
Hansen, T. F., and D. Houle. 2008. Measuring and comparing evolvability and constraint in 
multivariate characters. Journal of Evolutionary Biology 21:1201-1219. 

 
This document contains a PDF file of the published version of this paper, plus a series of 
corrections for errors in the two Appendices.  The errors in Appendix 1 affected the 
approximations for mean conditional evolvability, c  (Eq. 5), mean respondability, r  (p. 1206), 
mean autonomy, a  (Eq. 6), and mean response difference, d  (Eq. 8) The corrected versions are 

 

 

[ ] [ ]

( )

[ ]
[ ]

[ ] [ ] [ ] [ ] [ ] [ ] ( )

( )

2
2

2
2

2 I 1
H 1 ,

2

I
E 1 ,

4 2

H I I 1 1 H E 2 I I 1 2
1 2 ,

E 2

I
E 1 ,

4 2

c
k

r
k

k
a

k

d
k

λ
λ

λ
λ

λ λ λ λ λ λ λ
λ

δ
δ

⎛ ⎞
≈ +⎜ ⎟+⎝ ⎠

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟⎡ ⎤≈ −⎣ ⎦ ⎜ ⎟+⎝ ⎠
⎛ ⎞+ − + + +

≈ +⎜ ⎟+⎝ ⎠
⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟⎡ ⎤≈ −⎣ ⎦ ⎜ ⎟+⎝ ⎠

 

 

where the meaning of the symbols and functions are given in the paper. These errors also 
affected results in Figures 2, 4 and 5.  New versions of these are also included here, although the 
differences from the original figures are very small. 
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Introduction

The G matrix summarizes the nature of additive genetic

variance and covariance around a multivariate popula-

tion mean. Its most familiar use is to calculate how a

pattern of selection on a multivariate character, described

by a directional selection gradient, b, is transformed into

a response to selection, D�z, through the ‘Lande equation’,

D�z ¼ Gb (Lande, 1979). This equation, together with a

method for estimating the selection gradient in natural

populations (Lande & Arnold, 1983), has spurred tre-

mendous interest in the study of multivariate selection

and its relationship to selection responses. The result has

been a small boom in empirical estimates of G matrices

(Steppan et al., 2002) and of selection gradients (King-

solver et al., 2001; Hereford et al., 2004), although rarely

of both in the same systems (for exceptions see, e.g.

Blows et al., 2004; Coltman et al., 2005; Foerster et al.,

2007).

Although the importance of predictions based on the

Lande equation is appreciated, there has been little work

on how to compare responses as a function of G. Even

when selection gradients are estimated, biologists suspect

that gradients will vary with the environment and thus

not necessarily be typical of natural selection over longer

time periods. Consequently, most work has interpreted

the structure of G matrices with no reference to partic-

ular selection gradients. The challenge with any general

analysis is that the G matrix is a very complex entity,

consisting of k(k + 1)/2 parameters when k traits are

studied. This task is relatively simple when k ¼ 2, in
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Abstract

The Lande equation forms the basis for our understanding of the short-term

evolution of quantitative traits in a multivariate context. It predicts the

response to selection as the product of an additive genetic variance matrix and

a selection gradient. The selection gradient approximates the force and

direction of selection, and the genetic variance matrix quantifies the role of the

genetic system in evolution. Attempts to understand the evolutionary

significance of the genetic variance matrix are hampered by the fact that the

majority of the methods used to characterize and compare variance matrices

have not been derived in an explicit theoretical context. We use the Lande

equation to derive new measures of the ability of a variance matrix to allow or

constrain evolution in any direction in phenotype space. Evolvability captures

the ability of a population to evolve in the direction of selection when

stabilizing selection is absent. Conditional evolvability captures the ability of a

population to respond to directional selection in the presence of stabilizing

selection on other trait combinations. We then derive measures of character

autonomy and integration from these evolvabilities. We study the properties

of these measures and show how they can be used to interpret and compare

variance matrices. As an illustration, we show that divergence of wing shape

in the dipteran family Drosophilidae has proceeded in directions that have

relatively high evolvabilities.
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which case the G matrix consists of two additive genetic

variances and an additive genetic covariance. Simulation

studies often restrict themselves to two-character cases

for this reason (e.g. Jones et al., 2003, 2004, 2007).

Starting with Olson & Miller (1958), many proposals

have been made for summary measurements and

decompositions that aid the interpretation of variance

matrices (Van Valen, 1978, 2005; Cheverud et al., 1983,

1989; Flury, 1984; Wagner, 1984; Airoldi & Flury, 1988;

Zhivotovsky, 1988; Schluter, 1996; Chernoff & Mag-

wene, 1999; Phillips & Arnold, 1999; Klingenberg &

Leamy, 2001; Magwene, 2001; Blows & Higgie, 2003;

Hansen et al., 2003a; Blows et al., 2004; Blows, 2007;

Cheverud & Marroig, 2007; Mitteroecker & Bookstein,

2007; Kirkpatrick, 2008). Some of these measures have

an interpretation that connects them to evolutionary

theory, such as Schluter’s (1996) genetic lines of least

resistance, but, unfortunately, most do not. For example,

element-wise matrix correlations are often used to

compare the similarity of variance matrices, including

G matrices. The correlation of matrix elements is a

measure of some sort of similarity, but there is no clear

relationship between this measure and evolution. This

criticism can also be raised against principal components

analysis. Although it makes statistical sense to decompose

variance matrices into independent axes of information,

the biological and evolutionary meanings of those axes

are usually unclear (Houle et al., 2002; Mezey & Houle,

2003).

Schluter’s (1996) contribution was to provide an

evolutionary interpretation of the first principal compo-

nent of the G matrix as the direction in phenotype space

with the highest evolvability. This ‘genetic line of least

resistance’ thus answers one evolutionary question we

may ask about the G matrix. There are, however, many

other evolutionary questions that can be asked, and we

need to develop measures to answer them.

In this paper, we develop measures of evolvability

based on the G matrix that are derived from simple

evolutionary models. The goal is to present a toolbox

for analysing the multivariate evolvability of natural

populations. We illustrate the methods with an analysis

of the relationship between evolvability and among-

species divergence in the wings of drosophilid flies.

Prelude: the meaning of measurement

To understand our approach, it is helpful to discuss some

concepts and ideas from formal measurement theory

(e.g. Hand, 2004). Measurement theory concerns the

relationship between attributes of reality and the mea-

surements we make to represent those attributes. The

fundamental idea is that measurements are intended to

capture specific relationships among the attributes we

measure; therefore, any manipulation of the measure-

ments after they are obtained should preserve the

relationships of interest. An explicit measurement-theo-

retical perspective helps to ensure that measurements

and statistical procedures are made in a manner consis-

tent with the theoretical context that motivated the

measurements. All too often, data are collected with only

a vague sense that they are correlated with something

useful to know, and manipulations are chosen to

conform to particular statistical models, regardless of

whether the theoretical relevance of the measurements is

preserved. This can remove the results of an analysis

from the theoretical context that inspired an experiment

in the first place.

Here, the attributes of ‘reality’ that concern us are

those that capture the ability of a population to evolve.

The Lande equation makes clear that the G matrix tells

us what evolutionary response to expect when the

genetic system is exposed to a given pattern of

directional selection, as described by a selection gradi-

ent. We are concerned primarily with measuring and

comparing the evolvabilities of traits within a popula-

tion and the evolvabilities of different populations. To

make such comparisons, we need to pay close attention

to the scales of measurement employed. The claim that

trait A is more evolvable in centimetres than trait B is

in grams is not meaningful. Most researchers therefore

put traits on a common scale, for example by dividing

measurements by the mean or by the standard devi-

ation. These scales have different properties and differ-

ent interpretations (see, e.g. Hereford et al., 2004).

Formal measurement theory recognizes a number

of different scale types defined by the information

we want to preserve about the measured attributes

(Stevens, 1946, 1959, 1968; Sarle, 1997). Consider a set

of measures such that xA denotes a measurement taken

on object A, xB denotes a measurement taken on object

B, etc. If values only reflect the order of the attributes

measured, e.g. xA > xB > xC > xD, we have an ordinal

scale. If values also convey information about the sizes of

differences, such as xA ) xB > xC ) xD, we have an

interval scale. If values convey information about ratios,

e.g. xA/xB > xC/xD, but differences are not meaningful, we

have a log-interval scale. If values convey information

about the sizes of both ratios and differences, we have a

ratio scale. Finally, if the individual measurements

themselves have a natural meaning, so any alteration

of values alters their meaning, we have an absolute scale.

Important examples of an absolute scale are absolute

fitness and probabilities.

With this in mind, it is clear that many transforma-

tions of data will alter the relationships implied by the

scale type. Transformations that do preserve the scale-

specific information are called permissible (Stevens,

1946). For example, on a ratio scale only transforma-

tions, f(Æ), that ensure both that if xA ) xB > xC ) xD

then f(xA) ) f(xB) > f(xC) ) f(xD) and that if xA/xB > xC/

xD then f(xA)/f(xB) > f(xC)/f(xD) are permissible. The

only such transformation is multiplication by a positive

constant. The log-interval scale permits more general
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power transformations, f(x) ¼ axb. An interval scale

permits any linear transformation, that is, both addi-

tion and multiplication. On an ordinal scale, any

monotonic transformation is permissible.

Quantitative genetics is usually concerned with

characters that are on absolute, ratio, log-interval or

interval scales. For example, measurements of relative

fitness are on a ratio scale, because both ratios and

differences are meaningful. Many measures of fitness

components, size or amount are either on ratio or on

log-interval scales, depending on how they are inter-

preted. For example, a set of measurements of lengths

can all be treated as being on a ratio scale, but if those

lengths are treated as a measure of size, which can also

be measured by area or weight, then each measure is

related to size and to other measures of size by a

power function (Lande, 1977; Houle, 1992) and are

therefore on a log-interval scale. Traits such as the

seasonal timing of germination or break from diapause

are most usefully treated as interval, as the origin for

the timing of these events is rarely clear.

Log transformations are widely used, but measurement

theory suggests that they may be overused. A log-interval

scale can be transformed to an interval scale by a log

transformation, allowing the same inferences to be made

about differences that were reflected in ratios of the

original measurements, but log transformation also

changes the relative magnitudes of differences, and

therefore of statistics like variances. Therefore, the use

of a log transformation implies the strong assumption

that differences are not meaningful and thus that the

measurements are not on a ratio scale. Note also that

logarithms do not have units; so, further standardization

is usually not sensible. Other common transformations

used to solve statistical problems are seldom permissible

from a measurement-theoretical perspective. For exam-

ple, transformations to normality, which are by necessity

nonlinear, fundamentally change the scale and therefore

the meaning of the measurements. In response to this,

many defend nonlinear transformations by pointing out

that back transformation is always possible. Although

this claim is true for the data, it is not true for the

parameter estimates derived from the data, which are

nearly always the only thing that is published. This does

not preclude use of such transformations, but it means

that the resulting estimates lose some of their connection

with the theoretical context.

Measurement theory also helps us think about which

transformations are meaningful, as opposed to what is

permissible. Division by mean or standard deviation is

permissible on ratio, log-interval or interval scales, but

it will aid interpretation only when the mean or

standard deviation is itself meaningful. For example,

scaling in relation to the mean is both permissible and

meaningful on a ratio or log-interval scale because it

gives readily interpretable meaning to the value 1. On

an interval scale, scaling by the mean does not add

meaning, because the mean is arbitrary, but it is

permissible because inferences about differences are not

altered. A variance requires preservation of relations

among differences and is thus meaningful on interval

and ratio scales, but not on a log-interval scale. For

example, variances of size do not have the same

relationship when length, area or volume is used to

measure size (Lande, 1977; Houle, 1992). Neither

scaling is meaningful on an ordinal scale.

Traits on different scales and scale types are often

combined in the same study and lead to selection gradients

and G matrices in which the elements have different units,

raising interpretational problems for summary statistics

computed on any part of the model. If the G matrix is

studied in isolation from a selection gradient or a selection

response, then some traits or directions in phenotype

space may numerically dominate the rest in a meaningless

manner. Comparable scaling of the traits is therefore

desirable but may be difficult to achieve if we combine

traits on different scale types. Below, we suggest some

general approaches to multivariate scaling. In most cases,

we find that mean scaling is most informative (Houle,

1992; Hansen et al., 2003b; Hereford et al., 2004), but we

warn that this rule of thumb should not to be elevated to a

general principle. There is no substitute for careful

attention to the properties and interpretations of

measurements in each case.

Standardization of evolvability and
selection strength

The theoretical context that we shall use to develop our

measures is the standard quantitative genetic account of

the response to selection as embodied in Lande’s (1979)

multivariate equation D�z ¼ Gb, where D�z is the response

to selection (i.e. the change in the mean of the trait vector

from one generation to the next), G is the additive genetic

variance matrix and b is the selection gradient (a vector of

partial regression coefficients of relative fitness on the

traits in the trait vector). This simple set-up shows that any

evolutionary measurement of G must be consistent with

measurements of �z and b. A variance-scaled selection

gradient cannot be meaningfully combined with a mean-

scaled evolvability (Hereford et al., 2004).

Univariate standardizations

On a ratio or log-interval scale, we can obtain dimension-

free and internally consistent measurements of response

to selection, evolvability and strength of selection by

standardizing with the mean:

D�z

�z
¼ G

�z2

� �
ðb�zÞ � IAbl;

where G is the univariate additive genetic variance and

IA is the mean-scaled additive variance (Houle, 1992).

Alternatively, values on both ratio and interval scales can
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be standardized with the phenotypic standard deviation,

rz, as

D�z

rz

¼ G

r2
z

� �
ðbrzÞ � h2br;

where h2 is the heritability, which is thus a measure of

evolutionary potential for traits on an interval scale.

Multivariate standardizations

In the multivariate case, the selection gradient and

response become column vectors. For traits on ratio

and log-interval scales, the elements of the response

vector and the selection gradient can each be standard-

ized by the corresponding trait means, yielding the

mean-standardized selection gradient bl � �z� b, where

� denotes element-wise multiplication, also known as a

Hadamard product. The additive genetic variances and

covariances must therefore also be mean standardized by

dividing with the products of the trait means to yield the

mean-standardized G,

Gl � G� �z�z0ð Þ;

where � denotes element-wise division. Thus, the ijth

element of the G matrix is standardized by division by

the product of the means of traits i and j. The

resulting matrix has IA values on the diagonal.

The mean-standardized vector of selection responses is

then

D�z� �z ¼ Glbl:

To make meaningful inferences about differences, two

different standardizations yield sensible results. First, we

can standardize each trait and each element in the

selection gradient with the squares or cross-products of

phenotypic standard deviations to obtain the variance-

standardized G,

Gr � G� ðrr0Þ;
where r is a column vector of phenotypic standard

deviations. The resulting matrix has heritabilities on the

diagonal. The variance-standardized vector of selection

responses is

D�z� r ¼ ðG� ðrr0ÞÞðb� rÞ � Grbr;

where each element of the response vector is in standard

deviation units. Second, we can use a full multivariate

standardization,

P�1=2D�z ¼ ðP�1=2GP�1=2ÞðP1=2bÞ � GPbP;

where P is the phenotypic variance matrix, and the

matrix GP ” P)1/2GP)1/2 is a multivariate generalization

of the heritability. Under this scaling, the lengths of the

response and gradient vectors are in units of

the phenotypic standard deviation in that direction. In

the following, we assume that all traits are mean

standardized, unless we state otherwise.

Multivariate evolvability: theoretical
considerations

Figure 1 shows the response to a directional selection

gradient, b, in a two-dimensional phenotypic space. Our

measures of evolvability follow from this geometrical

representation of selection response.

A proposal for measuring multivariate evolvability
along a selection gradient

Our first goal is to derive simple scalar measures of

unconditional evolvability for a multivariate character

subject only to linear directional selection. The initial rate

of response is the vector norm

jD�zj ¼ jGbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
b0G2b

q
;

which can be calculated from any consistently standard-

ized G and b. We do not directly use this as a measure of

evolvability, because doing so would give the same

measure of evolvability for a population with a response

in the direction of the selection gradient as one whose

response is in a different direction. Instead, we base our

measures of evolvability on the length of the projection of

the evolutionary response vector on the selection gradient

jD�zj cos½h� ¼ b0Gb
jbj ;

where h is the angle between the selection gradient and

the response vector. The projection measures the

Evolvability

Conditional
evolvability

Z1

b

Z
2

Respondability

Δ

Fig. 1 Measures of selection response. Circles show the response to

selection in two traits, z1 and z2, in response to two scenarios. The

open circle shows the response to pure standardized linear direc-

tional selection gradient b of length 1. Respondability is the length of

the predicted response to selection. Evolvability is the length of

response in the direction of b and corresponds to the length of the

projection of D�z on b. In our second scenario, we assume that, in

addition to directional selection, there is stabilizing selection around

the direction of b, such that the population cannot deviate from b.

The closed circle shows selection response under this scenario; the

length of this constrained response is conditional evolvability.
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response in the selected direction, ignoring responses in

every other direction.

To turn this projection into a measure of evolvability,

we normalize by the strength of selection, the length of

the selection gradient. Thus, we define evolvability in the

direction of an arbitrary-length b as

eðbÞ � b0Gb

jbj2
: ð1Þ

Although e(b) can be calculated on any of the scales

discussed, the mean-standardized el(b) is most readily

interpreted. As discussed by Hansen et al. (2003b), the

mean-standardized strength of selection on relative

fitness is 1. Mean-standardized evolvability gives the

predicted proportional change in the mean-standard-

ized trait index when selection is as strong as that on

fitness. For a single selected trait, it reduces to the

mean-scaled additive genetic variance, IA. On a vari-

ance-standardized scale, er(b) gives the predicted

change in the standard-deviation-standardized trait

index when relative fitness changes by a value of 1

over a unit change in the standardized trait index. On

the P-standardized scale, eP(b) gives the number of

standard deviations that the selected index will evolve

when relative fitness changes by a value of 1 over 1

standard deviation of the selected trait index. Although

e(b) can be calculated on the raw scale, the result is in

a mixture of the units of the traits in direction b. This

will only be sensible when all traits are measured on

strictly comparable scales.

Note that e(b) on any scale is strictly a measure of

evolvability in one direction in phenotype space and is

therefore likely to be different for every choice of b. Note

also that, if b points in the direction of an eigenvector of

G, the multivariate evolvability reduces to the corre-

sponding eigenvalue of G. Schluter’s genetic line of least

resistance is the direction in phenotype space in which

e(b) is maximized.

Respondability

Although the norm of the response vector is not a good

measure of evolvability in the sense of ability to evolve

along a given selection gradient, it is a useful measure of

the respondability of a population, as it measures how

rapidly the population will respond when under direc-

tional selection. To formalize this, we suggest the

following measure of respondability to a selection gradi-

ent, b,

rðbÞ � jD�zj
jbj ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
b0G2b

p
jbj : ð2Þ

The ratio between the evolvability and the respondability

equals the cosine of the angle between the selection

gradient and the response. Respondability is, thus,

always greater than or equal to the evolvability.

Measuring constraints: conditional evolvability

The conditional evolvability of a trait y with respect to a

set of constraining traits x is defined as the response in y

to a unit directional selection if x is not allowed to change

(Hansen et al., 2003a). This is equivalent to the expected

response in y when the strength of stabilizing selection

on x has come to an equilibrium with directional

selection on y. The conditional evolvability is equal to

the conditional genetic variance of y given x, or

cðyjxÞ � Gy �GyxG�1
x Gxy;

where Gy is the genetic variance in y, Gyx and Gxy are

row and column vectors of covariances between y and

the traits in x, and Gx is the variance matrix of x (Hansen

et al., 2003a; Hansen, 2003). To better understand how

the conditional evolvability measures constraints, we can

rewrite the equation as

cðyjxÞ¼Gyð1�G�1
y GyxG�1

x GxyÞ¼Gyð1� iðyjxÞÞ�GyaðyjxÞ;

where i(y|x) is the square of the multiple correlation

coefficient between y and x (Anderson, 1984), and we

define a(y|x) ” 1 ) i(y|x) as the autonomy of y with

respect to x. The conditional evolvability of a character is

therefore equal to its evolvability multiplied by its

autonomy. Autonomy is the fraction of genetic varia-

tion that is independent of potentially constraining

characters.

The total potential for constraint on a trait can be

measured through its conditional evolvability with

respect to all other measured traits. This total conditional

evolvability is easily computed from the inverse of the G

matrix, as it is equal to the inverse of the corresponding

diagonal element of G)1 (i.e. c(zi)¼1/[G)1]ii for the ith

trait zi, where the notation [A]ij signifies the ijth element

of the matrix A).

Motivated by the asymptotic invariance of the

conditional evolvability with respect to the strength

and pattern of multivariate stabilizing selection on the

set of constraining characters (Hansen, 2003), we

define the conditional evolvability along a selection

gradient to be the response along this gradient when

no response is allowed in any other direction of

phenotype space.

Let y ¼ b0z and x ¼ A0z be an orthogonal transforma-

tion of the coordinate system to a new set of traits, such

that y is an index trait pointing in the direction of the

selection gradient. Assume G is positive definite. When

|b| ¼ 1, the response to selection in y when x is held

constant is

cðbÞ ¼ eðbÞaðbÞ ¼ ðb0G�1bÞ�1: ð3Þ

A proof is given in Result 1 of Appendix 1. Here and

below we omit x from the notation, with the under-

standing that all measured constraining characters

are included in the conditioning. Note that the condi-

tional evolvability along a selection gradient equals the
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unconditional evolvability multiplied by the autonomy

in the direction b, a(b).

Evolvability and respondability in response to
random selection gradients

Evolvabilities will not be the same in different directions

in phenotype space. In the absence of knowledge about

the gradient that a population will actually experience,

we can assess the evolutionary potential of a G matrix by

computing its average evolvability over random selection

gradients. If the vector b is symmetrically distributed in k-

space with E[|b|] ¼ 1, then

�e � E½b0Gb� ¼
P

i ki

k
� E½k�; ð4Þ

where ki are eigenvalues of G and the summation is

over all k eigenvalues. A proof is given in Result 2 of

Appendix 1. The average eigenvalue or, equivalently,

the average trait additive variance, is therefore a

measure of the evolutionary potential inherent in

a G matrix. Note that the average unconditional

evolvability is unaffected by covariances between traits,

because unconditional evolvabilities are, by assum-

ption, free of selective constraints.

To get a general measure of genetic constraints, we can

calculate the average conditional evolvability over all

directions in phenotype space. We have not been able to

obtain a general analytical solution for this, but an

approximate solution is the following. If b is uniformly

distributed on the surface of a unit hypersphere of

dimension k, and G is of full rank, then

�c � E½ðb0G�1bÞ�1� � H½k� 1þ I½1=k�
kþ 1

� �
; ð5Þ

where H[x] ” 1/E[1/x] denotes the harmonic mean and

I[x] ” var[x]/E[x]2 denotes the mean-standardized vari-

ance. A proof is given in Result 3 of Appendix 1.

The approximation is best when the number of

dimensions is large and the eigenvalues are similar. For

two characters, we can show by direct integration that

the average conditional evolvability is exactly the geo-

metric mean of the two eigenvalues, �c ¼
ffiffiffiffiffiffiffiffiffiffi
k1k2

p
, but this

is not the case for higher dimensional phenotypes.

Numerical simulations indicate that the geometric mean

is an upper bound, and it can be shown that the

harmonic mean is a lower bound. In fact, as the number

of traits becomes large, the average conditional evolv-

ability converges on the harmonic mean of the eigen-

values. We could also compute the value of �c numerically

by sampling a large number of selection gradients from

the uniform distribution (or any distribution of interest).

Doing so should not be necessary, however, as the

approximation given in eqn 5 appears extremely accurate

in all cases we have considered (Fig. 2).

The average respondability over random unit selection

gradients can be taken as a general measure of respon-

dability. From Result 5 in Appendix 1, we get the

following approximation

�r � E½rðbÞ� ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffi
b0G2b

q� �
�

ffiffiffiffiffiffiffiffiffiffiffi
E½k2�

q
1� Iðk2Þ

8ðkþ 1Þ

� �
;

where k are the eigenvalues of G and k is the number of

traits measured.
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Fig. 2 Approximation of mean conditional evolvability, �c. The plots show numerically computed �c plotted against the analytical approximation

in Result 3, Appendix 1, for 1000 random G matrices of various dimensionalities (k). In all cases, the matrices have random diagonal entries

drawn from a uniform [0,1] distribution and zero off-diagonal elements. This is justified as the symmetry of the random selection gradients

implies that the results are unaffected by diagonalization. The numerical mean is computed over 10 000 random unit selection gradients.
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Measuring integration and autonomy

The relative degree to which evolvability is reduced by

conditioning on traits under stabilizing selection can be a

measure of how integrated the selected trait combination

is with the rest of the measured phenotype. This

integration is captured by i, the relative reduction in

evolvability due to correlated traits. We can also think in

terms of autonomy, a ¼ 1 ) i, the proportion of evolv-

ability that remains after conditioning on other traits.

From the definitions of c(b), e(b) and i(b) we have

aðbÞ � 1� iðbÞ ¼ cðbÞ
eðbÞ :

If variation along b is independent of variation along

other directions, i ¼ 0 and a ¼ 1. If variation along b is

completely correlated with variation along other direc-

tions, i ¼ 1 and a ¼ 0. If we are interested in the

autonomy of a specific character with respect to the rest,

we take b to be the vector with a coefficient of 1 for this

character and zero for the others. For the jth character

the result is

aðzjÞ ¼ ð½G�1�jj½G�jjÞ
�1:

We can also ask about the degree of autonomy

averaged over all directions in phenotype space. If b is

uniformly distributed on the surface of a unit hyper-

sphere of dimension k, and G is of full rank, then

�a � E½ðb0Gbb0G�1bÞ�1�

� H½k�
E½k� 1þ I½k� þ I½1=k� þ 1� H½k�=E½k�

kþ 1

� �
: ð6Þ

A proof is given in Result 4 of Appendix 1. Note that
�i ¼ 1 � �a. Average autonomy will have a value of one if

and only if all characters are uncorrelated and have the

same variance. This situation is the only one in which

the conditional and unconditional evolvabilities are the

same in all directions. Average autonomy will decrease

with increasing variation among the eigenvalues and

approach a minimum of zero when some eigenvalues

approach zero.

Comparing G matrices

The G matrix describes the mapping of a selection

gradient to a selection response. We can therefore

measure the difference between two G matrices in terms

of the difference in the responses they generate to the

same selection gradient. Doing so reduces the problem

from comparing two matrices to comparing two vectors.

These response vectors can be compared in several

potentially meaningful ways. Figure 3 shows two

response vectors in two space, along with parameters

useful for comparing them. Angles between the response

vectors, hd, capture differences in the direction of

response (Cheverud et al., 1983). The relative ability to

respond in the direction of selection is the ratio of the

projection of the responses onto b. We caution against

comparing functions of the length of the response vectors

because these will usually be incommensurate whenever

the response vectors point in different directions.

The distance between the endpoints of the vectors

captures the extent to which uniform linear selection

would cause divergence between populations, if they had

the same starting mean. Let G1 and G2 be the G matrices

we want to compare. The norm of the difference between

the responses they generate is

dðbÞ ¼ jD�z1 � D�z2j ¼ jðG1 �G2Þbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0ðG1 �G2Þ2b

q
:

ð7Þ
We call this the ‘response difference’ between G1 and G2.

The expectation of d(b) over random selection gradi-

ents is a useful general measure of the potential for

divergence engendered by selection. If b is uniformly

distributed on the surface of a unit hypersphere of

dimension k, and G1 and G2 are of full rank, then the

expected response difference is

�d � E D�z1 � D�z2½ � ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0ðG1 �G2Þ2b

q� �

�
ffiffiffiffiffiffiffiffiffiffiffi
E½d2�

q
1� Iðd2Þ

8ðkþ 1Þ

� �
; ð8Þ

where d are the eigenvalues of the matrix G1 ) G2. The

approximation follows from Result 5 of Appendix 1 if M

is set equal to (G1 ) G2)2.

Note that d(b) and �d are informative only if the two

G matrices are on the same scale. In general, the

Fig. 3 Responses, D�z, of two populations with the same starting

mean but different G matrices to the same selection gradient, b, of

unit length. The length of the response to selection is respondability,

r(b). The length of the projection of the responses on b are the

evolvabilities of each population along b, e(b). The length of the

difference between populations under the assumption that they start

with the same mean is the response difference d(b). In the figure, we

suppress the use of the parenthetical b in these measures for clarity.

The angle between the selection responses is hd.
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populations compared will have different means and

variance matrices and therefore naturally have different

standardizations. Two sensible standardizations are to use

the mean of the two population mean vectors, or the

square root of the average of the phenotypic variance

vectors. With mean standardization, �d is interpretable as

the per cent difference of the responses relative to the

chosen trait mean.

Cheverud et al. (1983) proposed assessing differences

among matrices by use of the distribution of angles

between responses to random selection gradients. They

termed this method random skewers (Cheverud, 1996;

Cheverud & Marroig, 2007).

The ratios �e1=�e2 and �c1=�c2 can also be used to assess

relative evolvabilities. These are dimensionless and so

can be interpreted either under a common standardiza-

tion or when each population is standardized with its

own vector, although the two results differ slightly in

meaning. For example, when each population is stan-

dardized by its own mean vector, �e1=�e2 compares the

relative ability of each population’s mean vector to

evolve. When each is standardized by the same mean

vector, their ratio compares the relative ability to evolve

toward or away from the chosen mean.

Example: evolvability of wing shape

We present two examples of the use of our measures of

evolvability. Appendix 2 is a worked example of com-

parisons between hypothetical populations where the G

matrix of each is known. In this section, we use data on

wing shape in drosophilid flies to compare among-species

divergence to the evolvability predicted from the G

matrix of a single species.

A persistent question in evolutionary quantitative

genetics is whether the G matrix constrains divergence

among populations or species or, conversely, whether

the pattern of evolution that leads to species differences

shapes the G matrix. Schluter (1996) found that among-

species and among-population variations tended to lie

close to the direction in phenotype space with the highest

evolvability, gmax. Calculating evolvability and condi-

tional evolvability along the vectors that distinguish

species’ means allows us to examine more general

versions of Schluter’s hypothesis. If G shapes among-

species differences (or is shaped by them), then the

differences among species should be in those aspects of

variation that have the highest evolvabilities, even if

those are very different from gmax.

We took Drosophila melanogaster as our focal species

and used the divergence between D. melanogaster and

other representative drosophilid species that span the

traditional genus Drosophila to define interesting direc-

tions in which to assess evolvability. Our estimates of a G

matrix are taken from a large study of a wild-collected

population of D. melanogaster from Wabasso Florida

(Mezey & Houle, 2005). Species stocks were obtained

by collection (D. simulans, D. pseudoobscura, D. ananassae,

D. willistoni and Scaptodrosophila latifasciaeformis) or from

the Drosophila Species Stock Center (D. virilis and

D. grimshawi). The phylogenetic distance ranges from

D. simulans, the sister taxon of D. melanogaster, to

S. latifasciaeformis, a representative of the genus basal to

the paraphyletic genus Drosophila (van der Linde &

Houle, 2008). The mean of each species is based on

approximately 200 images. All data were obtained from

laboratory-reared flies.

What we are estimating is how readily D. melanogaster

can be selected to have the wing shape of other species.

The vector differences between species are not the paths

along which these species diverged from their common

ancestor. Although estimating evolvability along the path

from the common ancestor would also be interesting, we

have not done so, as it would introduce two additional

sources of uncertainty. First, the mean of the common

ancestor would have to be estimated on the basis of a

specific evolutionary model. Second, and more impor-

tant, our estimate of the G matrix is for D. melanogaster,

and we have no other information with which to

estimate the G matrix of the common ancestor.

The data for this analysis were the x, y coordinates of

12 vein intersections measured with WINGMACHINE, a

semi-automated system that records scale information

and detects vein positions from digital wing images

(Houle et al., 2003). The 24 coordinates obtained from

each wing are registered using Procrustes least-squares

superimposition, which removes centroid size as a scaling

factor. Although the superimposed data are still in the

form of 12 pairs of coordinates, four degrees of freedom

are used for registration; so, the resulting G matrix has a

maximum dimensionality of 20. Mezey & Houle (2005)

estimated separate G matrices for each gender and found

that each matrix had the maximum possible dimension-

ality of 20, that is, 20 eigenvalues were greater than zero.

We averaged male and female G matrices to obtain an

estimate relevant to among-species evolution. Because �c
is 0 for a singular G matrix, we first projected the G

matrix and the species mean data into the subspace

defined by the first 20 eigenvectors of the full G matrix.

The resulting data are coordinates with units of

centroid size; the (0, 0) point corresponds to the centre

of the shape. The coordinates themselves are therefore

on an interval scale, as ratios of the coordinates are not

meaningful; any other point could have been chosen as

the origin. By definition, shape is what is preserved when

translation (spatial position), orientation and size are

removed from the coordinates. This means that aspects of

shape are on a ratio scale, and that use of centroid-

standardized shape data to parameterize G and b is

similar to mean standardization.

In Table 1, we show the phenotypic distance between

the mean of D. melanogaster and that of each of the other

species. Drosophila simulans wing shape is so similar to

that of D. melanogaster that individuals of the two species
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cannot be reliably distinguished by a discriminant func-

tion (Houle et al., 2003), unlike individuals of any of the

other species pairs. To calculate the number of genera-

tions necessary to travel the distance between the species

means when the population is constrained to follow the

direct path to the other species mean and the length of b
is 1, we divide the phenotypic distance by the conditional

evolvability.

Figure 4 shows the range of evolvabilities possible,

from the maximum, emax, to the minimum, emin, as

defined by the range of the eigenvalues of the

20-dimensional G matrix. The maximum evolvability,

emax, is that along gmax, the first eigenvector of the matrix

(Schluter, 1996). Also shown are the average uncondi-

tional, �e, and conditional, �c, evolvabilities over the entire

space spanned by G. The conditional evolvability also has

a maximum of emax and minimum of emin.

The evolvabilities along the vectors that define the

differences between D. melanogaster and each species are

mostly rather close to the maximum evolvability in the

entire data set and well above �e. The conditional

evolvabilities are all far above �c, and in fact most are

near �e. The similarity of evolvabilities does not arise

because all species have evolved in the same directions,

as the median angle between divergence vectors is 67�,
only slightly less than the median angle between random

vectors in 20 space of 81.4� (determined from 1000

angles between pairs of random vectors). The smallest

evolvability is along the vector between the sister taxa

D. simulans and D. melanogaster, and it is still 42% of emax

and 236% of �e. Given the small phenotypic distance

between D. melanogaster and D. simulans, the lower

evolvability between these species may be due to error

in the estimation of the species means, which would cast

relatively more of the difference into dimensions of

phenotype space with lower evolvabilities. Other than

the small difference and relatively low evolvability

between these two species, none of the measures show

an obvious tendency to change with phylogenetic

distance.

The median angle between gmax and the seven diver-

gence vectors is 65� (the minimum is 38�). The directions

of divergence are therefore quite different from gmax, but

still fall within a part of phenotype space with relatively

high evolvabilities. Simply relying on comparisons with

gmax would erroneously suggest that the mutual depen-

dence of species divergence and G is not strong.

In summary, the characteristics of genetic variation

along the vectors that distinguish D. melanogaster from

other drosophilid species are quantitatively similar

regardless of the timescale of divergence. These directions

show far more than the average amount of variation,

suggesting some causal connection between the forces

that shape standing genetic variation and those that

cause evolutionary divergence. This result suggests

that broad characteristics of the G matrix are preserved

over the more than 50 million years of evolution

captured in this clade of flies. We can think of many

hypothetical scenarios that would decouple long-term

evolution from our short-term measures of evolvability;

that they do not seem to occur is therefore quite striking

(cf. Schluter, 1996).

Table 1 Phenotypic distances to Drosophila

melanogaster from other members of its genus

and from Scaptodrosophila latifasicaeformis,

evolvability statistics in the direction of

species divergences, and generations to

evolve from one species mean to another.

Species

Distance to

D. melanogaster (cs)

e(b)

(cs · 106)

c(b)

(cs · 106)

r(b)

(cs · 106) a(b) Generations*

D. simulans 0.011 34.4 2.7 44.2 0.079 4125

D. ananassae 0.087 66.7 13.7 70.5 0.205 6348

D. pseudoobscura 0.043 64.9 12.7 67.7 0.196 3362

D. willistoni 0.061 55.1 10.7 60.1 0.193 5681

D. virilis 0.058 46.6 10.5 52.8 0.225 5514

D. grimshawi 0.173 55.2 17.4 57.8 0.315 9939

S. latifasicaeformis 0.117 56.9 24.9 60.7 0.438 4688

‘cs’ is centroid size.

*Phenotypic distance divided by c(b).

Fig. 4 Unconditional and conditional evolvabilities along the vector

of differences in species means for wing shape between Drosophila

melanogaster and other drosophilid species. The mean conditional and

unconditional evolvabilities are shown as dashed horizontal lines.

The evolvabilities are in units of centroid size.
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Discussion

Variation is the basis for selection and is therefore central

to evolutionary biology (Hallgrı́msson & Hall, 2005). This

should place the study of genetic variation of quantitative

traits, summed up by the G matrix, at the centre of the

study of evolution. Despite the clear theoretical interest

of such estimates, studies of the G matrix for more than a

small number of traits are still rare. This is usually

ascribed, with good reason, to the fact that the empirical

estimation of G matrices is laborious and difficult. We are

concerned with a second, conceptual limitation; most

methods for analysing G matrices are only tenuously

related to evolutionary theory.

A great diversity of methods for measuring and

describing variation of quantitative traits have been

proposed. The justification and motivation for these

methods may be as diverse as the methods themselves,

but, with few exceptions, the role of theory in their

formulation has been vague and qualitative, rather than

precise and quantitative. For example, almost all the

proposed methods for describing and quantifying

modularity and integration among characters are based

on purely statistical or intuitive considerations. Few

attempts have been made to formalize what attributes of

reality are measured by these techniques or at elucidating

how statistical ‘modularity’ relates to attributes embed-

ded in evolutionary theory. Quantitative measurements

of genetic correlations are usually motivated by a desire

to understand constraints on evolutionary change, but

these have not generally been translated into quantita-

tive statements about constraint.

We have developed measures of evolvability with an

explicit link to the Lande model. Despite the fact that it

makes a number of idealizing assumptions (Lande, 1979;

Lande & Arnold, 1983), this model has motivated most of

the empirical research on multivariate selection and

constraints since 1980. The Lande model is therefore the

appropriate context for developing measures of evolv-

ability that take advantage of the existing data in

evolutionary quantitative genetics.

In most usages of the term, evolvability refers to an

ability to respond to a potential selective challenge. At

least two different levels of evolvability are commonly

recognized. Often it is defined as a property of the

genotype–phenotype map and involves structural char-

acteristics such as mutability, variability, autonomy,

modularity, coordination and continuity (Wagner &

Altenberg, 1996; Hansen, 2006). Alternatively, but not

inconsistently, evolvability can be viewed in a quantita-

tive genetics context as a short-term ability to respond to

directional selection (Houle, 1992), which depends on

standing additive genetic variation in the traits under

selection and on the autonomy of this genetic variation

from other traits under stabilizing selection (Hansen

et al., 2003a, b; Hansen, 2003; Hansen & Houle, 2004).

The measurements we propose are derived under the

short-term perspective. Nevertheless, our results from

drosophilid wings, as well as the result of others (Chee-

tham et al., 1993; Schluter, 1996, 2000; Blows & Higgie,

2003; Marroig & Cheverud, 2005; Estes & Arnold, 2007;

Hunt, 2007), suggest that this short-term perspective still

provides information about the effects of genetic con-

straints on macroevolutionary patterns. Why it does so is

not entirely clear, given the many ways that long-term

evolution can be decoupled from within-population

variation. One potential explanation is that both short-

term evolvability and long-term evolution depend on a

conservative pattern of mutation. This dependence sug-

gests that our measures of evolvability should be applied

to the mutational variance matrix in addition to the G

matrix.

Conditional and unconditional evolvabilities offer dif-

ferent perspectives on evolvability. Unconditional evolv-

ability, e, is a measure of evolvability along a linear

fitness landscape. Conditional evolvability, c, describes

evolvability with respect to shifting adaptive peaks in

concave fitness landscapes, and is typically much smaller

than the unconditional evolvability (Hansen et al.,

2003a; Jensen et al., 2003; Coltman et al., 2005; Rolff

et al., 2005; Rønning et al., 2007). Conditional evolvabil-

ities reflect potential selective constraints due to the traits

that are included in the estimates and are therefore

particularly sensitive to the choice of traits. As we have

suggested before (Hansen, 2003; Hansen et al., 2003a;

Hansen & Houle, 2004), if a good measure of general

fitness were available, a conditional evolvability of a trait,

or along a phenotypic direction, could be calculated

relative to a measure of background fitness and would

then constitute a test of the ‘quality’ of the genetic

variation. Hansen & Houle (2004) pointed out that the

high evolvability generally implied by high levels of

additive genetic variation and high mutation rates may

be illusory, as much of the genetic variation may be

‘junk’ caused by alleles with deleterious pleiotropic

effects. Such variation may, particularly in the benign

setting of artificial selection, allow a response to selec-

tion, but the genetic basis of this response will carry a

fitness cost and is unlikely to form the basis of

a permanent adaptation in the wild. This hypothesis

remains essentially untested, but see Galis et al. (2006).

A key advantage of the measures of evolvability we

have presented is that they can be computed along any

direction in phenotype space. This allows for more

precise ways of studying constraints on micro- or

macroevolutionary transitions. For example, we can

compute the evolvability of a specific transition from

one species to another and quantify how constrained it

would be. This result can then form a basis for testing for

a relationship between directions of divergence and

evolvability. In Fig. 4, we show that species differences

in wing shape of drosophilid flies fall along directions

where evolvabilities are much higher than average. Most

of the conditional evolvabilities are more than an order

1210 T. F. HANSEN AND D. HOULE

ª 2 0 0 8 T H E A U T H O R S . J . E V O L . B I O L . 2 1 ( 2 0 0 8 ) 1 2 0 1 – 1 2 1 9

J O U R N A L C O M P I L A T I O N ª 2 0 0 8 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



of magnitude above the average conditional evolvability.

Schluter (1996) pioneered this approach by comparing

the angle between divergence and the direction of

maximum evolvability. Direct computation of evolvabil-

ity for the divergence in question provides for a more

general and detailed way of testing the same hypotheses.

The interpretation of such similarities can be ambiguous,

as neutral divergence is also expected to follow directions

with large amounts of genetic variance (McGuigan et al.,

2005).

Our new measures of evolvability also provide new

ways of quantifying and characterizing modularity and

character integration in the context of evolvability. The

autonomy, a, is the fraction of variation that is evolu-

tionarily independent of variation in other directions of

phenotype space. It measures the degree to which

evolution in this direction can be unconstrained by

potential stabilizing selection in other directions. Modu-

lar variation along a direction would thus have an

autonomy of one; if the variation along a direction is

completely integrated with variation in other directions,

it will have autonomy of zero.

Other measures of autonomy and integration have

been proposed. Cheverud et al. (1983) and Wagner

(1984) proposed a coefficient of integration, I ¼
1 ) Ge[k], where Ge[k] is the geometric mean of the

eigenvalues of the phenotypic (or genetic) correlation

matrix. Wagner (1984) proposed using the variance of

the eigenvalues of the correlation matrix as a measure

of integration. These are intuitively sensible measures,

but both are calculated from a correlation matrix,

which does not directly appear in any standard model

of evolutionary dynamics. In contrast, our measure has

a precise interpretation as the degree to which selec-

tion on traits other than that defined by the selection

gradient reduce evolvability. The geometric mean of

the eigenvalues of a variance matrix, the generalized

variance (Anderson, 1984), has also been proposed as a

general measure of variation (Zhivotovsky, 1988) and

would, if applied to the G matrix, be a candidate

measure of evolvability. As shown in Fig. 5, this

intuition has partial justification in the similarity

of the generalized variance to �c for low-dimensional

traits, although this relationship breaks down for

high-dimensional traits. Kirkpatrick (2008) recently

suggested using the ratio of the sum of the eigenvalues

of a mean-standardized G matrix to the largest eigen-

value of that matrix as a measure of the ‘effective

number of dimensions’, nD. In terms of quantities we

have discussed, nD ¼ k�e=emax, where k is the number

of traits studied. This method adopts emax, the variance

along Schluter’s line of least resistance, as a standard to

which overall evolvability is compared. All of these

measures clearly capture something about integration

or constraint, but exactly what has not been explicitly

determined. The advantage of our measures is that

they have a precise quantitative meaning.

‘Random skewers’ (Cheverud et al., 1983; Cheverud,

1996; Cheverud & Marroig, 2007) is a method for

comparing G matrices that does have a theoretical

interpretation in line with our philosophy. The basis for

random skewers is the distribution of angles between the

response vectors that two G matrices generate over a set

of random selection gradients, and is thus related to our
�d. A ‘skewer’ can, of course, also be computed for a single

selection gradient. Random skewers does not consider

Fig. 5 Mean conditional evolvability, �c, vs. generalized variance for 1000 random G matrices of various dimensionalities (k). Calculation of �c is

based on the analytical approximation in Result 3 (Appendix 1). For the two-dimensional G matrices (k ¼ 2), the generalized variance is

exactly equal to �c and the error is due to our approximation. See the legend of Fig. 2 for an explanation of how the random matrices were

generated.
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the length of the response vectors, and may therefore

judge matrices of very different size to be similar. This is

appropriate if matrices maintain proportionality, but

matrix size is variable over time. Our proposed alterna-

tive, response difference, �d, measures the total difference

between the selection responses of the two matrices, and

is therefore sensitive to both differences in matrix size

and structure.

The question of whether the G matrix is stable enough

to structure macroevolution is central to evolutionary

quantitative genetics. Lande (1976, 1980) developed

models that suggested that such stability is plausible,

whereas Turelli (1984, 1985, 1988b) suggested that some

of Lande’s assumptions are incorrect and that G matrices

would be unlikely to remain stable over evolutionary

time. Clearly, the stability of G is an important empirical

question (Lande, 1988; Turelli, 1988a), and this has led

to attempts at comparing G matrices in related species

(see Steppan et al., 2002, for review). These efforts have,

however, often not been built on a principled theory for

what constitutes a valid comparison. For example,

methods such as matrix correlations are often used. We

submit that these methods tell us next to nothing about

whether matrices differ in a meaningful manner and

should simply not be used. Methods such as factor

analysis (Zelditch, 1987; Mitteroecker & Bookstein,

2007) and common principal components analysis

(Flury, 1988; Phillips & Arnold, 1999) are easier to

interpret geometrically and should be included in most

comparisons of G matrices, but they still lack a founda-

tion in biological theory and do not provide direct

comparison of evolvabilities.

A crucial decision in any multivariate analysis involv-

ing traits on different natural scales is how changes in

different traits are to be compared. Clearly, all traits must

be put on a comparable scale, such as a mean- or

variance-standardized scale. Although we have devel-

oped the theory for both of these cases, we believe that

mean standardization is usually preferable for data that

are on a ratio or log-interval scale. Mean standardization

preserves the full set of comparisons that are valid for

ratio- or log-interval-scale data, whereas variance stan-

dardization does not. More specifically, evolvability

depends on variation, and if we use a variance scale,

we are including some of what we want to measure in

our measuring stick. The result is measures of evolvabil-

ity and response to selection that are not interpretable

without reference to the variance used for the standard-

ization. One cannot fully interpret a response of a 10th of

a standard deviation without knowing whether the

standard deviation itself is large or small. As discussed

elsewhere, this leads to a variety of interpretational

problems (Houle, 1992; Hansen et al., 2003b; Hansen &

Houle, 2004; Hereford et al., 2004). On a log-interval

scale, variance scaling is nonsensical.

These problems are particularly acute when one tries

to interpret the elements of the breeder’s equation as

measures of evolvability and selection. In the univariate

Lande equation, D�z ¼ Gb ¼ Gðcov½w; z�=PÞ, G measures

the amount of evolutionarily relevant variation, whereas

b measures how mean fitness changes with trait mean.

The selection gradient is the ratio of the covariance

between the trait z and relative fitness to the total

phenotypic variance, P. The univariate breeder’s equa-

tion D�z ¼ h2S ¼ ðG=PÞcov½w; z� is a rearrangement of

the Lande equation into a dimensionless quantity, h2,

that expresses the proportion of the total variation that is

evolutionarily relevant and the selection differential S,

which is the covariance between the selected trait and

relative fitness. S contains both information about the

form of directional selection and information about

the amount of variation, thereby confounding variation

and selection. Both a weak selection gradient in a

population with abundant variation and a strong selec-

tion gradient in a population with little variation would

lead to the same S. As expected from these elementary

facts about the breeder’s equation and the fact that there

are very strong correlations between additive variances

and phenotypic variances, heritabilities and selection

differentials are also strongly correlated. Heritabilities are

therefore poor predictors of evolvability (Houle, 1992;

Hansen et al., 2003b).

All of these problems carry over to the multivariate

breeder’s equation D�z ¼ ðGP�1ÞS, where the elements of

GP)1are dimensionless and all scale information is in S. In

addition, as noted by Lande & Arnold (1983), the elements

of S reflect both direct and indirect effects of selection,

whereas b corrects for indirect effects of known characters.

The selection gradient is thus better suited to the repre-

sentation of selection as a cause of change; S gives the

effects of selection. For example, when selection acts only

on a single trait, b will have a single nonzero element,

whereas, in general, every element of S will be nonzero.

The multivariate breeder’s equation is nevertheless

favoured by some. For example, Klingenberg & Leamy

(2001) suggested its use because S can be precisely

represented as deformations of a mean shape in the

context of geometric morphometric data. We do not find

this a compelling advantage, as any vector, including b,

can also be represented relative to a mean shape.

Although we do not favour the use of the breeder’s

equation, a standardized version can readily be obtained

with the phenotypic standard deviation vector r as

D�z� r ¼ ððG� ðrr0ÞÞðP� ðrr0ÞÞ�1ÞðS� rÞ
¼ ðGrq

�1ÞðS� rÞ;

where q is the phenotypic correlation matrix. In the

univariate case, q ¼ 1, and br ¼ S/r ¼ i, where i is

‘intensity of selection’, but in the multivariate case,

b x r „ S � r and q „ 1.

When the data obtained are naturally on an interval

scale, such that the origin is arbitrary, and ratios of trait

values are meaningless, mean scaling (although possible)
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does not lead to more interpretable statistics. In these cases,

variance standardization may be more informative. Still,

having an independent yardstick by which to judge

magnitudes would be desirable. One natural possibility is

to use the mean difference between populations or species

of interest, because mean differences are meaningful.

In deriving these measures of evolvability and

constraint, we have focused exclusively on their

meaning, neglecting statistical considerations entirely.

Measures of uncertainty in our evolvability measures

need to be developed. The sampling properties of

statistics based on conditional evolvability are likely

to be problematic, as they are heavily influenced by

the smallest eigenvalues of a G matrix, which will have

larger relative errors. Furthermore, the means or

variances used to standardize data are themselves

statistics with their own sampling errors. Additional

work is needed to elucidate the sampling properties of

the measures we outline.

We have sought to make two major points in this

paper. First, we derived measures of evolvability that

capture evolutionarily meaningful attributes of the G

matrix. Our conditional and unconditional evolvabilities

measure the potential of a population to evolve in a

selected direction under different selective regimes. Our

second and broader point is that measurements of

quantities that have a clear, quantitative relationship to

theory are far more useful than those that do not.

Requiring this kind of meaning in our measures raises

theoretical and statistical challenges, but these seem a

small price to pay for meaning.
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Appendix 1: derivation of technical results

Notation. For simplicity, we will use the notation E[k]

and var[k] to denote the mean and variance of eigen-

values, k. Furthermore, H[k] ¼ 1/E[1/k] is the harmonic

mean of k, I[k] ¼ var[k]/E[k]2 is the mean-standardized

variance of k and cov[k,d] is the covariance between two

sets of eigenvalues k and d.

Result 1. Let z be a k-dimensional trait vector, and let G be

a positive definite additive genetic variance matrix for z.

Let y ¼ b0z and x ¼ A0z be an orthogonal transformation

of the coordinate system such that y is an index trait in the

direction of the selection gradient, b. When |b| ¼ 1, the

response to selection in y when x is held constant is

D�y ¼ b0Gbð1 � R2Þ ¼ ðb0G�1bÞ�1
, where R is the multi-

ple correlation coefficient between y and x.

Proof. We transform the trait vector, z, to a new coor-

dinate system where one axis is the gradient, which is

now a normed coordinate vector, b, and the other axes

are orthogonal to b. Each of the k ) 1 orthonormal axes

can be defined by a normed coordinate vector ai such

that a0ib ¼ 0 and a0iaj ¼ 0 for i „ j. We can collect the ai

as columns in an k · (k ) 1) matrix A, such that the

matrix [b,A] is an orthogonal transformation of the

coordinate system for z. The A matrix is not unique,

but the results we are to derive are invariant with respect

to A.

Following Hansen (2003), the change in y under unit

directional selection when x is kept fixed is given as

Gyjx ¼ Gy � GyxG
�1
x Gxy. In terms of the variance matrix,

G, of the original traits we have

Gy ¼ b0Gb

Gyx ¼ b0GA

Gxy ¼ A0Gb

Gx ¼ A0GA

This gives

D�y ¼ b0Gbð1 � ðb0GbÞ�1ðb0GAÞðA0GAÞ�1ðA0GbÞÞ
¼ b0Gbð1 � R2Þ;

where R is the multiple correlation coefficient of y

with x. The multiple correlation coefficient is invari-

ant under any affine transformation of the coordinate

system (Eaton, 1983, Proposition 10.1) and therefore

to the choice of A (provided orthogonality with b is

preserved).

The second part of the equality follows from the

observation that

1 � R2 ¼ det½½b;A�0G½b;A��=ðdet½A0GA�ðb0GbÞÞ
(see Anderson, 1984, p. 40). The determinant

det[[b,A]0G[b,A]] ¼ det[[b,A]]2 det[G] ¼ det[G], and

det[A0GA] can be computed from the fact that it is the

first principal cofactor of [b,A]0G[b,A]. If Mij is the ij

cofactor of a matrix M, then Mij ¼ [M)1]ij det[M]. To use

this, we note that ([b,A]0G[b,A]))1 ¼ [b,A]0G)1[b,A],

because [b,A] is orthogonal, so that [[b,A]0G)1[b,A]]11 ¼
b0G)1b. This gives det[A0GA] ¼ det[G](b0G)1b). There-

fore,

ð1 � R2Þ ¼ det½G�=ðdet½G�ðb0G�1bÞðb0GbÞÞ
¼ 1=ððb0G�1bÞðb0GbÞÞ:

Result 2. If the vector b is symmetrically distributed in

k-dimensional space with E[|b|] ¼ 1, then E[b0Gb] ¼
Trace[G]/k ¼

P
iki/k, where ki are eigenvalues of the

positive definite matrix G, and the summation is over all

k eigenvalues.

Proof. This result follows from a slight modification of the

proof of Lemma 1, if we note that only E[|b|] ¼ 1 and not

|b| ¼ 1 is required for E[b0Gb] ¼
P

iki/k.

Result 3. If b is uniformly distributed on the surface of a

unit hypersphere of dimension k, and G is of full rank,

then

E½ðb0G�1bÞ�1� � H½k�ð1þ I½1=k�=ðkþ 1ÞÞ:

Proof. We begin with a standard approximation for the

expectation of an inverse (Lynch & Walsh, 1998, appen-

dix 1) to get

E½ðb0G�1bÞ�1� � 1

E½b0G�1b� ð1þ I½b0G�1b�Þ:

Fitting in the appropriate moments from Lemma 1 then

gives the result.

Result 4. If b is uniformly distributed on the surface of a

unit hypersphere of dimension k, and the k · k matrix M

is of full rank, then

E

ffiffiffiffiffiffiffiffiffiffiffi
b0Mb

q� �
�

ffiffiffiffiffiffiffiffiffiffiffi
E½k2�

q
1� I½k2�

8ðkþ 1Þ

� �
;

where ks are the eigenvalues of M.
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Proof. A standard approximation for the expectation of

the square root (Lynch & Walsh, 1998, appendix 1) gives

E

ffiffiffiffiffiffiffiffiffiffiffi
b0Mb

q� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½b0Mb�

q
1� I½b0Mb�

8ðkþ 1Þ

� �
:

We can now fit in moments from Lemma 1 to get our

result.

Result 5. If b is uniformly distributed on the surface of a

unit hypersphere of dimension k, and G is of full rank,

then

E½ðb0Gbb0G�1bÞ�1��H½k�
E½k� 1þ I½k�þI½1=k� þ 1� H½k�=E½k�

kþ 1

� �
:

Proof. A standard approximation for the expectation of a

ratio (Lynch & Walsh, 1998, appendix 1) gives

E
ðb0G�1bÞ�1

b0Gb

" #
�E½ðb0G�1bÞ�1�

E½b0Gb�

� 1þvar½ðb0Gb�
E½ðb0Gb�2

� cov½ðb0G�1bÞ�1;b0Gb�
E½ðb0G�1bÞ�1�E½ðb0Gb�

 !
:

The covariance in this equation is

cov½ðb0G�1bÞ�1;b0Gb� ¼E
b0Gb

b0G�1b

� �
�E½ðb0G�1bÞ�1�E½b0Gb�

� E½b0Gb�
E½b0G�1b� 1þvar½b0G�1b�

E½b0G�1b�2
� cov½b0G�1b;b0Gb�

E½b0G�1b�E½b0Gb�

 !

�E½ðb0G�1bÞ�1�E½b0Gb�;

where we have used the same approximation for the

expectation of a ratio. We can now fit in moments

derived in Lemma 1 and Result 3 to obtain our result. In

doing so, note that

cov½b0G�1b; b0Gb� ¼ ð1� E½k�E½1=k�Þ=ðkþ 1Þ:

Lemma 1. If the vector b is uniformly distributed on the

unit k-sphere, G and D are positive definite matrices of

rank k and GD ¼ DG, then

E½b0Gb� ¼ E½k�;

var½b0Gb� ¼ var½k�
kþ 1

;

cov½b0Gb; b0Db� ¼ cov½k; d�
kþ 1

;

where k are eigenvalues of G, d are eigenvalues of D and

the summation is over all k eigenvalues.

Proof. We diagonalize G with the transformation Ca ¼ b,

where C is an orthogonal matrix, as

b0Gb ¼ a0C0GCa ¼ a0Ka ¼
X

i

a2
i ki;

where K is a diagonal matrix with the eigenvalues of G.

Then

E½b0Gb� ¼
X

i

E½a2
i �ki ¼

X
i

k=k;

because E[|b|] ¼ 1 implies
P

i E½a2
i � ¼ 1, and symmetry

implies that E½a2
i � ¼ E½a2

j � ¼ 1=k for all i and j. Note also

that we only need |b| ¼ 1 in expectation for this result,

and it therefore holds for any standardized symmetric

distribution.

To compute the variance and covariance, we will

need the moments var½a2
i � and cov½a2

i ; a
2
j �. We start with

var½a2
i � ¼ E½a4

i � � E½a2
i �

2
. We can obtain the fourth

moment by representing the uniform distribution on

the surface of the sphere with a normalized spheri-

cal distribution (i.e. a standardized MVN). Let ri be

independent variables each with a standardized nor-

mal distribution. Then r2
i has a v2(1) distribution, and

the variable r2
i =
P

i r2
i , which has a Beta[1,n ) 1]

distribution, will equal a2
i . The fourth moment of ai is

thus the second moment of this beta distribution such

that E½a4
i � ¼ 2=kðk þ 1Þ, which gives

var½a2
i � ¼

k� 1

k2ðkþ 1Þ :

The covariance can be computed from the relation

a2
i ¼ 1 �

P
j6¼i a2

j and from the fact that the

covariances by symmetry must be the same for all i

and j.

cov½a2
i ; a

2
j � ¼

X
j6¼i

cov½a2
j ; a

2
j �=ðk� 1Þ

¼ cov a2
j ;
X
j6¼i

a2
j

" #
=ðk� 1Þ

¼ cov½a2
j ; 1� a2

i �=ðk� 1Þ

¼ �var½a2
i �=ðk� 1Þ ¼ �1

k2ðkþ 1Þ
:

If G and D commute, they can be simultaneously

diagonalized with the same orthogonal matrix C, and

the covariance between the two quadratic forms can be

written

cov½b0Gb; b0Db� ¼
X

i

X
j

kidj cov½a2
i ; a

2
j �

¼
X

i

kidi var½a2
i � þ

X
i

X
j6¼i

kidj cov½a2
i ; a

2
j �:

Fitting in the above results for var½a2
i � and cov½a2

i ; a
2
j �, we

get

cov½k; d�
kþ 1

;

and the variance follows by setting G ¼ D.
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Appendix 2: a worked example

To illustrate how our measures of evolvability are

calculated, and how they can be interpreted, consider

the two hypothetical three-trait G matrices in Table A1.

We chose this simple example to represent some typical

problems in inferring and comparing evolvability from G

matrices. Traits 1 and 2 represent lengths of morpholog-

ical features, and trait 3 represents the life-history trait

fecundity. Comparison of the matrices themselves does

not immediately suggest how each population will

respond to selection. The diagonals suggest that traits 1

and 3 might respond more rapidly to selection in

population 2 and that trait 2 would respond better in

population 1. The degree of correlation among traits

seems a bit higher in population 2 than population 1. It is

clear, however, that more than a glance is necessary to

ascertain which population would evolve more rapidly

under particular circumstances. Furthermore, note that

the units are not commensurate across all the traits; so,

the raw numerical values cannot sensibly be compared

when the directions of response are not the same. In

addition, note that traits and populations vary in the rela-

tionships between trait means and variances; so, the

appropriate standardization for each matrix is different.

Table A2 shows the example matrices standardized by

trait means (Gl), trait variances (Gr) and the square root

of the P matrix (GP). The diagonal of Gl are IA values of

each trait. The diagonals of Gr are the heritabilities of

each trait.

Table A3 gives some selection–response statistics when a

single gradient is applied to both the example populations.

The selection gradient giving change in relative fitness per

unit change in trait is b0 ¼ [0.005/mm,)0.001/mm,0.10/

egg]. These values were chosen to yield standardized

b values that are in line with typical standardized strengths

of selection (Hereford et al., 2004). Table A4 shows the

evolvability statistics developed in this paper, which are

based on response to a b in the same direction, but

standardized to length 1 on whichever scale the parameter

estimates are on. Note that this means that the ‘standard’

strength of selection is different for each standardization.

The first section of each table gives the evolvability

statistics for unstandardized data, where the units are a

mixture of egg numbers and millimetres. Although the

statistics are readily calculated, we see no useful inter-

pretation of any of our statistics on this dog’s breakfast

scale. The dimensionless ratios of evolvabilities, e, and

conditional evolvabilities, c, shown in the ‘compare’

column in Table A4, however, do have value in

expressing the relative progress possible under selection.

We do not show the ratio of respondabilities, r, as these

are measured in different directions and are therefore not

comparable. If the gradient b had included only one

nonzero element, indicating that all the selection was on

a single trait, the fact that the e and c each summarize

only the response in the selection direction would give

them the units of the single selected trait, and these

values could be interpreted. The value of the response

difference, d, is difficult to interpret, as it is a distance

along a different direction in phenotype space from b and

thus has different units.

The interpretability of these statistics increases on a

mean-standardized scale. The individual elements of the

response vector shown in Table A3 are in proportions of

the mean of each trait. In this coordinate system, the

selection gradient results in an average unconstrained

change of 1.1% in population 1 and 1.8% in population 2

in the direction of b. The respondability, r, in population 1

is thus 59% of that in population 2. Turning to evolvability,

e, if the mean-standardized selection gradient had been of

unit length in each population, corresponding to a strength

of selection equal to that on fitness, and no stabilizing

selection occurred, then the response would have been

1.2% in population 1 and 2.4% in population 2. The

evolvability in population 1 would have been 50% of that

in population 2. The ratio of the projections of D�z on b does

not equal the ratio of the evolvabilities because popula-

tions 1 and 2 have different means; so, standardizing the

selection gradients by their own means changes the

relative size of the selection gradients applied. This suggests

that it may sometimes be useful to standardize both

gradients and G by common values, as outlined above for

the expected response difference, �d.

On the mean scale, autonomies, a(b), the ratio of

conditional evolvability to evolvability, are 13% in

population 1 but only 1.2% in population 2. The

integration values, i(b), are 1 ) a(b); so, population 1 is

87% integrated and population 2 is 98.8% integrated in

these directions. Despite the larger unconstrained evolv-

ability of population 2 in direction b, evolution would

therefore be much more constrained by stabilizing

selection on the remaining traits in population 2 than

in 1. The conditional response is nearly 16 times as large in

population 1 as in population 2. This is reflected by the

difference in the angle of the unconstrained response

relative to b, 18� in population 1 and 36� in population 2.

When the other traits are under stabilizing selection,

this increased deflection will be counteracted and the

constrained response reduced. The angle between

the response vectors in the two populations is 18�. When

we standardize by the average of the mean vectors

response difference, d(b), is 0.8%, which is a substantial

proportion of the direct responses.

On the variance-standardized scale, element-wise

standardization places the individual elements of the

response vectors in standard deviation units. Respond-

ability, r, is 3.1% of a standard deviation in this

coordinate system in population 1 and 5.1% of a

standard deviation in population 2 in direction b. The

ratio of the projections of D�z on b does not equal the

ratio of the evolvabilities because of the different

standardizations employed in the two populations. The

autonomies, a(b), on the standard deviation scale are
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higher in both populations than those on the mean-

standardized scale, particularly in population 2, with

the result that conditional evolvabilities, c(b), are very

similar. The angles between the responses and b are

higher in population 1 than on the mean-standardized

scale, as is the angle between response vectors, hd. When

we use element-wise variance standardization, the

response difference, d(b), is 5.1% of a standard deviation,

about as large as the direct responses.

Standardization with the square root of the P matrix

places the lengths of response vectors and evolvabilities

in standard deviation units appropriate to their direction.

For example, the evolvability, e(b), in population 1 is

9.5% of the phenotypic standard deviation in direction b.

The oblique transformation of the coordinate system

makes the elements of the response vectors difficult to

interpret. In this case, P standardization results in similar

vectors and scalar measures of evolvability to r stan-

dardization.

The many differences between the statistics calculated

on different scales make clear that the choice of scale can

strongly influence the results. Each standardization gives

a unique weighting of the traits that stretches or

compresses each of the bases of phenotype space to a

different degree. In addition, the square-root-of-P trans-

formation also performs an oblique rotation of the bases.

Finally, we can compare the evolvability statistics over

the entire phenotype space. Table A5 shows the mean

evolvability, �e, conditional evolvability, �c, respondability,

�r, and autonomy, �a, values for the two hypothetical

populations. The average unconditional evolvability, �e,
on a mean-standardized scale is 0.5% in population 1

and 1.4% in population 2. The average conditional

evolvability, �c, is 0.18% of the mean in population 1 but

just 0.03% in population 2. This difference is reflected in

the lower autonomies, �a, in population 2. The raw and

standard deviation scales show a similar pattern, in

which population 2 is more unconditionally evolvable

but also more constrained than population 1. The key

cause of this result is that the eigenvalues of G matrix 2

are more uneven than those in G matrix 1.

Table A1 Example G and the residual matrix E ¼ P)G matrices and

trait means.

Population Trait (units) G E �z

1
1 (mm) 10 10 20

30 20
80

2
4

3
5 10 13 50

30 40
890

2
4

3
5 73

138
82

2
4

3
52 (mm)

3 (eggs)

2
1 (mm) 20 16 �10

20 20
150

2
4

3
5 20 20 20

50 100
600

2
4

3
5 80

152
64

2
4

3
5

2 (mm)

3 (eggs)

Table A2 Example G matrices from Table A1 standardized by trait means and variances.

Population Gl · 100 Gr GP

1
0:19 0:10 0:33

0:16 0:18
1:19

2
4

3
5 0:50 0:29 0:14

0:50 0:08
0:08

2
4

3
5 0:60 �0:09 0:08

0:54 0:02
0:07

2
4

3
5

2
0:31 0:13 �0:20

0:09 0:21
3:66

2
4

3
5 0:50 0:30 �0:06

0:29 0:09
0:20

2
4

3
5 0:42 0:15 �0:11

0:19 0:02
0:20

2
4

3
5

Table A3 Standardized selection gradients and response vectors for example populations in Table A1 on the raw and three standardized scales.

Population D�z bl D�zl br D�zr bP D�zP

1
Vector 0:24 mm

0:22 mm
0:88 eggs

2
4

3
5 0:37

�0:14
0:82

2
4

3
5 0:0033

0:0016
0:0107

2
4

3
5 0:022

�0:008
0:311

2
4

3
5 0:054

0:028
0:028

2
4

3
5 0:036

0:016
0:319

2
4

3
5 0:047

0:013
0:025

2
4

3
5

Length 0.938 0.908 0.011 0.312 0.067 0.321 0.055

2 Vector
�0:02 mm

0:27 mm
1:43 eggs

2
4

3
5 0:40

�0:15
0:64

2
4

3
5 �0:0002

0:0018
0:0223

2
4

3
5 0:032

�0:008
0:274

2
4

3
5 �0:003

0:031
0:052

2
4

3
5 0:025

0:042
0:268

2
4

3
5 �0:011

0:016
0:051

2
4

3
5

Length 1.454 0.770 0.022 0.276 0.061 0.273 0.054

The selection gradient is b0 ¼ [0.005/mm, )0.001/mm, 0.10/egg] and the length (norm) of this vector is 0.011 in a combination of egg and mm

units.
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Table A4 Evolvability statistics for the trait b0 ¼ [0.005/mm, )0.001/mm, 0.10egg].

Statistic

Standardization

None* Mean Standard deviation Square root of P

Population

Compare

Population

Compare

Population

Compare

Population

Compare1 2 1 2 1 2 1 2

r(b) 0.87 1.24 na� 0.0108 0.0181 0.59 0.031 0.051 0.62 0.030 0.051 0.60

e(b) 78 111 0.70 0.0119 0.0236 0.50 0.100 0.184 0.55 0.095 0.188 0.51

c(b) 29 3.8 7.67 0.0046 0.0003 15.91 0.043 0.038 1.14 0.056 0.158 0.36

a(b) 0.38 0.03 0.39 0.01 0.43 0.21 0.59 0.84

h� 22 31 16 18 36 16 62 34 51 56 19 78

d(b) 0.61 0.008 0.051 0.069

The ‘compare’ column compares the responses in the two populations. For the respondabilities, r(b), and evolvabilities, e(b) and c(b), the

comparison is the ratio of the value in population 1 to that in population 2, when each population is standardized with its own vector or matrix.

In other rows, both populations are standardized by the average of the standardization vectors or matrices in the two populations. The row

labelled h contains the angles between the response vectors in the two populations, hd.

*The units for the responses of each population are a mixture of mm and eggs, and therefore most of these statistics have no clear

interpretation.

�The ratio of respondabilities is meaningless on the raw scale.

�In the columns labelled 1 and 2, this is the angle between b and D�z. In the ‘compare’ column, it is the angle between the response vectors in

the two populations, hd.

Table A5 Expectations of evolvability statistics over a uniform distribution of selection gradients in the entire phenotype space for the

hypothetical populations.

Statistic

Standardization

None* Mean Variance P

1 2 1 2 1 2 1 2

�e 40.00 63.33 0.0051 0.0135 0.361 0.329 0.402 0.269

�r 51.08 83.66 0.0070 0.0194 0.455 0.410 0.464 0.310

�c 12.40 3.87 0.0018 0.0003 0.123 0.049 0.151 0.178

�a 0.454 0.101 0.460 0.034 0.495 0.243 0.575 0.831

*The units for the responses of each population are a mixture of millimetres and eggs, and these statistics therefore have no clear interpretation.
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Corrections to: Hansen, T. F., and D. Houle. 2008. Measuring and comparing evolvability and 
constraint in multivariate characters. Journal of Evolutionary Biology 21:1201-1219. 
 
Thomas F. Hansen*,† & David Houle† 
 
*University of Oslo, Department of Biology, Center for Ecological and Evolutionary Synthesis, 
0316 Oslo, Norway; e-mail:  thomas.hansen@bio.uio.no 
†Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; 
e-mail:  dhoule@bio.fsu.edu 
 
This document contains corrected versions of all the material known to be in error in the original 
paper.  Included here are new versions of Figures 2, 4 and 5, and Appendices 1 and 2.  The 
preamble to Appendix 1 contains corrected version of four mean evolvability equations that 
appeared in the text of the paper. 
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Fig. 2  Approximation of mean conditional evolvability, c .  The plots show numerically 
computed c  plotted against the analytical approximation in Result 3, Appendix 1, for 1000 
random G matrices of various dimensionalities (k).    In all cases, the matrices have random 
diagonal entries drawn from a uniform [0,1] distribution and zero off-diagonal elements.  This is 
justified as the symmetry of the random selection gradients implies that the results are unaffected 
by diagonalization.  The numerical mean is computed over 10,000 random unit selection 
gradients. 
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Fig. 4  Unconditional and conditional evolvabilities along the vector of differences in species 
means for wing shape between Drosophila melanogaster and other drosophilid species.  The 
mean conditional and unconditional evolvabilities are shown as dashed horizontal lines.  The 
evolvabilities are in units of centroid size.  
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Fig. 5  Mean conditional evolvability, c , versus generalized variance for 1000 random G 
matrices of various dimensionalities (k).  Calculation of c  is based on the analytical 
approximation in Result 3 (Appendix 1).  For the two-dimensional G matrices (k=2) the 
generalized variance is exactly equal to c and the error is due to our approximation.  See the 
legend of Fig. 2 for an explanation of how the random matrices were generated. 
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Appendix 2 (Corrected Jan. 19, 2009) 
This is a corrected version of Appendix 2 from Hansen, T. F., and D. Houle. 2008. Measuring 
and comparing evolvability and constraint in multivariate characters. J. Evol. Biol. 21:1201-
1219.  John Stinchcombe brought several errors in this Appendix to our attention.  In reworking 
the results we discovered additional errors, including those in Appendix 1.  This version corrects 
all these errors.  Changes are highlighted in yellow.  

First, the β3 value used for all calculations was given incorrectly, and was 0.01, rather 
than 0.1.   

Second, the evolvability statistics , , andr c a  in Table A5 were incorrect. One cause of 
this is that the formulas given in the original paper for , , andr c a  were incorrect, as noted in the 
correction to Appendix 1.  The other cause is that we used a sample-size correction in calculating 
the variances of functions of eigenvalues.  The correct formula to use in such calculations is 

( )( ) ( ) ( )
2

2
Var i i

i i

f f k f kλ λ λ⎡ ⎤= −⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∑ , where  λi is the ith eigenvalue, f(λ) is the 

function of the λs (e.g. 1/λ) whose variance is calculated, and k is the dimension of the G matrix.   
Finally, other calculation errors are corrected in the respondabilities and response 

differences in Table A4.  Several rounding errors have also been corrected, but not highlighted.  
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Appendix 2: a worked example 
To illustrate how our measures of evolvability are calculated, and how they can be interpreted, 
consider the two hypothetical three-trait G matrices in Table A1.  We chose this simple example 
to represent some typical problems in inferring and comparing evolvability from G matrices.  
Traits 1 and 2 represent lengths of morphological features, and trait 3 represents the life-history 
trait fecundity.  Comparison of the matrices themselves does not immediately suggest how each 
population will respond to selection.  The diagonals suggests that traits 1 and 3 might respond 
more rapidly to selection in population 2 and that trait 2 would respond better in population 1.  
The degree of correlation among traits seems a bit higher in population 2 than population 1.  It is 
clear, however, that more than a glance is necessary to ascertain which population would evolve 
more rapidly under particular circumstances.  Furthermore, note that the units are not 
commensurate across all the traits, so the raw numerical values cannot sensibly be compared 
when the directions of response are not the same.  In addition, note that traits and populations 
vary in the relationships between trait means and variances, so the appropriate standardization 
for each matrix is different. 
 Table A2 shows the example matrices standardized by trait means (Gµ), trait variances 
(Gσ), and the square root of the P matrix (GP).  The diagonal of Gµ are IA values of each trait.  
The diagonals of Gσ are the heritabilities of each trait. 
 Table A3 gives some selection-response statistics when a single gradient is applied to 
both of the example populations.  The selection gradient giving change in relative fitness per unit 
change in trait is β’ = [0.005/mm, –0.001/mm, 0.01/egg].  These values were chosen to yield 
standardized β values that are in line with typical standardized strengths of selection (Hereford et 
al., 2004).  Table A4 shows the evolvability statistics developed in this paper, which are based 
on response to a β in the same direction, but standardized to length 1 on whichever scale the 
parameter estimates are on.  Note that this means that the ‘standard’ strength of selection is 
different for each standardization. 
 The first section of each table gives the evolvability statistics for unstandardized data, 
where the units are a mixture of egg numbers and millimeters.  Although the statistics are readily 
calculated, we see no useful interpretation of any of our statistics on this dog’s-breakfast scale.  
The dimensionless ratios of evolvabilities,  e, and conditional evolvabilities, c, shown in the 
‘compare’ column in A4, however, do have value in expressing the relative progress possible 
under selection.  We do not show the ratio of respondabilities, r, as these are measured in 
different directions and are therefore not comparable.  If the gradient β had included only one 
non-zero element, indicating that all the selection was on a single trait, the fact that the e and c 
each summarize only the response in the selection direction would give them the units of the 
single selected trait, and these values could be interpreted.  The value of the response difference, 
d, is difficult to interpret, as it is a distance along a different direction in phenotype space from β 
and thus has different units. 
 The interpretability of these statistics increases on a mean-standardized scale.  The 
individual elements of the response vector shown in Table A3 are in proportions of the mean of 
each trait.  In this coordinate system, the selection gradient results in an average unconstrained 
change of 1.3% in population 1 and 2.9% in population 2 in the direction of β.  The 
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respondability, r,  in population 1 is thus 43% of that in population 2.   Turning to evolvability, e, 
if the mean-standardized selection gradient had been of unit length in each population, 
corresponding to a strength of selection equal to that on fitness, and no stabilizing selection 
occurred, then the response would have been 1.2% in population 1 and 2.4% in population 2.  
The evolvability in population 1 would have been 50% of that in population 2.   The ratio of the 
projections of ∆z  on β does not equal the ratio of the evolvabilities because populations 1 and 2 
have different means, so standardizing the selection gradients by their own means changes the 
relative size of the selection gradients applied.  This suggests that it may sometimes be useful to 
standardize both gradients and G by common values, as outlined in the text for the expected 
response difference, d . 
 On the mean scale, autonomies, a(β), the ratio of conditional evolvability to evolvability, 
are 39% in population 1 but only 1.2% in population 2.  The integration values, i(β), are 1- a(β), 
so population 1 is 61% integrated and population 2 is 98.8% integrated in these directions.  
Despite the larger unconstrained evolvability of population 2 in direction β, evolution would 
therefore be much more constrained by stabilizing selection on the remaining traits in population 
2 than in 1.  The conditional response is nearly 16 times as large in population 1 as in population 
2.  This is reflected by the difference in the angle of the unconstrained response relative to β, 18° 
in population 1 and 36° in population 2.  When the other traits are under stabilizing selection, 
this increased deflection will be counteracted and the constrained response reduced.  The angle 
between the response vectors in the two populations is 18°.  When we standardize by the average 
of the mean vectors response difference, d(β), is 1.0%, which is a substantial proportion of the 
direct responses. 
 On the variance-standardized scale, elementwise standardization places the individual 
elements of  the response vectors in standard-deviation units.  Respondability, r,  is 21% of a 
standard deviation in this coordinate system in population 1 and 22% of a standard deviation in 
population 2 in direction β.  The ratio of the projections of ∆z  on β does not equal the ratio of 
the evolvabilities because of the different standardizations employed in the two populations.  The 
autonomies, a(β), on the standard-deviation scale are higher in both populations than those on 
the mean-standardized scale, particularly in population 2, with the result that conditional 
evolvabilities, c(β), are very similar.  The angles between the responses and β are higher in 
population 1 than on the mean-standardized scale, as is the angle between response vectors, θd.  
When we use elementwise variance standardization, the response difference, d(β) , is  17% of a 
standard deviation, about as large as the direct responses. 
 Standardization with the square root of the P matrix places the lengths of response 
vectors and evolvabilities in standard deviation units appropriate to their direction.  For example, 
the evolvability, e(β), in population 1 is 9.5% of the phenotypic standard deviation in direction β.  
The oblique transformation of the coordinate system makes the elements of the response vectors 
difficult to interpret.  In this case, P standardization results in similar vectors and scalar measures 
of evolvability to σ standardization. 
 The many differences between the statistics calculated on different scales make clear that 
the choice of scale can strongly influence the results.  Each standardization gives a unique 
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weighting of the traits that stretches or compresses each of the bases of phenotype space to a 
different degree.  In addition, the square-root-of-P transformation also performs an oblique 
rotation of  the bases. 
 Finally, we can compare the evolvability statistics over the entire phenotype space.  Table 
A5 shows the mean evolvability, e ,conditional evolvability, c , respondability, r , and 
autonomy, a , values for the two hypothetical populations.   The average unconditional 
evolvability, e , on a mean-standardized scale is 0.5% in population 1 and 1.4% in population 2.  
The average conditional evolvability, c , is 0.16% of the mean in population 1 but just 0.03% in 
population 2.  This difference is reflected in the lower autonomies, a , in population 2.  The raw 
and standard-deviation scales show a similar pattern, in which population 2 is more 
unconditionally evolvable but also more constrained than population 1.  The key cause of this 
result is that the eigenvalues of G matrix 2 are more uneven than those in G matrix 1.
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Table A1  Example G and the residual matrix E = P – G matrices and trait means. 
 
Population Trait 

(Units) G E z  

1 1 (mm) 10 10 20
30 20

80

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
10 13 50

30 40
890

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
73

138
82

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 (mm) 
3 (eggs) 

2 1 (mm) 20 16 10
20 20

150

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
20 20 20

50 100
600

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

80
152
64

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 (mm) 

3 (eggs) 
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Table A2  Example G matrices from Table A1 standardized by trait means and variances. 
_____________________________________________________________________________ 
Population Gµ × 100 Gσ GP 

_____________________________________________________________________________ 

 1 
0 188 0 099 0 334

0 158 0 177
1 190

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. . .
. .

.
 

0 500 0 289 0 144
0 500 0 083

0 082

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. . .
. .

.
 

0 602 0 086 0 084
0 536 0 023

0 067

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. . .
. .

.
 

 2 
0 313 0 132 0 195

0 087 0 206
3 662

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. . .
. .

.
 

0 500 0 302 0 058
0 286 0 087

0 200

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. . .
. .

.
 

0 424 0 154 0 105
0 188 0 016

0 196

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. . .
. .

.
 

_____________________________________________________________________________ 
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Table A3  Standardized selection gradients and response vectors for example populations in Table A1 on the raw and three 
standardized scales.  

Pop.  ∆z  βµ µ∆z  βσ σ∆z  βP ∆zP  
1 vector 0.24 mm

0.22 mm
0.88 eggs

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 37
0 14

0 82

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

.
.

.
 

0 0033
0 0016
0 0107

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

.

.
 

0 022
0 008

0 311

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

.
.
.

 
0 054
0 028
0 028

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

.

.
 

0 036
0 016
0 319

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

.

.
 

0 047
0 013
0 025

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

.

.
 

 length 0.938 0.908 0.011 0.312 0.067 0.321 0.055
2 vector 0.02 mm

0.26 mm
1.43 eggs

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 40
0 15

0 64

.
.

.

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 
0 0002

0 0017
0 0223

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.
.
.

 
0 032
0 008

0 274

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

.
.

.
 

0 003
0 031
0 052

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.
.
.

 
0 025
0 042
0 268

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

.

.
 

0 011
0 016
0 051

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.
.
.

 

 length 1.454 0.770 0.022 0.276 0.061 0.273 0.054
The selection gradient is β’ = [0.005/mm, –0.001/mm, 0.01/egg], and the length (norm) of this vector is 0.011 in a combination of egg 
and mm units. 
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Table A4  Evolvability statistics for the trait  β’ = [0.005/mm, –0.001/mm, 0.01/egg].   
_____________________________________________________________________________________________________ 
                                                                                                   Standardization                                                                              
                                         None*                               Mean                            Standard deviation                   Square root of P        
                               Population                       Population                              Population                             Population    
       Statistic        1           2        compare       1            2        compare        1        2         compare            1            2        compare 
 r(β) 84 129 na† 0.0125 0.0291 0.43 0.214 0.221 0.97 0.170 0.199 0.85 
 e(β) 78 111 0.70 0.0119 0.0236 0.50 0.100 0.184 0.55 0.095 0.188 0.50 
 c(β)  29 3.8 7.67 0.0046 0.0003 15.91 0.043 0.038 1.14 0.056 0.158 0.35 
 a(β) 0.38 0.03  0.39 0.01  0.43 0.21  0.59 0.84 
 θ‡ 22 31 16 18 36 15 62 34 51 56 19 78 
 d(β)§   54   0.010   0.174   0.234 
_____________________________________________________________________________________________________ 
The ‘compare’ column compares the responses in the two populations.  For the respondabilities, r(β), and evolvabilities, e(β) and c(β), 
the comparison is the ratio of the value in population 1 to that in population 2, when each population is standardized with its own 
vector or matrix.  For θ and d(β), both populations are standardized by the average of the standardization vectors or matrices in the 
two populations. 
*The units for the responses of each population are a mixture of mm and eggs, and therefore most of these statistics have no clear 
interpretation. 
†The ratio of respondabilities is meaningless on the raw scale. 
‡In the columns labeled 1 and 2, this is the angle between β and ∆z .  In the ‘compare’ column it is the angle between the response 
vectors in the two populations, θd. 
§Response differences were calculated from a standard length β under each standardization.  In the original paper we calculated 
response differences using the unstandardized β. 
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Table A5  Expectations of evolvability statistics over a uniform distribution of selection 
gradients in the entire phenotype space for the hypothetical populations. 
_________________________________________________________________________ 
                                                                    Standardization                                                     
                         Nonea                          Mean                     Variance                          P             
Statistic 1 2 1 2 1 2 1 2     
e  40.00 63.33 0.0051 0.0135 0.361 0.329 0.402 0.269 
r  50.79  83.17 0.0070 0.0193 0.453   0.408  0.463 0.309 
c  13.47  4.77  0.0016 0.0003 0.134 0.062  0.192 0.182 
a  0.389  0.091  0.388 0.033 0.422 0.207 0.470 0.708 
_________________________________________________________________________ 
aThe units for the responses of each population are a mixture of millimeters and eggs, and these 
statistics therefore have no clear interpretation. 
 
 


