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ABSTRACT
Common principal components (CPC) analysis is a technique for assessing whether variance-covariance

matrices from different populations have similar structure. One potential application is to compare additive
genetic variance-covariance matrices, G. In this article, the conditions under which G matrices are expected
to have common PCs are derived for a two-locus, two-allele model and the model of constrained pleiotropy.
The theory demonstrates that whether G matrices are expected to have common PCs is largely determined
by whether pleiotropic effects have a modular organization. If two (or more) populations have modules
and these modules have the same direction, the G matrices have a common PC, regardless of allele
frequencies. In the absence of modules, common PCs exist only for very restricted combinations of allele
frequencies. Together, these two results imply that, when populations are evolving, common PCs are
expected only when the populations have modules in common. These results have two implications: (1)
In general, G matrices will not have common PCs, and (2) when they do, these PCs indicate common
modular organization. The interpretation of common PCs identified for estimates of G matrices is discussed
in light of these results.

COMPARISON of additive genetic variance-covari- dress issues in areas as diverse as evolution of predation
patterns (Arnold 1981), covariance patterns resultingance matrices (the G matrices) of different popu-

lations is an important goal in evolutionary quantitative from mutation (Camara and Pigliucci 1999), and
change in the G matrix itself (see, e.g., Wilkinson et al.genetics (Steppan et al. 2002). Such comparisons iden-

tify commonalities (e.g., Kohn and Atchley 1988; Phil- 1990; Pfrender and Lynch 2000).
Although the utility of comparing G matrices seemslips and Arnold 1999; Roff 2000) or summarize differ-

ences (e.g., Shaw et al. 1995; Paulsen 1996; Steppan clear, which methods will furnish informative conclu-
sions is not (Steppan et al. 2002). Difficulty arises in1997) in the structure of G. The broad motivation be-
any case where trait number is greater than one. For nhind such analysis is clear: G is a key component for
traits, the G matrix includes n(n � 1)/2 variance andpredicting trait evolution under directional selection
covariance elements, and each of these may be largerand genetic drift as well as for retroactively estimating
or smaller than its corresponding element in other Gthe selection gradient (Lande 1979; Lande and Arnold
matrices. Moreover, the number of factors that poten-1983). Comparison of G therefore reveals whether dif-
tially influence the values of the n(n � 1)/2 variancesferences in genetic variation may have played a role in
and covariances is considerable, including the specificdivergent evolutionary trajectories (Price et al. 1993).
pleiotropic effects of segregating alleles, the frequencyFurthermore, as the structure of G depends on pleiotro-
of these alleles, gametic-phase disequilibrium, nonaddi-pic effects of segregating alleles, commonalities may
tive effects, and the effects of mutation. Therefore, it isalso contain information on genetic architecture shared
not easy to define a statistic that both summarizes struc-by populations (Phillips and Arnold 1999). Compari-
ture shared by G matrices and provides a clear interpre-son of G matrices has been the primary goal of many
tation of the implications of shared structure.studies (Arnold 1981; Lofsvold 1986; Kohn and

Of the many multivariate statistical techniques pro-Atchley 1988; Wilkinson et al. 1990; Atchley et al.
posed for comparison of G matrices (reviewed in Step-1992; Brodie 1993; Shaw et al. 1995; Paulsen 1996;
pan et al. 2002), common principal components (CPC)Podolsky et al. 1997; Steppan 1997; Arnold and Phil-
analysis (Flury 1987, 1988) is fast becoming the methodlips 1999; Camara and Pigliucci 1999; Badayaev and
of choice (Arnold and Phillips 1999; Camara andHill 2000; Pfrender and Lynch 2000; Roff, 2000,
Pigliucci 1999; Phillips and Arnold 1999; Pfrender2002; Service 2000; Waldmann and Anderson 2000;
and Lynch 2000; Roff 2000). The goal of CPC analysisPhillips et al. 2001). The results have been used to ad-
is to summarize the structure of two (or more) matrices
in terms of common principal components, those prin-
cipal components (PCs) that have the same direction,
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ranged in order of increasing amount of common struc- to illustrate the point that considerable constraints on
pleiotropic effects are required for common PCs to beture are the following: no similarity among matrices;

PCPC(1), where matrices have a single common PC; expected among G matrices.
Modularity can be defined both in terms of pleiotro-PCPC(2); . . . ; PCPC(n � 2); CPC(All); matrix propor-

tionality; and matrix equality. The m common PCs re- pic effects of alleles segregating in a population and in
terms of the pleiotropic effects that may be introducedferred to in PCPC(m) may refer to any m PCs shared

among matrices, and common PCs referred to in the into the population by mutation (Wagner and Alten-
berg 1996). Modularities at these two levels are clearlyCPC models need not be associated with eigenvalues of

the same rank. A number of approaches are possible related. If the pleiotropic distribution of possible muta-
tions is modular, then the pleiotropic effects of segregat-for determining which CPC model correctly describes

matrix structure (Flury 1988; Phillips and Arnold ing alleles will also be modular. Although cases are possi-
ble where segregating variation is modular while the1999). The software implementations used by almost

all CPC analyses to date (Phillips 1998a,b,c) employ distribution of mutations is not, such cases are expected
to be transient because mutations introduce nonmodu-a maximum-likelihood approach and a hierarchy of

hypothesis tests (the Flury hierarchy) to determine lar variation (Wagner and Altenberg 1996; Mezey et
al. 2000). Modularity of segregating variation is there-whether matrices have common principal components

(see Phillips and Arnold 1999 for a discussion of the fore expected to be a strong indicator of modularity in
the distribution of mutations. Our treatment concernsalternatives when implementing the Flury hierarchy).

The hierarchy of CPC models provides a valuable cases in which the distribution of mutations is modular.
descriptive summary of matrix structure. However, the
biological meaning of the results is unclear (Houle et

TWO-LOCUS, TWO-ALLELE MODEL
al. 2002). In this article, we address the problem of inter-
preting common PCs by deriving the conditions under The goal of discussing this simple model is to provide

an intuitive illustration of the relationship between mod-which we expect common PCs among G matrices. We
perform the analysis for both a two-locus, two-allele model ules and common PCs that also applies to the more

general model of constrained pleiotropy (Wagner 1989).and the model of constrained pleiotropy (Wagner
1989). The analyses demonstrate that common PCs are In a population, all genetic variation in n � 2 traits is

assumed to be determined entirely by alleles segregatingexpected only when pleiotropic effects are constrained
to a modular organization (Wagner and Altenberg at the N � 2 loci. We assume complete additivity of allelic

effects (no dominance or epistasis), no disequilibrium1996). When populations being compared have a modu-
lar organization in common, they have a common PC. (gametic-phase or otherwise), no maternal effects, no

sex linkage, and no genotype-environment covarianceAs is discussed, this latter result provides a biological
interpretation of common PCs when power is sufficient or genotype-environment interactions. We also assume

random mating among diploid individuals. In this case,to reveal differences in the direction of PCs among G
matrices. the additive effect on the traits associated with allele k

at locus j can be expressed as a vector,

�jk � [�jk.1, �jk.2] , (1)PLEIOTROPIC MODULARITY

Wagner and Altenberg (1996) defined a modular where the ith element of the vector �jk.i is the additive
effect of allele k associated with trait i (Lynch and Walshorganization as a case in which “pleiotropic effects of the

genes fall mainly among members of the same character 1998). This model can also be expressed in terms of the
average effect of an allelic substitution at locus j :complex and less frequently between members of differ-

ent complexes” (p. 971). A modular organization is
�̃j � [�̃j.1, �̃j.2] . (2)

therefore defined in terms of pleiotropic effects when
considering a specific set of traits. In this article, we The relationship between these two vectors is pjk�̃j.i �

�jk.i, where pjk is the frequency of allele k at locus j.address an extreme case of modular organization, in
which x � 2 nonoverlapping sets of pleiotropic effects Because there are two alleles at each locus and no non-

additive effects, each �̃j is constant, and the directioncan be defined in which all pleiotropic effects in a set
are orthogonal (oriented at 90�) to all other pleiotropic of each �jk is constant where �j1 � ��j 2. An allelic substi-

tution at locus j has a pleiotropic effect in this modeleffects. Each of these x sets is a “perfect” module in the
sense that, for the n measured traits, an orthogonal if both of the elements of the allelic vectors are nonzero:

�̃j.i � 0, �jk.i � 0. In this model, forward and backwardrotation can cause the pleiotropic effects of each mod-
ule to fall entirely on a subset of the new axes and not mutations occur at each locus j at the same rate �j,

where a mutation changes an allele’s identity to theat all on new axes affected by the other modules. Distinct
populations have a perfect module in common if the other possible allelic state. The structure of the G matrix

depends on the �̃j (the �jk) vectors and on the allelesame orthogonal rotation also results in perfect mod-
ules. The hypothetical case of perfect modules is used frequencies at the two loci (appendix a). Note that,
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Figure 1.—Cases of (a.1) two modules and (b.1) no modules for the two-locus, two-allele model. The �̃j are vectors of the
average effect of an allelic substitution at locus j. The orientation of the �̃j reflects the relative effects on the first and second
traits (x-axis and y-axis, respectively). Two modules exist in a.1 because �̃1 is orthogonal to �̃2, and no modules exist in b.1
because the vectors are not orthogonal. The diagrams of a.2 and b.2 are the G matrices and PCs for different allele frequencies
if we assume the vectors of a.1 and b.1, respectively. PC1 and PC2 indicate the PCs corresponding to the larger and smaller
eigenvalues, respectively, where length of the PC reflects the relative size of the eigenvalue. Note that in a.2, different allele
frequencies lead to different forms of G, but the direction of the PCs is the same. In contrast, in b.2, the different allele
frequencies lead to different forms of G and different directions of PCs.

in the following, we assume that G can be estimated sider the case diagrammed in Figure 1a.1, where the
allelic vectors of the loci are orthogonal to one another.without error. We return to sampling issues in the

discussion. Rotating the trait axes to the direction of the allelic
vectors associated with each locus produces two newIn this two-locus, two-allele model, existence of a mod-

ule depends on the orientation of the allelic vectors traits, f1 and f2, where the effects of allelic substitutions
at each of the two loci are limited entirely to one of theassociated with each locus. If the allelic vectors at one

locus are orthogonal to the allelic vectors at the other two traits. Both of these new traits, f1 and f2, therefore
define perfect modules. Figure 1b.1 diagrams a caselocus, two perfect modules are present, because the

pleiotropic effects can be divided into two groups that without perfect modules. Because the allelic vectors are
not orthogonal, two modules cannot be defined by ado not have overlapping effects. As an example, con-
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rotation of the axes. However the axes are rotated, allelic 2a.2 provides the equivalent diagram for population B
substitutions at both loci have effects on both new traits. given fixed allele frequencies in population A. Note that
Note that a modular organization is possible in Figure every possible allele frequency results in common PCs,
1b.1 if a nonorthogonal rotation is used, but such trans- regardless of the allele frequency in the other popula-
formations do not result in modules in an evolutionary tion. Contrast this situation with the case diagrammed
sense; i.e., directional selection cannot be applied to in Figure 2b.1, where the populations have the same
such a “module” without resulting in a correlated re- allelic effect vectors, but no modules are present. For
sponse. Such nonorthogonal modules will be the subject these populations, the only allele frequencies for which
of another article (J. G. Mezey and D. Houle, unpub- common PCs occur are described by the dashed and
lished results). We confine the discussion here to mod- dotted lines in Figure 2, b.1 and b.2, respectively. The
ules that can be defined by rotations of the trait axes. allele frequencies that do not fall on these lines result

In this two-locus, two-allele model, the existence of in no common PCs. Therefore, only a very constrained
modules places a major constraint on the possible orien- set of allele frequencies results in common PCs when
tations of G matrix PCs. When modules exist, the PCs no modules are present.
of the G matrix have the direction of the modules, regardless The implication of these results is that, when compar-
of allele frequencies and changes in allele frequencies (appen- ing evolving populations, we should not expect common
dix a). To visualize this relationship between PCs and PCs unless there are common modules. Without mod-
modules, again consider Figure 1. Figure 1a.2 diagrams ules, the allele frequencies required for common PCs
the G matrix and PCs associated with two populations, are so constrained that they are unlikely to occur given
both of which have the modules diagrammed in Figure the stochastic effects of mutation and genetic drift. As
1a.1. The populations have different allele frequencies an example, consider a case in which populations A and
at the two loci, and as a result, the G matrices of the B have the same allelic vectors but no modules exist
populations differ. Although the PCs of G are associated (as in Figure 2a.1). As demonstrated in appendix a,
with different eigenvalues, the PCs have the same direc- common PCs occur in these two populations when the
tion as the modules in both populations. Further, all following constraint is satisfied,
variation attributable to the allelic substitutions defining
an individual module is described by a single PC and H1.B

H2.B

�
H1.A

H2.A

, (3)
its associated eigenvalue. Contrast this case with that
diagrammed in Figure 1b.2, which diagrams G and the

where Hj.P � 2pjkpjl is the heterozygote frequency at locusPCs for two populations where allelic vectors are de-
j in population P and pjk and pjl are the frequencies ofscribed by Figure 1b.1. In this case, the different allele
the alleles k and l. Note that, even if this constraint isfrequencies correspond to different structures of G and
satisfied at some point, any change in allele frequenciesPCs that have different directions. In such cases, there
at the loci in one of the populations must be exactlyis no simple relationship between PCs and the allelic
balanced by a specific change in allele frequencies ineffects associated with each locus.
the other population to preserve the ratios in (3). AnyFor an individual population, the directions of G ma-
other changes in allele frequencies in the other popula-trix PCs are always the same regardless of allele frequen-
tion result in no common PCs. Stochastic changes arecies only if perfect modules exist (appendix a). There-
therefore not expected to preserve the necessary ratios.fore, if distinct populations have such modules in
Of course, situations can be constructed in which thecommon (the modules have the same direction), the
probability of common PCs is high even in the absenceG matrices of the populations will always have common
of modules. For example, infinite populations with thePCs, regardless of allele frequencies. Note that this rela-
same allelic-effect vectors that have reached the sametionship depends entirely on the direction of the mod-
mutation-selection equilibrium would be such a case,ules and not the specific allelic effects defining the mod-
but barring such extreme conditions, we should gener-ules. Populations with different allelic effects at the two
ally expect common PCs only when populations haveloci always have common PCs as long as both popula-
common modules.tions have modules in the same direction. In contrast,

Figure 3 provides a summary of the four possible casesif the populations being compared have no modules,
that can arise when two populations are compared foronly a restricted subset of allele frequencies results in common
the two-locus, two-allele model: (1) The populationsPCs (appendix a), even if the allelic vectors are the
have modules in common (Figure 3a), (2) both popula-same in the populations being compared.
tions have modules but the directions are different (Fig-The cases diagrammed in Figure 2 illustrate these
ure 3b), (3) one population has a module and the otherconcepts. Figure 2a diagrams two populations (A and B)
does not (Figure 3c), and (4) neither population hasthat have modules in common. For these populations,
modules (Figure 3d). Only the case in Figure 3a willFigure 2a.1 diagrams in gray the allele (heterozygote)
always have common PCs. For the cases in Figure 3,frequencies in population A that result in common PCs,

given fixed allele frequencies in population B. Figure b–d, the vast majority of allele frequencies will result in



415Are Common PCs Informative?

Fi
g

u
re

2.
—

A
lle

le
(e

xp
re

ss
ed

as
h

et
er

oz
yg

ot
e)

fr
eq

ue
n

ci
es

fo
r

w
h

ic
h

po
pu

la
ti

on
s

A
an

d
B

h
av

e
th

e
sa

m
e

PC
s.

(a
)

Po
pu

la
ti

on
s

A
an

d
B

h
av

e
co

m
m

on
m

od
ul

es
.a

.1
de

pi
ct

s
in

gr
ay

th
e

h
et

er
oz

yg
ot

e
fr

eq
ue

n
ci

es
fo

r
w

h
ic

h
po

pu
la

ti
on

A
h

as
th

e
sa

m
e

PC
s

as
po

pu
la

ti
on

B
,f

ix
in

g
th

e
h

et
er

oz
yg

ot
e

fr
eq

ue
n

ci
es

in
po

pu
la

ti
on

B
at

H
1.

B
�

0.
3

fo
r

lo
cu

s
1

an
d

H
2.

B
�

0.
2

fo
r

lo
cu

s
2

(t
h

e
bl

ac
k

di
am

on
d

in
di

ca
te

s
th

e
fr

eq
ue

n
ci

es
in

po
pu

la
ti

on
B

).
a.

2
is

th
e

co
rr

es
po

n
di

n
g

gr
ap

h
fo

r
po

pu
la

ti
on

B
,

fi
xi

n
g

th
e

h
et

er
oz

yg
ot

e
fr

eq
ue

n
cy

in
po

pu
la

ti
on

A
at

H
1.

B
�

0.
1

an
d

H
2.

B
�

0.
4.

N
ot

e
th

at
in

bo
th

ca
se

s
an

y
h

et
er

oz
yg

ot
e

fr
eq

ue
n

ci
es

re
su

lt
in

th
e

sa
m

e
PC

s.
(b

)
Po

pu
la

ti
on

s
A

an
d

B
h

av
e

n
o

m
od

ul
es

.
b.

1
an

d
b.

2
de

pi
ct

th
e

h
et

er
oz

yg
ot

e
fr

eq
ue

n
ci

es
fo

r
w

h
ic

h
PC

s
w

ill
be

th
e

sa
m

e
w

h
en

h
et

er
oz

yg
ot

e
fr

eq
ue

n
ci

es
ar

e
fi

xe
d

in
th

e
ot

h
er

po
pu

la
ti

on
.

In
th

is
ca

se
,

th
e

h
et

er
oz

yg
ot

e
fr

eq
ue

n
cy

m
us

t
fa

ll
on

th
e

lin
es

in
b.

1
an

d
b.

2
fo

r
th

e
tw

o
po

pu
la

ti
on

s
to

h
av

e
th

e
sa

m
e

PC
s.



416 J. G. Mezey and D. Houle

Figure 3.—Four cases that
may arise in a comparison of
two populations described by
the two-locus, two-allele model:
(a) The populations have com-
mon modules; (b) the popula-
tions each have modules but
have no common modules; (c)
population A has modules and
population B has no modules;
(d) neither population has
modules.

no common PCs, and we should not expect to find tropic effects on the n traits, although the magnitudes of
the pleiotropic effects associated with particular alleliccommon PCs when the populations are evolving.

Note that, if the allelic vectors in the two populations substitutions at the locus may differ. In this way, the
model differs from the more general additive pleiotro-approximate a perfectly modular case (they are almost

but not quite 90�), only very constrained allele frequen- pic model presented by Lande (1980), where the alleles
at a locus may have different pleiotropic effects.cies result in common PCs as in Figure 3d. This result

may seem strange. The reason for it is that the PCs in In a quantitative genetic formulation, the model of
constrained pleiotropy makes the assumption that theeach G matrix must have exactly the same direction for

common PCs to exist. In the absence of perfect modules, absolute values of the additive-effect vectors of any al-
leles k and l at a locus j are proportional:the vast majority of allele frequencies result in slight

differences in the directions of the PCs in the popula-
|�jk| � |�jl | . (4)

tions and therefore in no common PCs. This is not to
say that we would be able to determine that the PCs are Any number of alleles may be segregating at each locus,

and mutations may introduce new alleles at a locus,different in such a case when analyzing estimates of the
G matrices. The effects of sample size will tend to ob- although the effects of all alleles conform to the con-

straint of Equation 4. The structure of the G matrixscure such subtle differences, so cases that approximate
perfect modules will be indistinguishable from perfect depends on the effects and frequencies of the alleles

segregating in a population. As in the two-locus, two-modules in practice. We return to this issue of how
sample size affects the expectation of finding common allele model, we consider the exact structure of G and

assume no disequilibrium (gametic-phase or otherwise),PCs in the discussion.
no maternal effects, no sex linkage, no genotype-envi-
ronment covariance or genotype-environment interac-

MODEL OF CONSTRAINED PLEIOTROPY
tions, and random mating among diploid individuals.

In the model of constrained pleiotropy, modules existConstraints on pleiotropic effects are the key to whether
common PCs are expected. The model of constrained if, for the N loci that may result in genetic variation in n

traits, a subset of M loci (M 	 N) can be defined wherepleiotropy (Wagner 1989) formalizes a type of con-
straint that can result in common PCs. The conceptual the allelic vectors at each of these M loci are orthogonal

to the allelic vectors at each of the other N � M loci. Inunderpinning of the model is the assumption that allelic
variation at a given locus additively affects variation in this case, for each �jk(M ) that may occur at the M loci and

each �jk(N�M ) that may occur at the remaining N � M loci,a physiological property associated with a gene product
of the locus. The relationship between variation in the

�T
jk(M )�jk(N�M) � 0. (5)

property and the genetic variation in n phenotypic traits
is assumed to be linear and is expressed as a matrix Each subset M defines a module because new traits can

be defined by a rotation of the n trait axes where genetictransformation (hence the model is sometimes referred
to as the “B-matrix” model). These assumptions con- variation in the new traits affected by the M loci is

independent of genetic variation in the rest of the newstrain mutations at a given locus to have the same pleio-
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traits. Note that variation associated with a module M CPC analysis can be informative for comparing G matri-
ces beyond a descriptive summary of matrix similarity.need not fall along a single vector. Modules may there-

fore be multidimensional, but the relationship of such When assessed solely from this perspective, the results
are quite positive. Because of the close relationship be-higher-dimensional modules to the PCs of the G matrix

is more complicated. In this article, we restrict the dis- tween common PCs and modular structure, when com-
mon PCs do exist they have a biological interpretation:cussion to modules in which the allelic vectors at all of

the M loci defining a module have the same direction; Common PCs indicate the existence of common modules. The
intuition that common PCs have a biologically meaning-i.e., |�jk(M)| � |�mk(M)| for all loci j, m in M. We consider

higher-dimensional modules in another article (J. G. ful interpretation is therefore well founded (Phillips
and Arnold 1999).Mezey and D. Houle, unpublished results).

Just as in the two-locus, two-allele model, when a one- The modular structure that is sufficient to create com-
mon PCs is quite restrictive. It requires that the geneticdimensional module exists in a population, a PC with

the same direction as the module will exist regardless effects of some set of loci be orthogonal to those of all
other segregating loci. This requirement is equivalentof allele frequencies (appendix b). Therefore, when

populations have a module in common, they will always to the requirement that some rotation of the axes in
phenotype space that produces traits that are indepen-have a common PC with the same direction as the mod-

ules, regardless of allele frequencies in the populations. dent of all other traits exists. Given the general assump-
tion that pleiotropy is ubiquitous, which we share, theAlso as in the two-locus two-allele model, if the popula-

tions do not have a one-dimensional module in com- existence of such extreme modules seems somewhat
unlikely. Thus, we expect that the form of modularmon, very restricted allele frequencies are required for

common PCs to exist (appendix b). In the model of structure and therefore common PCs is unusual. This
is not to say that cases approximating modular organiza-constrained pleiotropy, x common modules can exist,

0 	 x 
 n, when n traits are considered. The same tions are expected to be so rare that the possibility of
their existence should be discounted. As discussed byreasoning applies to such cases: If populations have x

modules in common, 0 	 x 
 n, at least x (excluding a number of authors (Wagner and Altenberg 1996;
Cheverud et al. 1997; Rice 2000), pleiotropic distribu-n � 1) common PCs will exist, and very restricted allele

frequencies in the two populations will result in more tions that approximate the perfect case (i.e., where
pleiotropic effects are “mainly” limited to a particularthan x common PCs (appendix b).

Figure 4 illustrates these concepts. It diagrams three subset of traits) are not necessarily unexpected, particu-
larly when appropriate sets of traits are considered.different possibilities that may arise when two popula-

tions (A and B) are compared when n � 3. In Figure How are we to reconcile these results with those of
studies that have applied CPC analysis to G matrices4a, the two populations have three modules in common.

The G matrices of these populations will always have and reported many common PCs? For example, Arnold
and Phillips (1999) compared G matrices for six mor-three common PCs; i.e., all PCs will be common PCs.

Note that even if both A and B had three modules phological traits for two populations (inland and coastal)
of the garter snake Thamnophis elegans. CPC analysesbut the modules had different directions in the two

populations, only very restricted allele frequencies would were performed for all possible pairwise comparisons
of G estimated for both males and females in bothresult in common PCs (appendix b). In Figure 4b, the

two populations have a single one-dimensional module populations. For almost all comparisons, the CPC model
CPC(All) could not be rejected. Pfrender and Lynchin common. In this case, the G matrices will always have

one PC in common, although the PC may be associated (2000) estimated G for life-history traits for a population
of Daphnia pulex at four different times. CPC analyseswith different eigenvalues in the two populations. For

there to be more than a single common PC in case 4b, were performed for pairwise comparisons among three
of these matrices. CPC models including at least onevery restricted allele frequencies are required in the two

populations. In Figure 4c, neither population has any common PC could not be rejected for each of these
comparisons.modules. Again, only very restricted combinations of

allele frequencies would yield common PCs. If the intuition that common modules should be rare
is correct, the most likely explanation is that the powerIn summary, when comparing evolving populations

with x common one-dimensional modules, we expect to detect differences in the direction of matrix PCs is
low for the sample sizes commonly used in estimates ofto find exactly x common PCs. The stochastic effects of

mutation and genetic drift are very likely to result in G. This explanation seems particularly likely given the
results of Houle et al. (2002). For example, in theallele frequencies where the other PCs differ in their

orientiations (appendix b). Houle et al. (2002) study, matrices were simulated using
an additive factor model in which the angle between
the directions of the second PCs (corresponding to the

DISCUSSION
second eigenvalue) in two matrices was altered. CPC
analysis using the software of Phillips (1998c) was per-The goal of the theory developed in this article is to

assess whether the CPC model that is the basis of the formed on 100 pairs of estimates of the matrices, with



418 J. G. Mezey and D. Houle

Figure 4.—Three cases comparing
populations (A and B) where variation
in three traits (T.1, T.2, and T.3) is de-
scribed by the model of constrained plei-
otropy. Each �j is a vector in the direc-
tion of additive allelic-effect vectors
associated with a locus j. Populations A
and B have (a) three common modules,
(b) a single common module, and (c)
no modules.

a sample size of 300. For differences in direction of up to mon PCs can be rejected. As Phillips and Arnold
(1999) stated, such a result should not be interpreted6�, both the jump-up and Akaike information criterion

approaches indicated the CPC model equality (all PCs as demonstrating that the matrices have x � 1 common
PCs, only that the presence of x � 1 common PCs cannotare in common) for as many as 50% of the comparisons.

Because the sample sizes for most estimates of G are be rejected. It is tempting, however, to interpret stop-
ping position as a reflection of matrix similarity. In fact,not large (Steppan et al. 2002), this result indicates that

CPC analysis may be indicating more common PCs than the results of a CPC analysis reflect both matrix similarity
and statistical power.actually exist as a result of low sample sizes.

One reason for the inability of CPC analysis to distin- The sensitivity of CPC results to sample size means
that, in practice, we cannot necessarily interpret com-guish distinct PCs when sample sizes are low may be

the way that position in the Flury hierarchy is assessed mon PCs as a demonstration of common modules. How-
ever, CPC analysis could be a useful tool for indicating(Phillips and Arnold 1999). For example, the decision

to move up in the Flury hierarchy in the jump-up ap- which sets of traits are likely to have a modular organiza-
tion, particularly if methods for assessing confidence inproach advocated by Phillips and Arnold (1999) is

based on being unable to reject a hypothesis of common the existence of common PCs could be developed. We
would not expect to have high confidence in a commonPCs vs. a hypothesis that no common PCs exist. One

moves up in the hierarchy until a hypothesis of x com- PC among G matrices unless the populations have ap-
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proximately modular organizations in common. The formed. If this problem could be addressed, CPC analy-
sis of G matrices could provide biologically useful insightexistence of modules would always have to be confirmed

by independent means, because even without common beyond a summary of matrix structure. In this role,
CPC analysis could be particularly useful for addressingmodular organization, the allele frequencies required

to produce a true common PC among G matrices could questions that require a relatively complete picture of
genetic architecture: Do modules correspond to func-have occurred by chance.

In the context of identifying which sets of traits may tional architectures (Houle et al. 2002; Steppan et al.
2002)? To what extent is the structure of the G matrixhave a modular organization, the reordering option

available in the CPC analysis software of Phillips constrained (Turelli 1988)? How modular is the G-P
map (Wagner 1996)?(1998a,b,c) is valuable. The default is that the program

estimates the model CPC(All) for the combined data We thank Kyle Galivan, Thomas F. Hansen, Frances C. James, Eric
and builds the common PC models of the Flury hierar- Klassen, Joseph Travis, Zhao-Bang Zeng, and two anonymous reviewers

for their comments on this manuscript. This work was supported bychy [PCPC(1), PCPC(2), etc.], using the common PCs
National Science Foundation grant no. 0129219.of CPC(All) in rank order according to the size of their

eigenvalues. The reordering option allows the user to
designate a different ordering scheme. This flexibility
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APPENDIX A: TWO-LOCUS, TWO-ALLELE MODEL

It is assumed that the entirety of the genetic variation in n � 2 traits is determined by alleles segregating at N �
2 loci where only two alleles are possible at each locus. Forward and backward mutations occur at locus j at the
same rate, �j. We assume no dominance, epistasis, disequilibrium (linkage or otherwise), maternal effects, sex linkage,
genotype-environment covariance, or genotype-environment interactions. We assume random mating among diploid
individuals. �jk.i is the additive effect of allele k at locus j associated with trait i, pjk is the frequency of allele k, and
�̃j.i is the average effect of an allelic substitution at locus j on trait i such that pjk�̃j.i � �jk.i (Lynch and Walsh 1998).
Designating Hj � 2pjkpjl as the heterozygote frequency at locus j (0 
 Hj 
 0.5), the G matrix can be written as

G � � �
2

j�1

Hj �̃j.1
2 �

2

j�1

Hj �̃j.1�̃j.2

�
2

j�1

Hj �̃j.1�̃j.2 �
2

j�1

Hj �̃j.2
2 � . (A1)

Note that, under the assumption of no nonadditive effects, the �̃j.i are constant, so the structure of G is a function
of the allele frequencies, which may change as a result of mutation, selection, or genetic drift. A population is
defined as having two modules if the vectors describing the average effect of an allelic substitution are orthogonal:
�̃T

1�̃2 � 0, where �̃j � [�̃j.1, �̃j.2]. In such a case, each �̃j defines a module (see text). The existence of modules can
also be written as �T

1k �2l � 0 for all alleles k and l at the two loci where �jk � [�jk.1, �jk.2]. If these conditions do not
apply, no modules exist. Below, we assume that G has no multiplicity of eigenvalues and is of full rank unless noted.
This latter assumption requires that all pjk � 0 and that �̃1 and �̃2 have different directions.

Result A1: If populations have modules with the same direction, the G matrices have common PCs for all allele frequencies.

The matrix G is a real, 2 � 2, symmetric matrix. An orthonormal matrix Q and a diagonal matrix � therefore
exist, such that

G � Q�QT , (A2)

where each column vector q of Q is a PC, an eigenvector, of G (q1 ⊥ q2 � 0 and qT
1q2 � 1) and each diagonal

element of � (
1 and 
2) is an eigenvalue. In the absence of a multiplicity of eigenvalues, the spectral decomposition
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of G exists and is unique. In this case, no other matrix Q, defined up to the multiplication of columns by �1 and
column permutation, produces a diagonalization of G (Flury 1988).

If two modules exist (�̃1 ⊥ �̃2), the matrix Ã can be defined as

Ã � � �̃1

||�̃1||
,

�̃2

||�̃2||
� , (A3)

where ||�̃j || � �√�̃T
j �̃j. Note that Ã is an orthonormal matrix with column vectors that have the same direction as

�̃1 and �̃2. Also define the diagonal matrix D with diagonal elements dj � Hj ||�̃j ||2. The matrix G can be written as

G � ÃDÃT. (A4)

This relation holds with the same orthonormal matrix Ã no matter what the allele frequencies in the population.
Because this expression is a diagonalization of G, the uniqueness of the spectral decomposition implies that Q �
Ã (up to column permutation and multiplication of columns by �1). Therefore, if �̃1 ⊥ �̃2, the matrix G has PCs
with the same direction as the modules (i.e., the same direction as �̃1 and �̃2) regardless of allele frequencies. Also,
each eigenvalue 
j is a function of the allele frequency at a single locus: 
j � Hj ||�̃j ||2. Therefore, in a population
with modules, each PC accounts for the entirety of the variation attributable to a single module, which in this case
is defined by allelic variation at a single locus. Because the G of a population with modules has the same PCs
regardless of allele frequencies, if other populations have modules with the same direction, the G matrices of the
populations will have two common PCs (i.e., both PCs will have the same direction) although the eigenvalues
associated with the PCs in the two populations may differ.

Note that in the special case where an allele at one locus goes to fixation in one of the populations, the same
argument can be used to demonstrate that there will still be two common PCs if the �̃j at the other locus has the
same direction as a module in the other population. In such a case, a zero eigenvalue will be associated with one
of the PCs in the population with the fixed allele. Similarly, if both �̃j in one population have the same direction,
if the direction is the same as that of a module in the other populations, common PCs will still exist. These results
also hold in the case where one or several of the G matrices have a multiplicity of eigenvalues. The reason is that
the common PC model framework handles such cases where the eigenvector matrix is not unique by choosing the
direction of the PCs to correspond to the PCs of other matrices (if possible). Also note that, if populations have
modules with different directions, they will never have common PCs, unless allele frequencies are such that a
multiplicity of eigenvalues exists. Because the approach used in Result A2 can be used to demonstrate that a
multiplicity of eigenvalues in the G matrix occurs only for a very restricted set of the possible allele frequencies,
common PCs are not expected when modules are not in common.

Result A2: If populations A and B have no modules, given heterozygote frequencies in population A, a line intersecting the
region bounded by the square of possible heterozygote frequencies in population B (0 
 Hj.B 
 0.5) describes the frequencies that
result in common PCs in GA and GB.

An intuitive interpretation of this result is that the number of heterozygote (allele) frequencies for which GA and
GB have common PCs is far smaller than the number of heterozygote (allele) frequencies for which the PCs are
different. For example, given heterozygote frequencies in population A (H1.A and H2.A) for every heterozygote
frequency H1.B at the first locus in population B, a single frequency H2.B at the second locus produces common PCs.
All other frequencies at the second locus will result in different PCs.

Assume that there are no modules in population B, such that �̃T
1.B�̃2.B � 0. Fix H1.A and H2.A between 0 and 0.5

and assume that alleles are segregating at both loci in population B. Define the PC matrices of GA and GB as QA

and QB. By the spectral theorem, if population B has the same PCs as population A, then QB � QA (up to column
permutation and multiplication of columns by �1), and we can write

GB � QA�BQT
A . (A5)

From (A1), we can rewrite GB as

GB � H1.B(�̃1.B�̃T
1.B) � H2.B(�̃2.B�̃T

2.B). (A6)

Therefore, for population B to have the same PCs as population A, the following relation must be satisfied:

H1.BQT
A(�̃1.B�̃T

1.B)QA � H2.BQT
A(�̃2.B�̃T

2.B)QA � �B. (A7)

The off-diagonal elements of the matrix on the left side of (A7) are the same and are equal to zero elements in
the matrix on the right side:

H1.B(q11.A�̃1.1.B � q12.A�̃1.2.B)(q21.A�̃1.1.B � q22.A�̃1.2.B) � H2.B(q11.A�̃2.1.B � q12.A�̃2.2.B)(q21.A�̃2.1.B � q22.A�̃2.2.B) � 0, (A8)
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where �̃j.i.B is the average effect of an allelic substitution at locus j on trait i in population B and qjk.A is element k of
column j of matrix QA. Note that if we assume population B has no modules, �̃T

1.B�̃2.B � 0, and because qT
1.Aq2.A � 0,

if the term in (A8) associated with either H1.B is zero, the other term associated with H2.B is positive. In such a case
(A8) can be satisfied only if H2.B � 0 (and vice versa). Because we are currently concerned with common PCs and
assume alleles are segregating at all loci, it is the case that

(q11.A�̃1.1.B � q12.A�̃1.2.B) � 0, (q21.A�̃1.1.B � q22.A�̃1.2.B) � 0

(q11.A�̃2.1.B � q12.A�̃2.2.B) � 0, (q21.A�̃2.1.B � q22.A�̃2.2.B) � 0. (A9)

Given (A8) and (A9), for population B to have the same PCs as population A, the heterozygote frequencies at the
two loci in population B must satisfy the following relationship:

H1.B

H2.B

� �
(q11.A�̃2.1.B � q12.A�̃2.2.B)(q21.A�̃1.1.B � q22.A�̃2.2.B)
(q11.A�̃1.1.B � q12.A�̃1.2.B)(q21.A�̃1.1.B � q22.A�̃1.2.B).

(A10)

Note that a single set of PCs is associated with each pair of heterozygote frequencies, so if (A10) holds for H1.B and
H2.B , the equations defined by the diagonal elements of (A7) are satisfied by the eigenvalues of GB corresponding
to H1.B and H2.B :

H1.B(q11.A�̃1.1.B � q12.A�̃1.2.B)2 � H2.B(q11.A�̃2.1.B � q12.A�̃2.2.B)2 � 
1.B

H1.B(q21.A�̃1.1.B � q22.A�̃1.2.B)2 � H2.B(q21.A�̃2.1.B � q22.A�̃2.2.B)2 � 
2.B . (A11)

Therefore, only when the heterozygote frequencies in population B satisfy (A10) are the PCs of GB in the same
direction as the PCs of GA (i.e., two PCs are in common). These heterozygote frequencies can be visualized as
falling on a one-dimensional “plane” that cuts through the region bounded by the square of possible heterozygote
frequencies in population B where 0 
 Hj.B 
 0.5. The ratio of the number of heterozygote frequencies for which
common PCs occur to all possible heterozygote frequencies is small. Therefore, the vast majority of the possible
allele frequencies in population B result in different PCs in the two populations and similarly for population A
when heterozygote frequencies in population B are held constant. Under the special case in which the same alleles
are segregating in both populations (�̃1.A � �̃1.B and �̃2.A � �̃2.B), common PCs occur only when

H1.B

H2.B

�
H1.A

H2.A

, (A12)

which happens when GA � GB.
The constraint of (A10) makes common PCs unexpected among the G matrices of populations A and B if there

are no modules. The reason is that, even if this constraint is satisfied at some point, any change in allele frequencies
at one locus must be exactly balanced by a change at the other locus that preserves the ratios in (A10). The stochastic
changes in allele frequencies due to mutation and genetic drift are therefore not expected to preserve the necessary
ratios.

Note that, although two populations are considered in this section, the reasoning can also be extended to multiple
populations. Also, the same reasoning can be used to demonstrate that, in the case where an allele at one locus
goes to fixation in one of the populations or where both �̃j in one population have the same direction, the allele
frequencies required for common PCs are highly constrained in the same fashion. The case of multiplicity of
eigenvalues does not occur in the special case of the two-locus, two-allele model when the �̃j in a population are
not orthogonal.

APPENDIX B: THE MODEL OF CONSTRAINED PLEIOTROPY

appendix b extends the framework outlined in Result A1 and Result A2 to the model of constrained pleio-
tropy of Wagner (1989). The model of constrained pleiotropy assumes that all segregating alleles and all possible
mutant alleles at an individual locus j have effects that fall along a single vector. In a quantitative genetic formulation,
the absolute values of the additive effect vectors of any alleles k and l at a locus j are proportional: |�jk| � |�jl |.
Mutations are assumed to occur at each locus j at a rate �j. Here, n traits are being considered in all populations
being compared, although the populations may have different numbers of loci. We assume random mating among
diploid individuals in a population. We also assume no dominance, epistasis, disequilibrium (linkage or otherwise),
maternal effects, sex linkage, genotype-environment covariance, or genotype-environment interactions.

The additive effect of allele k at some locus j for n traits is
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�jk � �
Jj

l
pjlgkl � �g , (B1)

where pjl is the frequency of allele l, Jj is the number of alleles at locus j, each entry of gkl � [gkl.1, . . . , gkl.n] is the
mean phenotype of trait i given alleles k, l at locus j, and each entry of �g � [�g.1 , . . . , �g.n] is the mean genotypic
value of trait i (Lynch and Walsh 1998). In the absence of dominance gkl � (gkk � gll)/2, and making this substitution
into (B1), we can write the additive effect of an allele as follows:

�jk � pjkgkk �
1
2�

Jj

l�k
pjl(gkk � gll) � pjkgkk�

Jj

m
pjm � �

Jj

l�k
pjl gll ��

Jj

m
pjm� (B2)

�jk �
1
2�

Jj

l�k
pjl(gkk � gll). (B3)

Under the assumption of constrained pleiotropy, the genotypic values associated with a locus are proportional and
this condition requires that gkl � gqr for all alleles k, l, q, r at locus j. We can therefore write

�jk �
1
2��

Jj

l�k
pjl(�kk � �ll)��j , (B4)

where �j � [�j.1 , . . . , �j.n] is the unit scaled vector in the direction of the pleiotropic effect associated with locus j,
and the � are scalars. In the model of constrained pleiotropy, each of the �j are constant. Note that under the
assumed conditions the G matrix can be written

G � �
N

j
�

Jj

k
pjk �jk�T

jk . (B5)

Setting �jk � 1⁄2(� Jj
l�k pjl(�kk � �ll)) and Lj � 2� Jj

k pk�jk
2, we can write G as

G � �
N

j
Lj�j�T

j . (B6)

Below, we assume that G has no multiplicity of eigenvalues and is of full rank unless noted.
Modules exist in a population if a subset of M loci (M 	 N) exists in which the allelic vectors at each of these M

loci are orthogonal to the allelic vectors at each of the other N � M loci. This means that, for each �jk(M) that may
occur at the M loci and each �jk(N�M) that may occur at the remaining N � M loci,

�T
jk(M )�jk(N�M) � 0. (B7)

If no subsets of M loci satisfy this relationship, a module does not exist. Note that in the following, we are concerned
only with modules that are one-dimensional where |�jk(M)| � |�mk(M)| for all loci j, m in a subset of M loci that define
a module.

Result B1: For each pair of modules that populations have in common, the G matrices have a common PC with the same
direction as the module, regardless of allele frequencies or effects of mutations in the populations.

In a population in which M 	 N loci define a module, the G matrix can be written as

G � �
M

j
Lj�j�T

j � �
N�M

j
Lj�j�T

j , (B8)

where the first summation is over the M loci defining the module and the second is over the remaining N � M
loci. Each summation term is itself a matrix:

G � GM � GN�M . (B9)

Because we have assumed that G is of full rank, at least two alleles are segregating at at least one locus in M. If so,
regardless of the specific set of alleles and the frequency of alleles in the population, the allelic vectors defining
the module span a one-dimensional space in n, and the rest of the allelic vectors span an n � 1-dimensional space
that is orthogonal. Correspondingly, the matrix GM is of rank 1 and GN�M is of rank n � 1. The spectral decomposition
of GN�M produces a zero eigenvalue:
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QT
N�MGN�MQN�M � �

0 0 . . . 0
0 
1.N�M

......
. . . 0

0 . . . 0 
n.N�M
� . (B10)

Because the allelic vectors of the N � M loci span the n � 1 space, the eigenvector corresponding to the zero
eigenvalue is orthogonal to the n � 1-dimensional space and has the same direction as the module regardless of allele
frequencies or the effects of mutation in the population. Applying QN�M to the matrix GM produces

QT
N�MGMQN�M � �


M 0 . . . 0
0 0

......
. . . 0

0 . . . 0 0
� , (B11)

where 
M corresponds to the eigenvector with the same direction as the module. The orthonormal matrix QN�M

therefore diagonalizes G,

QT
N�MGQN�M � QT

N�M(GM � GN�M)QN�M � �, (B12)

and is unique up to column permutation and multiplication of columns by �1, by the spectral theorem. Therefore
a PC of G that has the same direction as the module always exists, and from (B11), this PC also accounts for the
entirety of the variation segregating at the loci defining the module. Because the population has a PC that always
corresponds to the module regardless of allele frequencies, if several populations have a module with the same
direction, these populations will always have a common PC with the same direction as the module. The argument
also holds for any number of modules (up to n), so a common PC occurs in the G matrices corresponding to each
pair of modules that the populations have in common. Note that the same argument can be used to demonstrate
that populations with modules in common will have common PCs corresponding to the modules even when the G
matrix is not of full rank. Similarly, as explained for the two-locus, two-allele model, common PCs will occur when
common modules do, even if G has a multiplicity of eigenvalues.

Result B2: For populations A and B with no common modules, given allele frequencies in population A, the allele frequencies
that result in common PCs in GA and GB are described by n overlapping quadratic (NBJB � n � 1 )-dimension planes intersecting
the NBJB -dimension region describing the possible allele frequencies at each of the NB loci in population B.

�(x) indicates a matrix with elements �ij , where element �xx is a positive value, all other elements in column �x�

and row ��x are zero, and all other elements may or may not be equal to zero. For example, �(1) is an instance of
a matrix with the following form,

�
�11 0 . . . 0
0 �2,2 . . . �n,2...

...
. . .

...
0 �2,n . . . �n,n

� , (B13)

where each �ij except �11 may or may not be equal to zero. In this notation, if populations A and B have PC x in
common, the following relation holds:

QT
AQB � �(x) . (B14)

We consider the GA and GB associated with populations A and B at a given point in time. The populations segregate
for NA and NB loci, respectively. By the spectral theorem and (B6), for population B to have PC x in common with
population A, the following relation must be satisfied:

�
NB

j
Lj.BQT

A(�j.B�T
j.B)QA � �(x) . (B15)

Under the definition of Lj above, the off-diagonal elements of column (or row) x of the matrix on the left side of
this relation define a system of n � 1 equations of the form

2�
NB

j
�
Jj.B

k
pk�k.B

2(qx1.A�j.1.B � . . . � qxn.A�j.n.B)(qi1.A�j.1.B � . . . � qin.A�j.n.B) � 0 (B16)

for 0 	 i 
 n, i � x. Note that each �k is a linear function of the allele frequencies at locus j, excluding allele k.
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The highest-order terms of (B16) are therefore quadratic. The allele frequencies in population B that satisfy the
equations of (B16) are described by a quadratic plane with a maximum of (NBJB � n � 1 ) dimensions, where JB is
the mean number of segregating alleles per locus in population B. The frequencies for which the populations have
PC x in common are described by the part of this plane that intersects the region bounded by the NBJB -dimension
region describing the possible allele frequencies at each of the NB loci in population B. The part of this region
describing the allele frequencies of the Jj.B alleles at a single locus j is a Jj.B-dimension simplex (0 
 pk.B 
 1, (�Jj.B

k

pk.B) � 1). With respect to the allele frequencies of any two alleles from different loci, the region has the form of
a square (0 
 pk.B 
 1 for allele k at each locus). Note that the quadratic plane describing the allele frequencies
that result in common PCs is always at least one less than the dimensionality of the figure. Therefore, the ratio of
the number of allele frequencies for which PC x is common to all possible allele frequencies is always small and
gets smaller the greater the number of traits n.

The constraint of (B16) makes common PCs unexpected among the G matrices of populations A and B if no
modules exist. The reason is the same as for the two-locus, two-allele model. Even if the constraint is momentarily
satisfied, any change in allele frequencies must be exactly balanced by changes in other allele frequencies to satisfy
the constraint, and these frequencies represent a small fraction of possible allele frequencies. The stochastic changes
in allele frequencies due to mutation and genetic drift are therefore not expected to preserve the constraint in
(B16).

If relation (B16) is satisfied, the populations have a single PC x in common, but for n traits, n PCs may be in
common. For each of these, a system of n � 1 equations of the form of Equation B16 define a quadratic (NBJB �
n � 1)-dimension plane (for n � 2, the systems are the same). Where these planes intersect the figure, at least one
PC is in common, and where these planes overlap, there is more than one common PC. Although more traits define
more planes, each plane is of correspondingly lower dimension. Therefore, as n gets larger, the ratio of the number
of allele frequencies for which at least one PC is in common to the number of possible allele frequencies gets
smaller.

Note that, although two populations are considered in this section, the reasoning can also be extended to multiple
populations. Also, for completeness, three special cases must be considered. In the case where populations A and
B have x pairs of common modules, at least x common PCs will exist, as discussed above. In this case, the frequencies
in population B for which x � 1 (where x 	 n � 2) common PCs exist are described by the portion of an (NBJB �
CB) � (n � x) � 1-dimension plane that intersects the region bounded by a (NBJB � CB)-dimension figure, where
CB is the number of allelic vectors defining the modules in population B. Two other special cases are those in which
each population has a module but the modules have different directions. If the modules are orthogonal in the
space of n traits, common PCs are again described by the portion of an (NBJB � CB) � (n � x) � 1-dimension
plane that intersects the region bounded by the (NBJB � CB)-dimension figure. If the modules in the two populations
are not orthogonal in the space of n traits, at least two PCs will exist that are not in common unless allele frequencies
are such that a multiplicity of eigenvalues occurs.




