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The channel pore-forming � subunit Kv4.2 is a major constituent of A-type (IA ) potassium currents and a key regulator of neuronal
membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting, and cell-surface expression of Kv4.2-encoded
channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly
identified the voltage-gated Na � channel accessory subunit Nav�1. Voltage-clamp and current-clamp recordings revealed that knock-
down of Nav�1 decreases IA densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing
is increased in Scn1b-null cortical pyramidal neurons lacking Nav�1. Biochemical and voltage-clamp experiments further demonstrated
that Nav�1 interacts with and increases the stability of the heterologously expressed Kv4.2 protein, resulting in greater total and cell-surface
Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Together, the results presented here identify Nav�1 as a component of
native neuronal Kv4.2-encoded IA channel complexes and a novel regulator of IA channel densities and neuronal excitability.

Introduction
Somatodendritic A-type (IA) voltage-gated K� channels are key
regulators of neuronal excitability, contributing to resting mem-
brane potentials and action potential repolarization and func-
tioning to modulate the frequency of repetitive firing, the current
thresholds for action potential generation, and the back-
propagation of action potentials into dendrites (Hoffman et al.,
1997; Birnbaum et al., 2004; Kim et al., 2005; Yuan et al., 2005).
Whole-cell voltage-clamp recordings from neurons obtained
from mice (Kv4.2�/�) harboring a targeted disruption of the
Kcnd2 (Kv4.2) locus revealed that the K� channel pore-forming

� subunit, Kv4.2, is a major constituent of IA in hippocampal and
cortical pyramidal neurons, as well as in dorsal horn neurons of
the spinal cord (Chen et al., 2006; Hu et al., 2006; Nerbonne et al.,
2008; Norris and Nerbonne, 2010). The functional properties of
Kv4.2-encoded channels are regulated by multiple mechanisms,
including post-translational modifications and interactions with
accessory subunits (Birnbaum et al., 2004). Phosphorylation of
the Kv4.2 � subunit by different kinases, for example, modulates
the cell-surface expression, densities, and activity-dependent
trafficking of Kv4.2-encoded IA channels (Birnbaum et al., 2004;
Varga et al., 2004; Hammond et al., 2008). In addition, interac-
tion of Kv4.2 � subunits with accessory subunits, such as the K�

channel interacting proteins (KChIPs) and the dipeptidyl
peptidase-like proteins, regulates the subcellular targeting, sur-
face expression, and biophysical properties of heterologously ex-
pressed Kv4.2-encoded channels (Nadal et al., 2003; Birnbaum et
al., 2004; Rhodes et al., 2004; Jerng et al., 2005; Zagha et al., 2005;
Nadin and Pfaffinger, 2010; Norris et al., 2010; Sun et al., 2011).

Experiments in heterologous expression systems have pro-
vided valuable insights into the functional effects of a number of
putative accessory subunits on the properties of Kv4.2-encoded
channels and have indicated that Kv4 channel � subunits func-
tion in macromolecular protein complexes (Birnbaum et al.,
2004). Little is known, however, about the composition of native
neuronal Kv4.2-encoded channels or the roles that the various
Kv4 channel accessory subunits play in the regulation of neuronal
excitability. The present study identifies the voltage-gated Na�

channel accessory subunit Nav�1 as a component of native neu-
ronal Kv4.2 channel complexes and a key modulator of action

Received Dec. 24, 2011; revised Feb. 16, 2012; accepted March 1, 2012.
Author contributions: C.M., Y.C., A.J. N., and J.M.N. designed research; C.M., Y.C., A.J.N., and A.J.L. performed

research; L.L.I. contributed unpublished reagents/analytic tools; C.M., Y.C., A.J.N., R.R.T., A.J.L., and J.M.N. analyzed
data; C.M., Y.C., L.L.I., and J.M.N. wrote the paper.

The financial support provided by the Washington University-Pfizer Biomedical Research Program (to J.M.N.),
the National Institutes of Health (R01-HL034161 and R21-NS065295 to J.M.N., R01-GM064779 to A.J.L., and R01-
NS076752 to L.L.I.), the National Center for Research Resources (NIH P41RR000954 and UL1 RR024992), the NIH
Neuroscience Blueprint Center Core Grant (P30-NS057105), the W.M. Keck Foundation, and the Heartland Affiliate
of the American Heart Association (to C.M.) is gratefully acknowledged. Y.C. was supported by the Research Training
Grant T32-HL007275 and the Individual National Research Service Award F32-NS065581 from the NIH. We also
thank Rick Wilson for maintaining and genotyping mice, Rebecca Mellor for technical assistance with molecular
biology, and Dr. John R. Yates III (The Scripps Research Institute, La Jolla, CA) for providing the extractms2 program.

*C.M. and Y.C. contributed equally to this work.
C. Marionneau’s present address: L’Institut du Thorax, INSERM UMRS 1087, IRT-UN, 8 Quai Moncousu, BP 70721,

44007 Nantes Cedex 1, France.
Correspondence should be addressed to Jeanne M. Nerbonne, Department of Developmental Biology, Washing-

ton University School of Medicine, 660 South Euclid Avenue, Campus Box 8103, St. Louis, MO 63110. E-mail:
jnerbonne@wustl.edu.

DOI:10.1523/JNEUROSCI.6450-11.2012
Copyright © 2012 the authors 0270-6474/12/325716-12$15.00/0

5716 • The Journal of Neuroscience, April 25, 2012 • 32(17):5716 –5727



potential repolarization and repetitive firing in cortical pyrami-
dal neurons. Nav�1 is a single transmembrane multifunctional
protein that, in addition to functioning as a cell adhesion mole-
cule, has been shown to modulate voltage-gated Na� (Nav) cur-
rents and Nav channel cell-surface expression and subcellular
localization (Isom et al., 1992; Isom, 2001, 2002; Brackenbury et
al., 2008, 2010; Aman et al., 2009; Patino and Isom, 2010; Brack-
enbury and Isom, 2011). The experiments here identified the
presence of Nav�1 in native Kv4.2 channel complexes immuno-
precipitated from the mouse brain. Voltage-clamp and current-
clamp recordings revealed that acute knockdown of Nav�1
decreases IA densities in isolated cortical neurons. In addition, in
vivo loss of Nav�1 impairs action potential repolarization and
repetitive firing in cortical pyramidal neurons in slices prepared
from animals (Scn1b�/�) lacking Nav�1. Biochemical and
voltage-clamp experiments further demonstrated that Nav�1
functions to stabilize heterologously expressed Kv4.2 protein, re-
sulting in greater total and cell-surface Kv4.2 protein expression
and increased Kv4.2-encoded current densities.

Materials and Methods
All experiments were performed in accordance with the guidelines
published in the U.S. National Institutes of Health Guide for the Care
and Use of Laboratory Animals. Experimental protocols were ap-
proved by the Animal Care and Use Committee of Washington Uni-
versity School of Medicine. Generation and characterization of the
Kv4.2-targeted deletion (Kv4.2 �/�) mouse line has been described
previously (Guo et al., 2005; Hu et al., 2006; Nerbonne et al., 2008).
Scn1b �/� mice were generated from Scn1b �/� heterozygotes (Chen
et al., 2004), congenic on the C57BL/6 background, and genotypes
were confirmed by PCR screening as described previously. Male and
female mice were used in all experiments.

Immunoprecipitation of mouse brain Kv4.2 channel complexes. For im-
munoprecipitation (IP) of Kv4.2 channel complexes, flash-frozen brains
from adult wild-type (WT) or Kv4.2 �/� mice were homogenized in
ice-cold lysis buffer containing the following (in mM): 20 HEPES, pH 7.4,
110 potassium acetate, pH 7.4, 1 MgCl2, 150 NaCl, with 0.1 �M CaCl2,
complete mini EDTA-free protease inhibitor mixture tablet (Roche), 1
mM Pefabloc (Sigma), 1 �g/ml pepstatin A (Calbiochem), 1 X Halt phos-
phatase inhibitor mixture (Pierce), and 0.5% 3-[(3-cholamidopropyl)-
dimethylammonio]-1-propane-sulfonate hydrate (Sigma). After a 15
min rotation at 4°C, 40 mg of each soluble protein fraction was used for
IPs with an anti-Kv4.2 rabbit polyclonal antibody (Rb�Kv4.2; Millipore
Bioscience Research Reagents) cross-linked to protein A-magnetic beads
(Invitrogen) using 20 mM dimethyl pimelimidate (Pierce) (Schneider et
al., 1982). Following mixing of the protein samples with the antibody-
coupled beads for 2 h at 4°C, the beads were collected and washed four
times with ice-cold lysis buffer. Protein complexes were eluted from the
beads in 2% Rapigest (Waters) in 100 mM Tris, pH 8.5, at 60°C for 5 min.

Mass spectrometric analyses. Immunoprecipitated protein samples
were reduced, alkylated, trypsinized, and analyzed using shotgun
proteomics by Multidimensional Protein Identification Technology
(MudPIT) as described previously (Link et al., 1999; Washburn et al.,
2001; Arnett et al., 2008; Marionneau et al., 2009). Briefly, a fritless mi-
crocapillary (100 �m inner diameter) column was packed sequentially as
follows: 9 cm of 5 �m C18 reverse-phase (Synergi 4 � Hydro RP80a;
Phenomenex), 3 cm of 5 �m strong cation exchange (Partisphere SCX;
Whatman), and 2 cm of C18 reverse-phase packing material. The trypsin-
digested samples were loaded directly onto the triphasic column, equili-
brated in 0.1% formic acid and 2% acetonitrile. The column was placed
in line with a nanoESI-LTQ linear ion trap mass spectrometer (Thermo
Scientific), and an automated six-cycle multidimensional chromato-
graphic separation was performed using buffer A (0.1% formic acid, 5%
acetonitrile), buffer B (0.1% formic acid, 80% acetonitrile), and buffer C
(0.1% formic acid, 5% acetonitrile, and 500 mM ammonium acetate) at a
flow rate of 300 nl/min. The first cycle was a 20 min isocratic flow of
buffer B. Cycles 2– 6 consisted of 3 min of buffer A, 2 min of buffer C, and

5 min of buffer A, followed by a 60 min linear gradient to 60% buffer B.
Cycles 2– 6 used 15, 30, 50, 70, and 100% of buffer C, respectively. During
the linear gradient, eluting peptides were analyzed by one full mass spec-
trometric (MS) scan (200 –2000 m/z), followed by (five) MS/MS scans on
the five most abundant ions detected in the full MS scan while operating
under dynamic exclusion.

The program extractms2, developed and provided by Jimmy Eng and
John R. Yates III (The Scripps Research Institute, La Jolla, CA), was used
to generate the ASCII peak list and identify �1 or multiply charged
precursor ions from unprocessed MS data files. Tandem spectra were
searched with no protease specificity using SEQUEST-PVM (Sadygov et
al., 2002) against the RefSeq mouse protein database (released May 2005)
containing 28,818 entries. For multiply charged precursor ions (z � �2),
an independent search was performed on both the �2 and �3 mass of
the parent ion. Data were processed and organized using the BIGCAT
software analysis suite (McAfee et al., 2006). A weighted scoring matrix
was used to select the most likely charge state of multiply charged pre-
cursor ions (Link et al., 1999; McAfee et al., 2006). From the database
search, tryptic peptide sequences with SEQUEST cross-correlation
scores (Cn) �1.5 for �1 ions, �2 for �2 ions, and �2 for �3 ions were
considered significant and used to create the list of identified proteins. To
compare the relative abundances of the proteins identified by MS analy-
ses, protein abundance factors (Powell et al., 2004) were calculated for
each identified protein by normalizing the total number of nonredun-
dant spectra that correlated significantly with each open reading frame to
the molecular weight of the cognate protein (�10 4).

Plasmids. The mouse Kv4.2, KChIP2, Nav�1, and Kv2.1 cDNAs were
purchased from Open Biosystems and the sequences were verified. The
pCMV-Script plasmid was purchased from Stratagene. The enhanced
yellow fluorescent protein (EYFP)-C-terminally tagged Nav�1 construct
was generated by subcloning Nav�1 from the pCMV-SPORT6 into the
pEYFP-N1 vector (Clontech). The Myc-N-terminally tagged TASK1 was
generated by cloning the coding region of mouse TASK1 into the pCMV-
Tag3B (Myc-tagged) vector (Stratagene). The Myc-TASK1 coding se-
quence was subcloned into the �-MHC vector (Gulick and Robbins,
2009) at the SalI site. Plasmids expressing short hairpin RNA (shRNA)
sequences targeting Scn1b (Nav�1) were obtained from the Genome
Sequencing Center at Washington University School of Medicine. The
nontargeted shRNA control was obtained from Sigma (Mission shRNA).
The Nav�1 targeted shRNA sequences used were as follows: CTCTCTCA
CCAGCCTTCAATT, GCCATTACATCCGAGAGCAAA, GAGGAATT
TGTCAAGATCCTA, CGACTACGAATGTCACGTCTA, and CGTCTC
CTCTTCTTTGATAAT. The nontargeted shRNA sequence used was CA
ACAAGATGAAGAGCACCAA. Each of the (five targeted and one
nontargeted) shRNA sequences was provided in a pLKO.1-puro expres-
sion vector. The coding sequence of the Puromycin-resistance gene was
replaced with the sequence coding for the red fluorescent protein
tdTomato to allow transfected cells to be identified under epifluores-
cence illumination.

Cell culture and transient transfections. Human embryonic kidney 293
(HEK-293) cells were maintained in DMEM (Invitrogen) supplemented
with 10% fetal bovine serum, 100 U/ml penicillin, and 100 �g/ml strep-
tomycin, in 37°C, 5% CO2:95% air incubator. Cells were transiently
transfected with 0.5 �g of the Kv4.2 plasmid alone or with Nav�1 and/or
KChIP2 at 80 –90% confluence using Lipofectamine 2000 (Invitrogen)
following the manufacturer’s instructions. Experiments were also per-
formed with Kv2.1 or TASK1 coexpressed with Nav�1. The relative
amounts of the cDNA constructs used for the transfections were 1:2 for
Kv4.2:Nav�1, 1:1 for Kv4.2:KChIP2, 1:1:2 for Kv4.2:KChIP2:Nav�1, 1:2
for Kv2.1:Nav�1, and 1:2 for TASK1:Nav�1. The absolute amounts of
the various constructs were calculated and pCMV-Script plasmid was
used as a filler plasmid to keep the total DNA constant at 2 �g in each
transfection.

Coimmunoprecipitation of heterologously expressed proteins. The EYFP-
tagged Nav�1 construct was used in coimmunoprecipitation experi-
ments. Twenty-four hours after transfections, HEK-293 cells were
washed twice with PBS and lysed in lysis buffer (as described above). For
IPs, soluble protein fractions were collected and incubated with magnetic
beads coupled to a rabbit polyclonal anti-Kv4.2 antibody (Rb�Kv4.2;
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Millipore Bioscience Research Reagents) or to a rabbit polyclonal
anti-enhanced green fluorescent protein (EGFP) antibody (Rb�EGFP;
Millipore Bioscience Research Reagents). After a 2 h incubation at 4°C,
beads were washed four times in lysis buffer, and protein complexes were
eluted with 1X SDS sample buffer at 60°C for 5 min. Protein eluates from
IPs were fractionated by gel electrophoresis. Western blot analyses were
performed as described previously (Marionneau et al., 2008). The mouse
monoclonal anti-Kv4.2 and anti-KChIP2 antibodies were developed by
and obtained from the University of California, Davis/NIH NeuroMab
Facility (supported by NIH Grant U24NS050606 and maintained by the
University of California, Davis). A mouse monoclonal anti-EGFP anti-
body was purchased from Millipore Bioscience Research Reagents. Goat
anti-rabbit or anti-mouse horseradish peroxidase-conjugated secondary
antibodies were purchased from Pierce.

Cycloheximide treatment. To evaluate the stability of total and cell-
surface Kv4.2 protein, transfected HEK-293 cells were treated with the
protein translation inhibitor, cycloheximide (Calbiochem) at 100 �g/ml
in DMEM at 37°C for varying times (0, 30, 60, 120, and 480 min). Cell-
surface biotinylation assays were then performed as described below.
Kv4.2 protein expression (total or cell surface) in cycloheximide-treated
cells is expressed as the percentage of Kv4.2 protein expression (total or
cell surface) in untreated cells.

Cell-surface biotinylation and endocytosis assays. Surface biotinylation
of HEK-293 cells was completed as described previously (Marionneau et
al., 2008). Briefly, cells were incubated with the cleavable EZ-Link Sulfo-
NHS-SS-Biotin (0.5 mg/ml) (Pierce) in ice-cold PBS, pH 7.4, for 30 min
at 4°C. Free biotin was quenched with Tris-saline (10 mM Tris, pH 7.4,
120 mM NaCl), and detergent-soluble cell lysates were prepared. Biotin-
ylated cell-surface proteins were affinity-purified using NeutrAvidin-
conjugated agarose beads (Pierce), and purified cell-surface proteins
were analyzed by Western blot (as described above). Mouse monoclonal
anti-transferrin receptor (TransR), anti-Kv2.1, and anti-myc antibodies
were purchased from Invitrogen, the University of California, Davis/
NIH NeuroMab Facility, and Millipore, respectively. Bands correspond-
ing to Kv4.2, Kv2.1, and Myc-TASK1 were normalized to bands
corresponding to TransR from the same sample. Kv4.2 protein expres-
sion (total or cell surface) is expressed relative to Kv4.2 protein expres-
sion (total or cell surface) in cells transfected with Kv4.2 only.

To assay endocytosis, cells were biotinylated (pulse) and washed
with Tris-saline solution as described above. Cells were then returned
to culture medium (chase) at 37°C for varying times (0, 15, 30, and 60
min). At the end of each chase time, cells were rinsed with ice-cold
PBS and incubated with the impermeable reducing agent sodium
2-mercaptoethanesulfonate (100 mM, in 50 mM Tris, pH 8.6, 100 mM

NaCl, 2.5 mM CaCl2) at 4°C for 15 min to remove the biotin remaining at
the cell surface. This procedure was repeated twice, and cells were then
incubated with 5 mg/ml iodoacetamide in PBS at 4°C for 15 min to
modify free SH groups. Detergent-soluble cell lysates were prepared, and
biotinylated proteins were purified using NeutrAvidin-conjugated aga-
rose beads (Pierce). For each chase time, nonreduced samples were used
to estimate the degradation of biotinylated proteins or spontaneous debi-
otinylation. Reduced samples at 0 min (t0 min, reduced) were used to eval-
uate background (usually �10%). Results are expressed as the
percentage of biotinylated surface proteins that were endocytosed at
each time point, i.e., %Fraction Endocytosed (at x min), calculated as
(timexmin, reduced � time0 min, reduced)/timexmin, nonreduced � 100.

Electrophysiological recordings from HEK-293 cells. Whole-cell Kv cur-
rents were recorded at room temperature from transiently transfected
HEK-293 cells using an Axopatch-1B amplifier (Molecular Devices), as
described previously (Li et al., 2005). Voltage-clamp paradigms were
controlled using the pClamp 9 software package (Molecular Devices)
interfaced to the electrophysiological equipment using a Digidata 1322A
A/D converter (Molecular Devices). Data were acquired at 10 kHz, and
current signals were filtered on-line at 5 kHz before digitization and
storage. Recording pipettes contained the following (in mM): 115 KCl, 15
KOH, 10 EGTA, 10 HEPES, and glucose 5 (pH 7.2, 295–310 mosM).
Pipette resistances were 1.8 –2.8 M� when filled with the pipette solu-
tion. The bath solution contained the following (in mM): 140 NaCl, 4
KCl, 1 CaCl2, 2 MgCl2, 10 HEPES, and glucose 5 (pH 7.4, 295–310

mosM). After establishing the whole-cell configuration, �10 mV steps
from a holding potential (HP) of �70 mV were applied to allow mea-
surements of whole-cell membrane capacitances and input resistances.
Whole-cell membrane capacitances and series resistances were routinely
compensated (80%) electronically. The voltage errors resulting from the
uncompensated series resistances were always �6 mV and were not cor-
rected. Only data obtained from cells with input resistances �200 M�
and capacitive transients well described by single exponentials were an-
alyzed. Kv currents were evoked by 400 ms depolarizing voltage steps to
potentials between �40 and �30 mV from an HP of �70 mV; voltage
steps were presented in 10 mV increments at 15 s intervals.

Electrophysiological data were compiled and analyzed using Clampfit
9 (Molecular Devices) and Excel (Microsoft). Whole-cell membrane ca-
pacitances were calculated by integrating the area under the capacitive
transients evoked during the �10 mV voltage steps from the HP, before
compensation. Peak currents at each voltage step were defined as the
maximal Kv current amplitudes. For each cell, current amplitudes were
normalized to the whole-cell membrane capacitance, and current densi-
ties (pA/pF) are reported.

Scn1b (Nav�1) shRNA screening. Chinese Hamster Ovary (CHO) cells
were maintained in Ham’s F-12 Medium supplemented with 10% fetal
calf serum, 100 U/ml penicillin, and 100 �g/ml streptomycin, in 37°C,
5% CO2:95% air incubator. Cells were transfected at �70% confluence
using Lipofectamine 2000 (Invitrogen) according to the directions from
the manufacturer. Briefly, cells were cotransfected with EYFP-tagged
Nav�1 and each of the shRNAs (five Scn1b (Nav�1) targeted and one
nontargeted) at a 1:1 ratio. Cells were incubated in the transfection mix
for 8 h at 37°C and then lysed in lysis buffer (as described above) 48 h after
transfection. Protein lysates were analyzed by Western blot (as described
above).

Isolation, maintenance, and transfection of cortical neurons. Neurons
were isolated from the primary visual cortices of postnatal day 6 – 8
C57BL/6 WT mice using previously described methods (Locke and Ner-
bonne, 1997; Nerbonne et al., 2008; Norris and Nerbonne, 2010; Norris
et al., 2010). Briefly, mice were anesthetized with isoflurane, decapitated,
and the brains were rapidly removed. The posterior cortices were dis-
sected, minced, and incubated at 37°C in Neurobasal medium (Invitro-
gen) containing papain (20 U/ml) (Worthington Biochemicals) under
95% O2:5% CO2 for 90 min. Isolated cortical neurons were obtained by
trituration and subsequent centrifugation (at 500 g for 15 min) through
a bovine serum albumin gradient. Dissociated cells were resuspended in
Neurobasal medium and plated on previously prepared monolayers of
(rat) neocortical astrocytes (Locke and Nerbonne, 1997). Neurons were
transfected with (10 nM) of the Scn1b targeted shRNA or the nontargeted
shRNA within 5 h of plating using PepMute siRNA transfection reagent
(SignaGen Laboratories) according to the directions from the manufac-
turer. After incubation with the transfection solution for 5 h at 37°C, the
medium was replaced with fresh Neurobasal medium. Neuronal/glial
cultures were maintained in 95% O2:5% CO2 incubator at 37°C.

Preparation of acute cortical (and hippocampal) slices. Brain slices were
prepared from the primary visual cortices (or hippocampi) of C57BL/6
WT and Scn1b �/� mice at postnatal day (P) 11–12 using standard pro-
cedures (Davie et al., 2006). This age was selected primarily because the
Scn1b �/� mice die prematurely, beginning at P13 (Chen et al., 2004). For
experiments, mice were decapitated and the brains were rapidly removed
and placed in ice-cold, oxygenated artificial cerebrospinal fluid (ACSF)
containing the following (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25
NaHCO3, 2 CaCl2, 1 MgCl2, and 25 dextrose (�310 mosM), saturated
with 95% O2:5% CO2. Coronal slices (350 �m) containing the primary
visual cortex (or hippocampus) were cut on a Leica VT1000 S vibrating
blade microtome (Leica Microsystems). Slices were incubated in ACSF
for at least 30 min before transfer to the recording chamber.

Electrophysiological recordings from cortical (and hippocampal) pyrami-
dal neurons. Whole-cell voltage-clamp recordings were obtained from
tdTomato-expressing cortical neurons 24 –72 h following transfection
with the nontargeted, or Scn1b-targeted, shRNA construct. Whole-cell
current-clamp recordings were obtained from visually identified layer 5
pyramidal neurons in cortical slices (or from CA1 pyramidal neurons in
hippocampal slices) using differential interference contrast with infrared
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microscopy. All recordings were obtained at
room temperature (22–24°C). Data were col-
lected using a Multiclamp 700B patch-clamp
amplifier interfaced with a Digidata 1332 and
the pCLAMP 9 software (Molecular Devices)
to a Gateway computer. In all experiments, tip
potentials were zeroed before membrane-
pipette seals were formed; pipette capacitances
and series resistances were compensated elec-
tronically by �90%. Signals were acquired at
20 –50 kHz and filtered at 10 kHz before digi-
tization and storage. These data acquisition pa-
rameters fully capture the action potential
parameters measured. For voltage-clamp re-
cordings, the bath solution contained the fol-
lowing (in mM): 140 NaCl, 4 KCl, 2 CaCl2, 2
MgCl2, 10 HEPES, 5 glucose, 0.001 tetrodo-
toxin, and 0.1 CdCl2 (pH 7.4, �300 mosM).
For the current-clamp experiments, slices were
perfused continually with ACSF (see above)
saturated with 95% O2:5% CO2. The recording
pipette solution for voltage-clamp recordings
contained the following (in mM): 130 KCl, 10
HEPES, 10 glucose, 0.83 CaCl2, and 2.6 BAPTA
(pH 7.4, 300 mosM), and 3 MgATP and 0.5
NaGTP were added the day of recording. Re-
cording pipettes for the current-clamp experi-
ments contained the following (in mM): 120
potassium methyl sulfate, 20 KCl, 10 HEPES,
0.2 EGTA, 8 NaCl, 4 Mg-ATP, 0.3 Tris-GTP,
and phosphocreatine 14 (pH 7.25, �300
mosM). All reagents were from Sigma unless
otherwise noted.

The rapidly activating and rapidly inactivat-
ing Kv current, IA, was isolated using a two-
step voltage protocol as previously described
(Norris and Nerbonne, 2010). Briefly, whole-
cell Kv currents were first evoked in response to
4 s depolarizing voltage steps to potentials be-
tween �40 and �40 mV (in 10 mV incre-
ments) from a holding potential of �70 mV. A
prepulse paradigm that included a brief (60
ms) step to �10 mV before the 4 s depolarizing
voltage steps to potentials between �40 and
�40 mV (in 10 mV increments) was then used.
Off-line subtraction of the currents evoked af-
ter the prepulse from the currents evoked with-
out the prepulse was performed to isolate IA.
Single action potentials and action potential
trains were elicited from the resting membrane
potential in response to brief (5 ms) and pro-
longed (500 ms) depolarizing current injec-
tions of variable amplitudes. All current-clamp
recordings were obtained within 5 min after
achieving the whole-cell configuration.

Data analyses. Data were compiled and ana-
lyzed using ClampFit (Molecular Devices), Mi-
crosoft Excel, and Prism (GraphPad Software).
For the voltage-clamp experiments, only data
from cells with input resistances �300 M� and
access resistances �20 M� were included in
the analyses. Capacitive currents, elicited by
short (25 ms) voltage steps (�10 mV) from the
holding potential (�70 mV), were measured in
each cell. Only cells with capacitive transients
well described by a single exponential (consis-
tent with a single electrical compartment) were
analyzed further. The whole-cell membrane
capacitance (Cm) of each cell was calculated by
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682.21
746.76
824.86
898.45
963.00
991.53

y ions         +1

y1     R    175.19
y2     G    232.24
y3     E    361.36
y4     F    508.53
y5     R    664.72
y6     E    793.83
y7     D    908.92
y8     E  1038.04
y9     E   1167.15
y10   L   1280.31
y11   Q  1408.44
y12   L   1521.60
y13   V  1620.74
y14   E  1749.85
y15   N  1863.96
y16   E  1993.07

+2

88.09
116.62
181.18
254.77
332.86
397.42
454.96
519.52
584.08
640.66
704.72
761.30
810.87
875.43
932.48
997.04

Figure 1. Identification of Nav�1 in mouse brain Kv4.2 channel complexes. A, A representative Western blot of fractionated proteins
immunoprecipitated(IP)fromadultWTandKv4.2 �/�mousebrainswitharabbitpolyclonalanti-Kv4.2antibody(Rb�Kv4.2),probed(IB)
with a mouse monoclonal anti-Kv4.2 antibody (m�Kv4.2). Although clearly evident in the Rb�Kv4.2-IP from the WT mouse brain, no
Kv4.2 protein is identified in the Kv4.2 �/� IP. Similar results were obtained in 4 independent experiments. The strategy used to isolate
Kv4.2 complexes is diagrammed in (B). IPs were digested with trypsin and were analyzed by MudPIT. C, A representative MS/MS spectrum
of a Nav�1 tryptic peptide is shown. The observed fragment ions matching the calculated m/z values of the C- (y-ions) or the N- (b-ions)
termini of the peptide are in red and blue, respectively. Vertical red dashed lines indicate the position of unobserved doubly charged y-ions.
The amino acid sequence derived from the m/z differences of the doubly charged y-ion series is given in the carboxyl-to-amino-terminal
direction. D, The corresponding exact masses of detected fragment ions are indicated in red (y-ions) and blue (b-ions).
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Figure 2. Coimmunoprecipitation of heterologously expressed Kv4.2 and Nav�1. Cell lysates were prepared 24 h following
transfection of HEK-293 cells with cDNA constructs encoding Nav�1-EYFP alone or Kv4.2 with EYFP, KChIP2, or Nav�1-EYFP. A, IPs
were performed with a Rb�Kv4.2 antibody. Western blot analyses of the lysates (left) probed with monoclonal anti-Kv4.2,
anti-KChIP2, or anti-EGFP antibodies confirmed robust protein expression of all constructs. Following IP with Rb�Kv4.2, Western
blots (right) revealed that Nav�1-EYFP, like KChIP2, coimmunoprecipitates with Kv4.2 whereas EYFP does not. B, IPs performed
with a Rb�EGFP antibody revealed that Kv4.2 coimmunoprecipitates with Nav�1-EYFP but not with EYFP.
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dividing the integral of capacitive transient by
the membrane voltage. Input resistances were
calculated from the steady-state currents elic-
ited by the same �10 mV steps (from the hold-
ing potential). For each cell, the series
resistance was calculated by dividing the time
constant of the decay of the capacitive transient
(fit by a single exponential) by the Cm. IA am-
plitudes in individual cells were determined by
subtracting the currents evoked after the pre-
pulse from the currents evoked without the
prepulse (see voltage-clamp protocols de-
scribed above). Current amplitudes, measured
in individual cells, were normalized for differ-
ences in cell size (whole-cell Cm), and current
densities (pA/pF) are reported.

All current-clamp recordings were obtained
from cells with overshooting action potentials
and with stable resting membrane potentials
��55 mV. Input resistances (Rin) were deter-
mined from the change in membrane potential
produced by a 20 pA hyperpolarizing current
injection from the resting potential. The cur-
rent threshold for action potential generation
was defined as the minimal current injection,
applied (for 5 ms) from the resting membrane
potential, required to evoke a single action po-
tential. The properties (amplitudes, thresh-
olds, widths at half-maximum, and decay
times) of individual action potentials were de-
termined off-line using Mini Analysis (version
6.0; Synaptosoft). In each cell, action potential
amplitude was measured as the voltage differ-
ence between the resting membrane potential
and the peak of the action potential. The volt-
age threshold (Vthr) for action potential gener-
ation in each cell was determined from the
third derivative of the variation in the mem-
brane voltage as a function of time (dV/dt) dur-
ing the rising phase of the action potential.
Differentiated traces were filtered with a digital
Gaussian filter and smoothed by 30 points to
determine Vthr (Synaptosoft). The width at
half-maximum of the action potential in each
cell was determined from measurement of the
duration of the action potential when the
membrane voltage had returned from the peak
halfway back to the resting membrane poten-
tial. Action potential decay times in each cell
were determined as the time required for the
membrane voltage to decrease from 90% to
37% of the peak amplitude.

Statistics. Results are expressed as means �
SEM. Statistical analyses were performed using
the (unpaired) Student’s t test, the two-way
ANOVA, or the Kolmogorov–Smirnov test.
Student’s t tests and two-way ANOVA were performed and frequency
histograms were generated using Prism (version 4.0; GraphPad
Software).

Results
Nav�1 is identified in mouse brain Kv4.2 channel complexes
As illustrated in the Western blot in Figure 1A, the Kv4.2 protein
was readily immunoprecipitated from adult WT mouse brain,
but not from Kv4.2�/� brains. IPs were digested in-solution with
trypsin, and the resulting tryptic peptides were analyzed using
MudPIT (Fig. 1B). Consistent with previous reports (Marion-
neau et al., 2009, 2011), the MS analyses unambiguously identi-

fied the three Kv4 � subunits, Kv4.2, Kv4.3, and Kv4.1, as well as
several previously described Kv4 accessory subunits: KChIP2,
KChIP3, and KChIP4 (Rhodes et al., 2004; Jerng et al., 2005;
Marionneau et al., 2009, 2011) as well as DPP6 and DPP10 (Nadal
et al., 2003; Jerng et al., 2005; Zagha et al., 2005; Marionneau et
al., 2009, 2011). Importantly, none of these proteins were iden-
tified in the Rb�Kv4.2 IPs from Kv4.2 �/� brains.

Unexpectedly, the MS analyses also revealed that the voltage-
gated Na� channel accessory subunit, Nav�1, coimmunopre-
cipitates with Kv4.2 from WT mouse brain. Nav�1 was not
identified, however, in the (control) immunoprecipitated sam-
ples from Kv4.2�/� brain. A Nav�1 tryptic peptide was identified
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Figure 3. Nav�1 coimmunoprecipitates with Kv4.2 in the presence (and absence) of KChIP2. Twenty-four hours following
transfection of HEK-293 cells with cDNA constructs encoding Kv4.2, KChIP2, and/or Nav�1-EYFP, cell lysates were prepared. A, IPs
were performed with a Rb�Kv4.2 antibody. Robust protein expression of all constructs was confirmed by Western blot analyses of
the lysates (left) probed with a monoclonal anti-Kv4.2, anti-KChIP2, or anti-EGFP antibody. Following IP with Rb�Kv4.2, Western
blots (right) revealed that Nav�1-EYFP coimmunoprecipitates with Kv4.2 in the presence (and absence) of KChIP2. B, In contrast,
Nav�1-EYFP does not coimmunoprecipitate with KChIP2 in the absence of Kv4.2.

Figure 4. Nav�1 increases heterologously expressed Kv4.2 current densities. A, Representative whole-cell, voltage-gated K �

currents recorded from transiently transfected HEK-293 cells. Currents were evoked in response to 400 ms voltage steps to
potentials between �40 and �30 mV from a holding potential of �70 mV. B, Mean � SEM peak current densities in cells
transfected with Kv4.2 (black), Kv4.2 � Nav�1 (red), Kv4.2 � KChIP2 (blue), and Kv4.2 � KChIP2 � Nav�1 (purple) are plotted
as a function of test potential. Peak current densities measured in cells expressing Kv4.2 alone (n 	 18) are significantly (two-way
ANOVA) different from those measured in cells expressing Kv4.2 � Nav�1 ( ‡p � 0.01, n 	 20) or Kv4.2 � KChIP2 (*p � 0.001,
n 	 11). In addition, peak current densities in cells coexpressing Kv4.2 � KChIP2 � Nav�1 (n 	 10) are significantly (two-way
ANOVA) different from those measured in cells expressing only Kv4.2 � Nav�1 (*p � 0.001, n 	 20) or Kv4.2 � KChIP2 ( †p �
0.05, n 	 11).
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in both the �2 and �3 charged state. The calculated protein
abundance factor (see Materials and Methods) for Nav�1 was
0.8, which compares with protein abundance factors in the range
of 1.4 to 5.6 calculated for the various KChIP and DPP proteins
(Marionneau et al., 2011). As validation of the Nav�1 peptide
identification, a representative MS/MS spectrum of the �3
charged peptide, together with the amino acid sequence match-
ing the spectral data (Fig. 1C) and the corresponding masses of
the identified fragmented b- and y-ions, (Fig. 1 D) are presented
in Figure 1.

Nav�1 coimmunoprecipitates with
Kv4.2
To provide an independent validation of the association of
Nav�1 with Kv4.2, coimmunoprecipitation experiments were
completed on lysates of HEK-293 cells transiently cotransfected
with cDNA constructs encoding mouse Kv4.2 and an EYFP-
tagged mouse Nav�1 (Nav�1-EYFP). Parallel control experi-
ments were performed on cells transiently transfected with Kv4.2
and KChIP2, Kv4.2 and EYFP, or Nav�1-EYFP alone. As illus-
trated in Figure 2A, Nav�1-EYFP coimmunoprecipitates with
Kv4.2, as does KChIP2 (Rhodes et al., 2004). Control experiments

revealed that EYFP does not coimmuno-
precipitate with Kv4.2 and that Nav�1-
EYFP is not immunoprecipitated with the
Rb�Kv4.2 antibody in the absence of
Kv4.2 (Fig. 2A). Parallel experiments with
an antibody against EGFP (to immuno-
precipitate the EYFP-tagged Nav�1)
demonstrated that Kv4.2 coimmunopre-
cipitates with Nav�1-EYFP (Fig. 2B). In
addition, Nav�1-EYFP coimmunopre-
cipitated with Kv4.2 when KChIP2,
Nav�1-EYFP, and Kv4.2 were coex-
pressed (Fig. 3A). Importantly, however,
KChIP2 and Nav�1-EYFP do not coim-
munoprecipitate in the absence of Kv4.2
(Fig. 3B), indicating no direct interactions
between the KChIP2 and Nav�1 proteins.

Nav�1 increases Kv4.2-encoded
current densities
To explore the functional consequences of
the interaction between Kv4.2 and Nav�1,
whole-cell voltage-clamp recordings were
obtained from HEK-293 cells expressing
Kv4.2 alone or in combination with
Nav�1. As illustrated in Figure 4, Kv4.2-
encoded current densities in cells coex-
pressing Kv4.2 and Nav�1 were
significantly (p � 0.01) higher than in
cells expressing Kv4.2 alone. Consistent
with previous reports (An et al., 2000;
Bähring et al., 2001; Foeger et al., 2010),
peak Kv4.2-encoded current densities
were also significantly (p � 0.001) higher
in cells coexpressing Kv4.2 and KChIP2
(Fig. 4). Interestingly, in cells expressing
Kv4.2 with both KChIP2 and Nav�1, peak
current densities were significantly (p �
0.05) higher than in cells coexpressing
Kv4.2 with either Nav�1 or KChIP2 (Fig.
4). In contrast with KChIP2 (An et al.,

2000), however, Nav�1 coexpression did not measurably affect
the kinetics or the voltage-dependent properties of Kv4.2-
encoded currents (not illustrated).

Biochemical experiments revealed that total Kv4.2 protein ex-
pression in HEK-293 cells coexpressing Kv4.2 and Nav�1 was
significantly (p � 0.001) higher than in cells expressing Kv4.2
alone (Fig. 5A,B). Similar results were obtained with KChIP2
coexpression, although total Kv4.2 coexpression in cells express-
ing KChIP2 was significantly (p � 0.001) higher than in cells
coexpressing Nav�1 (Fig. 5A,B). Cell-surface Kv4.2 expression
was also significantly higher in cells coexpressing KChIP2 (p �
0.001) or Nav�1 (p � 0.01), compared with cells expressing
Kv4.2 alone (Fig. 5A,B). For KChIP2, the relative increase in
cell-surface Kv4.2 expression was significantly (p � 0.001) higher
than the increase in total Kv4.2 protein, whereas total and cell-
surface Kv4.2 were increased similarly in cells coexpressing
Nav�1 (Fig. 5A,B). Consistent with the electrophysiological data
(Fig. 4), total and cell-surface Kv4.2 expression was significantly
(p � 0.001) higher in cells expressing Kv4.2 with both Nav�1 and
KChIP2 compared with cells expressing Kv4.2 with either Nav�1
or KChIP2 (Fig. 5A,B). In contrast with the effects on total and
cell-surface Kv4.2 protein levels, coexpression of Nav�1 did not

Figure 5. Coexpression with Nav�1 increases total and cell-surface Kv4.2 protein expression. A, Representative Western blots
of total (left) and cell surface (right) Kv4.2 from HEK-293 cells transiently transfected with cDNA constructs encoding Kv4.2 alone
or with KChIP2 and/or Nav�1. Samples were probed in parallel with the anti-transferrin receptor (TransR) antibody. B, Mean �
SEM total and cell-surface Kv4.2 protein expression in HEK-293 cells transiently transfected with Kv4.2 alone (n 	 8 –20), Kv4.2 �
Nav�1 (n 	 8 –20), Kv4.2 � KChIP2 (n 	 14 –18), and Kv4.2 � KChIP2 � Nav�1 (n 	 14 –16). Expression of Kv4.2 in each
sample was first normalized to the TransR protein in the same blot and then expressed relative to Kv4.2 protein expression (total
or cell surface) in cells transfected with Kv4.2 alone. Relative (mean � SEM) Kv4.2 total and cell-surface expression was signifi-
cantly (t test) higher in cells expressing Kv4.2 � KChIP2 (*p � 0.001) or Kv4.2 � Nav�1 (*p � 0.001; ‡p � 0.01) than in cells
with Kv4.2 alone. Kv4.2 total and cell-surface expression, however, was significantly ( #p � 0.001) higher in cells expressing Kv4.2
� KChIP2 than in cells expressing Kv4.2 � Nav�1. In addition, relative (mean � SEM) cell-surface Kv4.2 expression was
significantly ( §p � 0.001) higher than total Kv4.2 expression in cells coexpressing Kv4.2 with KChIP2 but not with Nav�1. Cells
coexpressing Kv4.2 with both KChIP2 and Nav�1 had significantly ( ¶p � 0.001) higher mean � SEM total and cell-surface Kv4.2
protein expression levels than cells coexpressing Kv4.2 with only KChIP2 or Nav�1. C, In contrast, coexpression of Nav�1 did not
affect the total expression of either Kv2.1 (n 	 2) or TASK1 (n 	 2).
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measurably affect the expression levels of either the voltage-gated
K� channel � subunit, Kv2.1, or the two-pore potassium channel
subunit, TASK1 (Fig. 5C), revealing that the effects of Nav�1 are
subunit-specific (see Discussion).

Acute knockdown of Nav�1 decreases IA densities in
cortical neurons
To test directly the hypothesis that Nav�1 regulates native neu-
ronal Kv4-encoded IA, an shRNA-mediated RNA interference
approach was used to allow acute knockdown of the expression of
Nav�1 in cortical neurons. To identify shRNA sequences that
effectively reduce the expression of the Nav�1 protein, five
shRNA sequences targeting Scn1b (Nav�1) were screened in
CHO cells expressing Nav�1-EYFP (see Materials and Methods).
As illustrated in the Western blot in Figure 6A, Nav�1 was readily
detected in cells coexpressing Nav�1-EYFP and the (control)
nontargeted shRNA. In contrast, Nav�1 protein levels were un-
detectable in cells coexpressing Nav�1-EYFP and one of the
Scn1b-targeted shRNA sequences (CGTCTCCTCTTCTTT-
GATAAT) (Fig. 6A). Similar experiments on the other four
shRNAs targeting Nav�1 revealed different degrees of knock-
down and the sequence used in Figure 6 A was selected for use
in neurons. Plasmids encoding this Scn1b-targeted, or the
nontargeted, shRNA sequence, together with the red fluores-
cent protein, tdTomato, were used in subsequent experi-
ments in isolated cortical neurons. Within �24 h of
transfection, tdTomato expression was readily detected in cor-
tical neurons under epifluorescence illumination.

Whole-cell Kv currents, evoked in response to voltage steps to
potentials ranging from �40 mV to �40 mV (in 10 mV incre-
ments) from a holding potential of �70 mV, were examined in
tdTomato-positive cortical neurons expressing the nontargeted,
or the Scn1b-targeted, shRNA (Fig. 6Ba,Ca). In each cell, out-
ward Kv currents evoked at the same test potentials were also
recorded following a brief prepulse to �10 mV (Fig. 6Bb,Cb) to
inactivate IA (Norris and Nerbonne, 2010). Off-line subtraction
of the recordings with the prepulse from the recordings without
the prepulse allowed the isolation of IA (Fig. 6Ba,Bb,Ca,Cb).
Analyses of these subtracted records revealed that the mean �
SEM IA density is significantly (p � 0.001) reduced in cells
expressing the Scn1b-targeted shRNA, compared with cells ex-
pressing the nontargeted shRNA (Fig. 6D). The kinetics and
voltage-dependent properties of IA were indistinguishable, how-
ever, in cells expressing the nontargeted, and the Scn1b-targeted,
shRNAs (data not shown). In addition, further analyses revealed
that the slowly inactivating (delayed rectifier) and steady-state
outward K� currents were not measurably different in cells ex-
pressing the Scn1b-targeted, and the nontargeted, shRNAs (Fig.
6), suggesting that the effects of acute knockdown of Nav�1 are
specific to IA among the Kv currents (See Discussion).

Loss of Nav�1 prolongs action potentials and increases
repetitive firing in cortical pyramidal neurons
To explore the hypothesis that the regulation of Kv4.2-encoded
IA channels by Nav�1 plays a role in the regulation of the excit-
ability of cortical neurons, the effects of the targeted deletion of
Scn1b (Nav�1) on action potential waveforms and repetitive fir-
ing properties were examined. Whole-cell current-clamp record-
ings were obtained from layer 5 pyramidal neurons in acute slices
prepared from the cortices of WT and Scn1b�/� mice (Fig. 7A).
Resting membrane potentials (Vm) and input resistances (Rin)
were similar in WT and Scn1b�/� layer 5 pyramidal neurons (Fig.
7B). In addition, analyses of single action potentials, elicited by

brief (5 ms) depolarizing current injections (Fig. 7A), revealed
that mean � SEM voltage (Vthr) and current (Ithr) thresholds for
action potential generation, as well as mean � SEM action po-
tential amplitudes (APA), are also indistinguishable in WT and
Scn1b�/� neurons (Fig. 7B). The mean � SEM action potential
decay time (2.00 � 0.05 ms) and widths (2.57 � 0.06 ms) at
half-maximum measured in Scn1b�/� neurons, however, were
significantly (p � 0.01) longer than the mean � SEM values
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Figure 6. shRNA-mediated knockdown of Nav�1 decreases IA densities in cortical neurons.
A, Specific shRNA sequences targeting Scn1b (Nav�1) were screened in CHO cells. Nav�1-EYFP
was coexpressed with either a control (nontargeted) shRNA or with the Scn1b-targeted shRNA.
Protein lysates were prepared from transfected cells and analyzed by Western blot using an
anti-EGFP antibody. Blots were also probed with an anti-GAPDH antibody to verify equal load-
ing of proteins. Nav�1 is robustly expressed in cells expressing the nontargeted shRNA but is
undetectable in cells transfected with the Scn1b shRNA. B, Representative whole-cell Kv cur-
rents, recorded in response to voltage steps ranging from �40 mV to �40 mV in 10 mV
increments from a holding potential of �70 mV in cortical neurons expressing the nontargeted
shRNA (Ba) or the Scn1b targeted shRNA (Ca) revealed marked differences in peak, but not
steady-state currents. Bb–Cb, In each cell, recordings were also obtained using the same de-
polarizing steps, preceded by a brief prepulse to �10 mV to inactivate IA. The voltage protocols
are illustrated in the insets. Currents recorded with the prepulse (b) were subtracted offline
from the control records (a) in individual cells to isolated IA (a-b). The subtracted records are
also shown on an expanded time scale. D, Mean � SEM IA densities are plotted as a function of
test potential. *Values in neurons expressing the Scn1b shRNA are significantly (*p � 0.001)
different from those in neurons expressing the nontargeted shRNA.
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(decay time: 1.78 � 0.04 ms; width at half-maximum: 2.30 � 0.05
ms) in WT neurons (Fig. 7C).

Repetitive firing, elicited directly from the resting membrane
potential in response to prolonged (500 ms) depolarizing current
injections of varying amplitudes, was also examined in WT and
Scn1b�/� layer 5 pyramidal neurons in acute cortical slices (Fig.
8). The numbers of action potentials elicited by prolonged depo-
larizing current injections increased as a function of the current
injection amplitude in both WT and Scn1b�/� cortical pyramidal
neurons (Figs. 8A,B). At each injected current amplitude, how-
ever, the mean � SEM number of action potentials evoked in
Scn1b�/� neurons was significantly (p � 0.01) higher than in
WT neurons (Fig. 8B). In addition, the mean � SEM current
threshold required to evoke repetitive firing was significantly
(p � 0.01) lower in Scn1b�/� (102.4 � 7.4 pA) than in WT
(142.9 � 10 pA) layer 5 cortical pyramidal neurons (Fig. 8C).

Nav�1 increases the stability of Kv4.2
To determine directly if Nav�1 affects the stability of the Kv4.2
protein, cells expressing Kv4.2 alone or in combination with
Nav�1 were treated with the protein synthesis inhibitor cyclo-
heximide for various times (30, 60, 90, 120, and 480 min). With
de novo protein synthesis blocked, the stability of pre-existing
total and cell-surface Kv4.2 was assessed by Western blot and by

cell-surface biotinylation, followed by
Western blot, analyses. Total and cell-
surface Kv4.2 protein expression levels in
cycloheximide-treated cells at different
time points were measured and expressed
as the percentage of total or cell-surface
Kv4.2 protein in untreated cells. As illus-
trated in Figure 9A and B, when Kv4.2 was
expressed alone, total Kv4.2 protein ex-
pression was significantly (p � 0.001) re-
duced (by �65%) after 30 min of
cycloheximide treatment; no further re-
ductions in Kv4.2 were observed at longer
times. When Nav�1 was coexpressed with
Kv4.2, however, the initial reduction in
Kv4.2 (�50%) was significantly (p �
0.01) less than when Kv4.2 was expressed
alone (Fig. 9B). In addition, further re-
ductions in mean � SEM total Kv4.2 pro-
tein were evident after 60 and 120 min in
cycloheximide. At 60 min, the Kv4.2 pro-
tein was significantly (p � 0.01) higher in
cells coexpressing Nav�1 than in cells ex-
pressing Kv4.2 alone, whereas, at 120 min,
the mean � SEM fraction of Kv4.2 re-
maining in cells transfected with and
without Nav�1 were not significantly dif-
ferent (Fig. 9B). Cell-surface Kv4.2 pro-
tein expression in cells expressing Kv4.2
alone or in combination with Nav�1 was
not significantly altered by cycloheximide
treatment over the same time period (Fig.
9A,B). There are, therefore, (at least) two
cellular pools of Kv4.2: a cell-surface pool
that does not appear to turnover measur-
ably in 2 h and an intracellular pool that
turns over rapidly. The simplest interpre-
tation of the results in Figure 9 is that co-
expression of Nav�1 increases the total

expression of Kv4.2 by stabilizing the intracellular pool of Kv4.2.
Pulse-chase experiments were also performed to examine the

turnover rate of Kv4.2 at the cell surface. HEK-293 cells expressing
Kv4.2 alone or in combination with Nav�1 were first biotinylated at
4°C (pulse), and then returned at 37°C (chase) for various times (0,
15, 30, and 60 min) to allow endocytosis from, and recycling to, the
cell surface. After each chase time, cells were treated with a nonper-
meable reducing agent to eliminate the biotin on channels remain-
ing at the cell surface and allow independent analysis of endocytosed
channels (reduced samples). Control cells that had not been treated
(nonreduced samples) were examined in parallel. Consistent with
findings in the cycloheximide experiments (Figs. 9A,B), no reduc-
tion in total (nonreduced) biotinylated Kv4.2 was observed at
any of the chase time points tested in extracts from cells ex-
pressing Kv4.2 alone or in combination with Nav�1 (Fig. 9C).
Analysis of the reduced samples, however, revealed that �20,
30, and 40% of the biotinylated Kv4.2 protein is endocytosed
after 15, 30, and 60 min, respectively (Figs. 9C,D). At each
chase time, the proportion of endocytosed Kv4.2 protein in
cells expressing Kv4.2 alone or in combination with Nav�1
was not significantly different (Figs. 9C,D). Control experi-
ments revealed that, consistent with previous observations
(Sheff et al., 2002; Foeger et al., 2010), the turnover rate of the
transferrin receptor is rapid, with virtually all of the biotinyl-
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ated transferrin receptors endocytosed
after 15 min (Figs. 9C,D). By compari-
son, the cell-surface turnover rate of
Kv4.2 channels is slow and, in addition,
is not measurably affected by Nav�1.

Discussion
The results presented here demonstrate a
physiological role for the voltage-gated
Na� channel accessory subunit, Nav�1,
in the functioning of neuronal Kv4.2-
encoded IA channels. Shotgun proteomic
analysis led to the identification of Nav�1
in native mouse brain Kv4.2 channel com-
plexes, and subsequent biochemical and
electrophysiological studies in heterolo-
gous cells demonstrated a functional role
for Nav�1 in regulating Kv4.2 channel
protein stability and current densities. Ex-
periments using shRNA-mediated RNA
interference to knock-down Nav�1 in iso-
lated cortical neurons further revealed
that Nav�1 also regulates IA channels in
these cells. In addition, electrophysiologi-
cal recordings from layer 5 cortical pyra-
midal neurons in the in vitro slice
preparation revealed that in vivo loss of
Nav�1 prolongs action potentials and in-
creases repetitive firing in cortical pyrami-
dal neurons, consistent with a role for
Nav�1 in the regulation of native neuro-
nal Kv4.2-encoded IA channels.

Nav�1 is a component of neuronal
Kv4.2 channel complexes
Results of numerous previous studies sug-
gest that neuronal Kv4.2 channels likely
function in macromolecular protein com-
plexes comprising four pore-forming �
subunits, together with accessory KChIPx
and DPPx subunits, as well as other regulatory/modulatory pro-
teins (An et al., 2000; Nadal et al., 2003; Birnbaum et al., 2004;
Jerng et al., 2004; Rhodes et al., 2004; Jerng et al., 2005; Zagha et
al., 2005; Kim et al., 2008; Maffie and Rudy, 2008; Norris et al.,
2010; Sun et al., 2011). The identification of Nav�1 in native
mouse brain Kv4.2 channel complexes, however, was unex-
pected. Although not quantitative, the results of the MudPIT
experiments suggest that the relative abundance of Nav�1 in
Kv4.2 channel complexes is lower than the relative abundances of
the KChIPx or the DPPx proteins, with a protein abundance
factor value of 0.8 for Nav�1 compared with values in the range of
1.4 to 5.6 for the KChIPx and DPPx proteins. The association of
Nav�1 with Kv4.2 may, therefore, only occur in particular neu-
rons or in specific neuronal compartments. Alternatively, the
relatively lower protein abundance factor (0.8) for Nav�1,
compared with the KChIPx and DPPx proteins, could suggest
that Nav�1 interacts weakly or only transiently with Kv4.2
channels. It is also possible that the interaction between Kv4.2
and Nav�1 is indirect, requiring an intermediary scaffolding
protein.

The finding of Nav�1 in neuronal Kv4.2 channel complexes
also raises the interesting possibility that there are macromolec-
ular protein complexes containing both Na� and K� channels in

cortical pyramidal (as well, perhaps, as in other) neurons. Evi-
dence for channel-channel macromolecular complexes in the
brain was provided recently with the demonstration that Ca 2�

entry through Cav3-encoded T-type Ca 2� channels regulates
Kv4-encoded IA channels in cerebellar stellate neurons and, in
addition, that Kv4.2 coimmunoprecipitates with Cav3.2 and
Cav3.3 from rat brain and from tsA201 cells (Anderson et al.,
2010). In addition, it has been reported that coexpression with
Nav�1 increases the densities of heterologously expressed Kv4.3-
encoded currents (Deschênes and Tomaselli, 2002), that transient
outward K� currents are reduced in dorsal root ganglion neurons
dissociated from Scn1b-null mice (Lopez-Santiago et al., 2011), and
that exposure to a small interfering RNA (RNAi) targeting Nav�1
reduces Kv4-encoded transient outward K � (Ito) currents as
well as voltage-gated Na � currents in neonatal (rat) cardiac
myocytes (Deschênes et al., 2008). Voltage-gated Na � channel
� subunits, however, did not coimmunoprecipitate with
Kv4.2 in extracts of mouse brains in the experiments here.
Similarly, mouse brain Kv4.2 did not coimmunoprecipitate
with a pan-specific Nav � subunit antibody (data not shown),
suggesting that the association of Kv4.2 with Nav�1 is not
mediated through Nav � subunits and is independent of
Nav�1-mediated effects on Nav channels.
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Nav�1 modulates IA channels and regulates action potential
repolarization and repetitive firing in cortical pyramidal
neurons
The results of the electrophysiological experiments detailed here
revealed that acute knockdown of Scn1b (Nav�1) selectively
reduces IA densities in cortical neurons. Importantly, these
experiments also revealed that knockdown of Nav�1 does not
measurably affect the slowly inactivating (delayed rectifier) and
steady-state outward K� currents in these cells. The experiments
presented here further revealed that the in vivo loss of Nav�1
results in prolonged action potentials and increased repetitive
firing rates in layer 5 cortical pyramidal neurons. The functional
effects of loss of Nav�1 on action potential waveforms and repet-
itive firing are similar to the previously reported effects of phar-
macological suppression of IA and dominant-negative
attenuation ofKv4-encoded currents (Locke and Nerbonne,
1997; Hu and Gereau 4th, 2003; Kim et al., 2005; Yuan et al.,
2005). The simplest interpretation of these combined results,
therefore, is that Nav�1 regulates action potential repolarization
and repetitive firing in cortical pyramidal neurons specifically
through the modulation of Kv4-encoded IA channels.

Interestingly, mutations in Nav�1 have been identified in pa-
tients with generalized epilepsy with febrile seizures plus

(GEFS�) as well as in individuals with
temporal lobe epilepsy (TLE) and in se-
vere myoclonic epilepsy of infancy
(Dravet syndrome) (Wallace et al., 1998;
Scheffer et al., 2007; Patino et al., 2009,
2011; Baulac and Baulac, 2010). Previous
studies have also shown that Scn1b�/�

mice display spontaneous generalized sei-
zures (Chen et al., 2004), although Nav
currents were reportedly unaltered, or
only mildly affected, in hippocampal neu-
rons isolated from these mice (Chen et al.,
2004; Aman et al., 2009; Patino et al.,
2009). The current-clamp experiments
presented here revealed that the voltage
thresholds, as well as the peak amplitudes,
of individual action potentials are indis-
tinguishable in WT and Scn1b�/� neu-
rons, suggesting that Nav currents in layer
5 cortical pyramidal neurons are not af-
fected by the loss of Nav�1. The results
presented here, therefore, also suggest
that decreased IA densities, rather than or
in addition to effects on Nav currents,
contributes to increased neuronal excit-
ability and epileptogenesis in GEFS�,
TLE, and severe myoclonic epilepsy of in-
fancy. Additional experiments will be nec-
essary to explore this hypothesis directly.

The studies presented here also re-
vealed that the phenotypic effects of the
deletion of Scn1b are cell-type specific. In
contrast with the action potential prolon-
gation and increased repetitive firing rates
observed in Scn1b�/� layer 5 cortical py-
ramidal neurons (Figs. 7, 8), the wave-
forms of action potentials in WT and
Scn1b�/� hippocampal CA1 pyramidal
neurons were indistinguishable (data not
shown). Similar results were reported pre-

viously by Patino et al. (2009). It has, however, also been reported
that action potential amplitudes were larger in Scn1b�/� than in
WT, hippocampal CA3 pyramidal neurons (Patino et al., 2009),
raising the interesting possibility that IA is also decreased in these
cells. In addition, although Scn1b�/� layer 5 cortical pyramidal
neurons display increased repetitive firing, reduced repetitive firing
was observed in Scn1b�/� cerebellar granule neurons (Brackenbury
et al., 2010).Together, these results suggest considerable heterogene-
ity in the molecular composition of IA channels in different cell types,
heterogeneity that may underlie the experimental observation that
the detailed time- and voltage-dependent properties of IA in differ-
ent cell types are distinct (Jerng and Pfaffinger, 2008; Maffie and
Rudy, 2008).

Nav�1 acts as a molecular chaperone to regulate Kv4.2
protein expression
The results presented here demonstrate that Nav�1 increases the
stability of the Kv4.2 protein without measurably affecting
cell-surface Kv4.2 channel turnover rates. The time- and volt-
age-dependent properties of heterologously expressed Kv4.2-
encoded currents were indistinguishable in the absence and the
presence of Nav�1. Together, these results suggest that Nav�1
acts as a molecular chaperone, stabilizing newly synthesized
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Kv4.2 protein, which results (by mass action) in greater channel
cell-surface expression and larger current amplitudes/densities.
Importantly, the experiments here also suggest that stabilization
of Kv4.2 protein by Nav�1 is specific because coexpression of
Nav�1 did not affect the protein expression levels of other potas-
sium channel pore-forming subunits, including Kv2.1 or TASK1.

These findings further suggest an intriguing model in which
multiple Kv channel accessory subunits and regulatory proteins
could participate differently in the regulation of Kv4.2 channel
expression and functioning. The biochemical results presented
here also suggest the interesting hypothesis that Kv4.2 channels
are present in two (or more) cellular pools with distinct proper-
ties: an intracellular pool, that turns over relatively rapidly and a
pool expressed at the cell surface that is more stable and turns
over more slowly. The relative roles of the Nav�1 and KChIP
subunits, for example, might be different in different cell types or
in different subcellular compartments in the same cell. Further
studies, focused on defining the molecular mechanisms involved
in the dynamic regulation of neuronal Kv4.2 channel expression,
trafficking, and functioning in different cell types and subcellular
compartments, are needed to explore these hypotheses in detail.
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