). Finally, within species,
the average static allometry across populations was a
good predictor of the evolutionary allometry, while
across species within genera the average static al-
lometry was poorly correlated with the evolutionary
allometry.28

Morphological evolution that is more con-
strained along static allometric trajectories at the
within-species level than at the among-species level
could be interpreted as a signature of evolutionary
constraint. Therefore, these results are compatible
with the allometry-as-a-constraint hypothesis if se-
lective optima were spread more or less randomly in
the bivariate morphospace, and not along adaptive
ridges or “cordillera.” Occurrence of such an adap-
tive ridge could explain the evolutionary allometry
observed between the width and length of the M1
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Figure 5. Example of variation in static allometry and its effect on evolutionary allometry among (A) species within genus, (B)
populations within species, and (C) populations within species for genitalia. In each graph, the evolutionary allometric slope (be)
and the average static allometric slope (bs) are reported. Figure is from Ref. 28.

molar of the rodent species Mimomys savini during
the Pleistocene in the Iberian Peninsula.104 Using a
well-calibrated paleontological sequence of dental
measurements, it is shown that the evolutionary al-
lometry among populations spread across 600,000
years follows the pattern of average static allometry.
However, the relatively low r2 of the static allome-
try observed within each population also provides
some support for the existence of an adaptive ridge
along which populations evolved.

The one-size-fits-all hypothesis
The various studies analyzing static allometry
of genital traits in arthropods and vertebrates
showed consistently shallow static allometric slopes
(b < 1), as expected from the one-size-fits-all
hypothesis.19,25 A few exceptions to this pattern were
reported,25 but all came from studies using reduced
major axis regression, a method that will seriously
misestimate the slope unless the r2 is very high.105

For all these exceptions, the r2 was low (between
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0.00 and 0.58). When these cases were reanalyzed
using standard regression methods, negative (b <

1) static allometries were found.28,106

The one-size-fits-all hypothesis has also been ex-
tended to reproductive organs in flowering plants
with insect pollination, where the fit between pollen
donor and pollen receiver organs and pollinators of
relatively constant size and behavior is expected to
produce stabilizing selection.107 Several studies have
provided evidence for the relative invariance of flo-
ral compared to vegetative traits108 (and see Ref. 109
for review), and the two studies that have tested the
effect of pollination accuracy on the allometry of
the pollen transport organs both reported shallow
allometry for these traits.110,111

If results from studies on the one-size-fits-all hy-
pothesis provide clear evidence of a possible effect
of selection on static allometry, they do not pro-
vide evidence for high evolvability of the allometric
slope. Indeed, intraspecific comparisons of static al-
lometry in insect genitalia show that variation in the
allometric slope explains only a small proportion of
the variation in genitalia size: 92% of the variance
of log-size genitalia is independent of the variation
in allometric slope.28 This is particularly clear when
observing the allometric slope between genitalia size
and body size in various populations of the beetle
species Dorcus titanus (Fig. 5C).

Conclusions

Despite great interest in morphological allometry
over nearly a century, we still have a very limited
understanding of its evolution and biological basis.
Key observations, such as genetic variation in onto-
genetic allometry or the static allometric slope, are
surprisingly scarce, and if developmental biology of-
fers several mechanisms capable of altering scaling
relationships between traits, the evolvability of these
mechanisms remains unknown. Although micro-
and macroevolutionary patterns seem to point to a
constraining effect of morphological allometry on
phenotypic evolution, the complete lack of data on
the nature of direct or indirect selection on allome-
try, and the near absence of data on genetic variation
in allometric parameters, precludes the interpreta-
tion of these patterns as evidence for or against the
constraint and adaptation hypotheses. Until such
data are obtained, the evolution of allometry will
remain a mystery.
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Appendix

The observed allometric slope b of a trait y on size
(x), where x and y are on log scale, can be written as

b = �(x, y)

�2(x)
,

where �(x, y) is the covariance between x and y and
�2(x) is the variance of x. By partitioning the vari-
ance and the covariance into an additive genetic and
a residual component, assumed to be independent
and denoted by subscript G and R respectively, we
get

b = �A(x, y)

�2(x)
+ �R(x, y)

�2(x)

= h2 �A(x, y)

�2
A(x)

+ (1 − h2)
�R(x, y)

�2
R(x)

, (A1)

where h2 = �2
A(x)/�2(x) is the heritability of x. We

define the genetic and residual allometric slope as
b A ≡ �A(x, y)/�2

A(x) and bR ≡ �R(x, y)/�2
R(x).
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