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Abstract

We propose a family of shape metrics that generalize
the classical Procrustes distance by attributing weights
to general linear combinations of landmarks. We de-
velop an algorithm to learn a metric that is optimally
suited to a given shape classification problem. Shape
discrimination experiments are carried out with phan-
tom data, as well as landmark data representing the
shape of the wing of different species of fruit flies.

1. Introduction

We introduce a family of shape metrics that gener-
alize the classical Procrustes distance [5, 6] and inves-
tigate criteria to select a metric that is best suited to a
given shape classification problem. One of the appli-
cations that motivate this study of shape is the prob-
lem of uncovering morphological characteristics of the
wings of fruit flies that can reliably distinguish differ-
ent species. This is one of a broader set of problems
that arise in the investigation of how genetic changes
affect phenotype. As indicated in Figure 1, the points
where the veins of a wing meet yield a natural collec-
tion of 12 landmark points to base the shape analysis
upon. This immediately suggests the use of classical
Procrustes analysis, which relies on shape representa-
tion by indexed collections of landmarks.

If a shape in k-dimensional space Rk is represented
by n landmark points p1, . . . , pn ∈ Rk, let

P = [p1 . . . pn] (1)

be the k×n matrix whose jth column records the coor-
dinates of pj . If P and Q are two such configurations,
after normalization to make the representation invariant
to translation and scale, and Procrustes alignment to ac-
count for relative orientation, the distance ‖P − Q‖ is
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Figure 1. Twelve landmark points on the
wing of a fruit fly.

frequently used to quantify shape dissimilarity, where
‖ · ‖ is the (Frobenius) norm associated with the inner
product

〈P,Q〉 =
n∑

i=1

pi · qi = trace (PQT ) . (2)

Oftentimes, however, the main characteristics that dif-
ferentiate populations of shapes are confined to specific
regions. As such, metrics that attribute equal impor-
tance to all landmarks may dilute the most salient dif-
ferences and that can have an adverse effect on their
discriminative power. Motivated by this observation,
we propose shape metrics that are able to emphasize
particular regions of a configuration. One possible ap-
proach is to simply modify the metric using weights for
the landmarks, but this is not entirely satisfactory be-
cause an important shape feature may depend on a com-
bination of two or more landmarks. Thus, we propose to
analyze shape with metrics derived from more general
inner products of the form

〈P,Q〉M = 〈PM,Q〉 = trace (PMQT ) , (3)

where M is an n × n positive-definite, symmetric ma-
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trix. The associated distance function is

‖P −Q‖M =
√
〈P −Q,P −Q〉M . (4)

IfM is the identity matrix, we ssometimes drop the sub-
script and use the usual notation 〈 , 〉 and ‖ · ‖. If M is a
diagonal matrix with diagonal entries λi > 0, then

〈P,Q〉M =
n∑

i=1

λi(pi · qi) , (5)

so that the metric simply assigns weights to the land-
marks. However, in general, the M -metric involves
more intricate linear combinations of the landmarks.
This construction yields a whole family of shape met-
rics and raises the question of how to choose one that
is most effective for a given shape classification prob-
lem. We propose a selection criterion based on a prin-
ciple analogous to that adopted in Linear Discriminant
Analysis (LDA) [2]. In other words, given training
shapes representing various classes of shapes, we de-
velop a method to estimate M so that the associated
shape metric maximizes class separation while mini-
mizing within-class spread. However, unlike LDA, this
criterion will be used in the non-linear realm of shapes.
Since the measurements of class spread and separation
involve mean shapes (cf. [1]), we also address the esti-
mation of means with respect to these generalized shape
metrics. We carry out various experiments starting with
a preliminary illustration with phantom data. We apply
the method to the construction of a metric that discrim-
inates species of fruit flies based on the shape of their
wings. The method also allows us to identify the spe-
cific features that contribute the most to the discrimina-
tion of the species. We compare the results with those
obtained with the usual Procrustes distance.

2. Generalized Shape Models

Let P be a k×n matrix representing an ordered col-
lection of n landmarks in Rk as in (1). Since config-
urations that differ by translations and scale represent
the same shape, as usual, we normalize P to have its
centroid at the origin and scale the matrix to have unit
Frobenius norm; that is, ‖P‖ = 1. Here, we assume
that the degenerate cases where all landmark points are
the same are excluded, which is equivalent to saying
that P 6= 0 after centering. The space formed by
all k × n matrices representing normalized configura-
tions is known as the pre-shape space, which we denote
P (k, n). The condition on the centroid restricts P to a
subspace of Rk×n of dimension (n−1)k, while the nor-
malization of scale places P on the unit sphere. Thus,
P (k, n) is a unit sphere of dimension (n− 1)k − 1.

Next, we consider the effect of orthogonal transfor-
mations on P . Let O(k) be the group of k × k orthog-
onal matrices. If U ∈ O(k) and P ∈ P (k, n), then
UP represents the same shape as P . The orbit of a pre-
shape P under the action of the orthogonal group O(k)
is [P ] = {UP : U ∈ O(k)} ⊂ P (k, n). Kendall’s
shape space Σ(k, n) is the orbit space of pre-shapes
under the action of O(k) [5]. Thus, a shape may be
thought of as an orbit of pre-shapes. Given a positive
definite n× n matrix M , we define the shape metric

dM ([P ], [Q]) = min
U,V ∈O(k)

‖V P − UQ‖M

= min
U∈O(k)

‖P − UQ‖M ,
(6)

where the last equality follows from the fact that orthog-
onal transformations preserve the M -norm. If M is the
identity matrix, the metric coincides with the one used
in classical Procrustes analysis. Since

‖P − UQ‖2M = 〈P − UQ,P − UQ〉M
= ‖P‖2M + ‖Q‖2M − 2 〈P,UQ〉M ,

(7)

minimizing ‖P − UQ‖2M is the same as maximizing
〈P,UQ〉M = 〈PM,UQ〉. This last problem is well
known [5] and the solution may be expressed as fol-
lows. Using a singular value decomposition, write
PMQT = V1ΣV T

2 , with V1, V2 ∈ O(k) and Σ diag-
onal with nonnegative eigenvalues. Then, Ũ = V1V

T
2

maximizes 〈PM,UQ〉. Hence, theM -distance is given
by

dM ([P ], [Q]) = ‖P − V1V
T
2 Q‖M . (8)

We conclude this section with an interpretation of
the M -metric. Decompose M as M = UΛUT , with
Λ diagonal and U orthogonal. The diagonal entries λi

are the positive eigenvalues of M and the correspond-
ing columns of U are the associated unit eigenvectors.
Under the change of coordinates Q = PU , the inner
product associated with M becomes〈

P, P †
〉

M
=
〈
PM,P †

〉
=
〈
PUΛUT , P †

〉
=
〈
PUΛ, P †U

〉
=
〈
Q,Q†

〉
Λ
.

(9)

This means that if we replace the ith landmark pi with
qi, the effect of the M -metric is simply to attribute the
weight λi to qi. We order the eigenvalues to satisfy λi >
λi+1, so that the “importance” of qi decreases as the
index i increases.

3. Mean Shape

Given shapes [Pi], 1 6 i 6 m, a sample Fréchet
mean with respect to the M -metric is a shape [P ] such
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that P minimizes the M -variance function

VM (P ) =
1

m− 1

m∑
i=1

‖P − UiPi‖2M , (10)

where Ui optimally aligns Pi with P . We omit the de-
tails of the minimization of VM on the pre-shape sphere
because the strategy is similar to that of the mean-shape
algorithm of [4]. Experiments demonstrated fast con-
vergence if the samples form a fairly compact cluster in
shape space. This is often the case in applications, for
example, if the samples represent the same anatomical
structure of different individuals such as the wings of
several specimens of fruit flies.

4. Learning Shape Metrics

Given training data representing K different shape
classes, our goal is to learn a shape metric that best
discriminates them. In implementations, it may be-
come difficult to enforce the positivity of the matrix
M , so we use a logarithmic representation by writing
M = expA, with A symmetric.

For each 1 6 i 6 K, let the training shapes in the ith
class be represented by the pre-shapes Pij , 1 6 j 6 ni.
Given a symmetric matrix A, let µi(A) be a pre-shape
that represents the mean of the training shapes in the
ith class with respect to M = exp(A). Define the total
within-class scatter with respect to A as

SW (A) =
K∑

i=1

ni∑
j=1

d2
M ([Pij ], [µi]) . (11)

Similarly, letting µ be a pre-shape representative of the
mean shape of the entire training set, define the total
between-class scatter as

SB(A) =
K∑

i=1

nid
2
M ([µi], [µ]) . (12)

The proposed criterion for metric selection will be
essentially based on the minimization of the ratio
SW (A)/SB(A). Note that scaling M does not affect
the discriminative ability of the shape metric, which is
reflected in the fact that SW (A)/SB(A) remains the
same. Scale can be normalized in several different
ways. We adopt the normalization detM = 1 because
in logarithmic representation it becomes traceA = 0,
a linear constraint that can be easily enforced. Hence,
our goal is to minimize SW (A)/SB(A) on the subspace
of trace zero symmetric matrices. However, this mini-
mization problem may not be well posed because the ra-
tio may keep decreasing as A moves off to infinity; that

is, as one or more eigenvalues of M = expA become
large as others decay so as to keep the determinant uni-
tary. Thus, we add a quadratic regularization term and
propose the cost function

F (A) =
SW (A)
SB(A)

+
α

2
‖A‖2 , (13)

where α > 0 is a constant.
We employ a gradient descent algorithm to estimate

the minimum of F on the linear trace-zero subspace
of symmetric matrices. A calculation of the gradient
∇F (A) yields

1
SB

K∑
i=1

ni∑
j=1

∫ 1

0

e(1−s)A(P̂ij − µi)T (P̂ij − µi)esAds

−SW

S2
B

m∑
i=1

ni

∫ 1

0

e(1−s)A(µ̂i − µ)T (µ̂i − µ)esAds

+ αA = ∇F (A),
(14)

where ˆ indicates optimal orthogonal alignment. This
expression shows that, at each step of the optimiza-
tion algorithm, we need to calculate the total scatter
functions SW (A) and SB(A), the mean of each clus-
ter, the global mean and various generalized Procrustes
alignments, all with respect to the current matrix M =
expA.

5. Experimental Results

A preliminary experiment with phantom data illus-
trates that the matrixM which the algorithm produces is
consistent with our intuition. We generated two classes
of shapes, with 4 landmarks each, as follows. For all
shapes, landmark 1 is represented by the same point,
while landmark 2 for both classes is randomly sampled
from a common Gaussian distribution. For landmarks 3
and 4, we used Gaussians with slightly different means,
but same variance. Therefore, as indicated in Figure 2,
we expect landmarks 3 and 4 to be the most informa-
tive for shape discrimination. We generated a total of
1,000 test samples (500 for each class), in addition to
training samples. We carried out 4 experiments with T
training samples for each class, with T = 15, 25, 35, 45.
We use the algorithm to learn a matrix M and used the
shape metric with the nearest neighbor classifier to dis-
criminate the test samples. Table 1 compares the rate of
correct classification with our matrix model and those
obtained with the classical Procrustes metric. The sym-
metric matrix M , learned with T = 15, has eigenvalues
λ1 = 0.73, λ2 = 0.5, λ3 = 0.46 and λ4 = 0.086. The
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Figure 2. Phantom data with 4 landmarks.

T Procrustes Metric Matrix Model
15 92.1 % 96.6%
25 92.6% 97.7%
35 94.2% 98.7%
45 97.0% 99.3%

Table 1. Classification rate with T training
samples from each class.

corresponding unit-length eigenvectors are the columns
of the matrix

U =


0.63 0.35 0.50 0.48
0.15 0.17 0.50 0.84
0.02 0.86 0.50 0.12
0.76 0.35 0.50 0.23

 (15)

The first eigenvector u1 emphasizes the contributions of
the landmarks p1 and p4, consistent with the facts that
the first landmark should be well aligned and the 4th
landmark is highly discriminatory. The eigenvector u2

is dominated by the 3rd landmark, which also discrim-
inates the classes well. The only eigenvector that em-
phasizes the 2nd landmark over the others is associated
with the small eigenvalue λ4.

We carried out a similar experiment with 12-
landmark fly wing data acquired with the software
WingMachine [3] for Drosophila melanogaster and
Drosophila mauritiana. We used 233 D. melanogaster
and 180 D. mauritiana test samples, respectively. The
classification results obtained with T training samples
for each species are reported in Table 2. To visualize the
discrimination of the species achieved with the learned
shape metric, Figure 3 shows the first landmark q1 for
several samples of D. melanogaster (green squares) and
D. mauritiana (red circles), under the change of co-
ordinates described in Section 2, using the matrix M
learned with T = 15.

T Procrustes Metric Matrix Model
15 90 % 95%
25 91% 96%
40 92% 97%

Table 2. Discrimination accuracy of D.
Melanogaster and D. Mauritiana.

Figure 3. D. melanogaster (�) and D. mau-
ritiana (◦).

6. Summary and Discussion

We extended classical Procrustes shape analysis to
a family of models that can emphasize particular com-
binations of landmarks. We developed a learning al-
gorithm to select a model that is best suited to a shape
classification and discrimination problem. Experiments
were carried out with both phantom data and wing data
for different species of fruit flies. Other applications and
more extensive statistical analysis of shape using these
models will be the subject of future investigation.
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