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main reason additional measurements are needed is that one can never be sure in advance
of the shape of the distribution. It is very common for the distribution of observations not
to be described by a single exponential distribution but by a mixture of two or three or more
exponential terms. Indeed, under some circumstances, the distribution need not be described
by a mixture of exponentials at all; for example, this is, strictly speaking, the case when the
resolution of the observations is limited (see Section 12 of Chapter 18, this volume, and
Section 6.11 below). It will rarely be satisfactory to measure fewer than 200 openings, and
a few thousand openings will suffice for quite complex distributions if the time constants
are well separated. For the evaluation of complex models, data sets with millions of events
have been acquired and analyzed (e.g., McManus and Magleby, 1983).

2. Acquiring Data
2.1. Pulsed and Continuous Recordings

Some experiments rely on the application of a stimulus to open the channels. A pulse
of applied neurotransmitter or a membrane depolarization is given, and the resulting channel
currents are measured. In order to obtain a sufficiently large number of events, sometimes
hundreds or thousands of pulsed stimuli are presented. Such experiments are best performed
using a computer both to control the application of the stimulus and to acquire data directly
during an interval (perhaps a few tens or hundreds of milliseconds) surrounding the time of
each stimulus. The resulting recorded data then consist of “sweeps” having a precise timing
relationship to the stimulus.

In other experiments the activity of channels is observed under steady-state conditions,
for example, in the presence of a constant concentration of an agonist or a constant membrane
potential. To obtain the maximum information from the experiment the data are best recorded
continuously, for example, with an FM tape recorder, on digital audio tape, or with the
combination of a PCM adapter and a videotape recorder. The decreasing costs of computer
mass storage media (optical disks, digital tape drives) are making it practical to digitize the
data and store it directly in the computer. This makes sense, since for analysis the data must
be transferred to the computer eventually.

2.2. Filtering the Data

The filtering of the current-monitor signal from a patch-clamp amplifier is both unavoid-
able and necessary for practical data analysis. The design of the patch-clamp amplifier places
a limit on its frequency response (typically up to 100 kHz or 50), so that its output signal
can be considered a filtered version of the “true” (infinite bandwidth) current signal. Some
filtering is also a necessary part of the data-recording process. FM tape recorders use filters
to remove the FM carrier frequencies from the output signal. For the analogue-to-digital
converters of digital tape recorders and computer data-acquisition systems, the signal must
be first be filtered to avoid aliasing; the DAT and PCM systems designed for audio recording
typically incorporate sharp-rolloff elliptic filters for this purpose, which strongly attenuate
frequency components above 20 kHz. Finally, some filtering is required anyway for data
analysis in order to reduce the background noise sufficiently to allow single-channel events
to be detected and characterized.
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The question of the optimum degree of filtering is discussed below (Section 3.2). The
events of interest are rectangular, so it is undesirable to use a filter with a very sharp rolloff,
such as a Butterworth or elliptic filter, because this sort of filter distorts a step input to produce
an overshoot and “ringing” appearance (although this sort of filter would be appropriate if
the single-channel records are to be used for calculation of a noise spectrum). Most commonly,
a Bessel filter (four poles or more) is used. On some commercial active filter instruments,
this sort of filter characteristic is sometimes referred to as damped mode or low Q. The
cutoff frequency labeled on the front panel of the active filter is sometimes the frequency
at which the high- and low-frequency asymptotes of the log-attenuation versus log-frequency
graph intersect. For a Bessel filter, however, the frequency at which the attenuation is —3
dB is about half of that value. This gives rise to an ambiguity in the specification of filtering
that is used. It is desirable that the criterion used always be stated, and it is preferable that
the cutoff frequency, f., always be specified as the —3 dB frequency, as we do in this chapter.

A useful theoretical model for a general-purpose filter is the Gaussian filter, which has
a frequency response function B(f) of the form

B(f) = e™¥* (1)

where the constant k is chosen to give 3 dB of attenuation at f;; i.e., IB(£,)I> = 1/2, yielding
k = In(2)/2f.2.

Some of the useful properties of the Gaussian filter arise from the fact that the Fourier
transform of a Gaussian function is itself a Gaussian function. The inverse transform of
equation 1 gives the filter’s impulse response, which can be written in the same form as a
Gaussian probability distribution:

T T N ?)
~ 2m", P\ 202

where the width of the impulse response is characterized by o,, which is analogous to the
standard deviation of a probability distribution. Its value is inversely proportional to f,

5 = (ln 2)1/2
d 21f,

3)

Of special interest for single-channel analysis is the property that the frequency response
of two Gaussian filters in cascade is itself Gaussian, with the effective cutoff frequency f,
given by

1 1 1 :
ARTA @

where f; and f, are the cutoff frequencies of the two filters. This property allows repeated
filtering to be done on the signal with predictable results. Because Gaussian digital filters
are simple to program (see Appendix 3), it is possible to refilter data even after it has been
digitized and stored in the computer.

The response characteristic of a Bessel filter is well approximated by the Gaussian
response, and the two actually become identical as the number of poles in the Bessel filter
becomes large. Equation 4 is therefore useful for estimating the final bandwidth of an entire
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recording system. A typical system might consist of a patch clamp with roughly Bessel
response, a DAT recorder with sharp-cutoff elliptic filters in the recording and playback
paths, and a Bessel filter to reduce the bandwidth before digitization by the computer. The
contribution from the patch clamp and Bessel filter can be combined as in equation 4. To a
first approximation, the effect of a sharp-cutoff filter can be neglected, provided its cutoff
frequency is at least twice the f; of the rest of the system.* Thus, for example, a system with
a 10-kHz Bessel filter in the patch clamp cascaded with a 5-kHz Bessel filter yields an
effective bandwidth of 4.47 kHz; in this situation the presence of a DAT recorder with its
sharp-cutoff 20-kHz filter would have essentially no effect on the final response.

For theoretical work, the Gaussian filter is convenient because its impulse response and
step response are relatively simple functions of time; the results in Sections 3 and 4 of this
chapter have been computed for a Gaussian response for this reason. Some properties of the
Gaussian filter can be summarized as follows.

2.2.1. Properties of the Gaussian Filter

The frequency response function of the Gaussian filter is given by equation 1 or, numeri-
cally,

B(f) = exp[—0.3466(f/f.)*] )

The impulse response function (equation 2) can be written in terms of the cutoff frequency

f. as
h(r) = 3.011 £, exp[—(5.336 f.1)*] (6)

The step response is

H(i) = % [1 + erf<217’0—g)]

= —;— [1 + erf(5.336 f.1)] @)

In modeling the response to single-channel current pulses, it is useful to know the peak
output of the filter in response to a rectangular pulse of length w and unit amplitude, which is

w
Finan = err<——23,20 ) = erf(2.668 f,w) ®)
4

*For Gaussian filters, each term in equation 4 is proportional to the second moment of the impulse response.
Thus, the equation follows from the fact that when two functions are convolved, their second moments add.
For sharp-cutoff filters, the second moment is approximately zero; indeed, for Butterworth filters, it is
exactly zero.
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The total noise variance of the output from the Gaussian filter when the input has a
(one-sided) spectral density S(f) = So (1 + f/f, + ff,?) is given by

d=medﬂﬂﬂ#

0

= Solaofe + (@ /f)f? + (a:lfH)f] ®

where a; = 1.0645, a; = 0.7214, and a, = 0.7679.

2.2.2. Risetime of the Filter

A particularly useful descriptive parameter for a filter is the risetime, 7,. Roughly
speaking, T; is the time for the output of a filter to make a transition when a square step is
applied to the input. It therefore corresponds to the minimum length of a pulse to which the
filter gives a nearly full-amplitude response. One commonly used definition for the risetime
is the time between the 10% and 90% amplitude points of the transition in the output of
the filter,

T10—90 = 23/20'gerf_1(0.8)
= 0.3396/f, (10)

The definition we use here sets T} equal to the reciprocal of the slope at the midpoint of the
response H(f) to a unit step input,

-1
 [ar@®
n_[Tflﬂ (11)

which is given by

T, = (211')”20'8
= 0.3321/f,

(12)

For a Gaussian filter the two definitions of risetime give essentially identical values. T; is
inversely proportional to f, and a 1-kHz Bessel or Gaussian filter has a risetime of about
330 psec. It is often convenient to use 7, rather than f; to specify the amount of filtering
(e.g., one can say that “openings longer than 2 T, were fitted”).

2.3. Digitizing the Data

The data are always acquired, in the first place, in the form of a voltage (analog) signal,
they are then converted to digital form for storage on digital tape (DAT or PCM/videotape),
or for computer analysis, by an analog-to-digital converter (ADC). The ADC necessarily
samples the voltage at discrete times; if the sample rate is too low, information about rapid
voltage changes is lost. This loss of information can be described as frequency aliasing,
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in which high-frequency components of the original signal become converted to lower-
frequency ones.

A good criterion for the choice of the sampling frequency is to require that the digitized
record, when interpolated by some convenient means, is indistinguishable from the original
continuous record. Sampling at the Nyquist rate (i.e., at twice the filter cutoff frequency) is
a special case of this criterion, but for our purposes, the Nyquist criterion requires two
unreasonable assumptions. First, it requires that the original signal contain no frequency
components above a given frequency f; to avoid aliasing. This is unreasonable because no
practical filter can accomplish this entirely, and Bessel filters are particularly bad in this
respect because of their gradual rolloff characteristic. Second, the samples (digitized at the
Nyquist rate of 2 f;) must be interpolated using a very slowly decaying function of the form
sin(xt)/xt in order to reconstruct the original signal properly. This sort of interpolation requires
much computation and is not suitable for short records.

Interpolation is important when the original signal is sampled relatively sparsely; it
allows one to reconstruct the record to any degree of smoothness for viewing while using
a minimum of computer storage for the digitized data. Proper interpolation also reduces
errors in certain transition-fitting procedures (see Section 4.1.2). When a cubic spline function
is used to interpolate the points, a practical minimum sampling rate for Bessel-filtered data
is about five times the —3 dB frequency of the filter, in which case the peak error in the
reconstruction is about 2% (Fig. 1). In the cubic spline, cubic polynomials form the interpola-
tion between every two points, with the second derivative being continuous throughout. The
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Figure 1. A single-channel current record sampled at various rates. Inward currents through ACh-receptor
channels in a rat myoball were recorded cell-attached at 22°C with V,, = —45 mV and filtered at fe= 2
kHz with a four-pole Bessel filter. A: Data points as sampled at 2, 4, 5, 8, and 20 times fe. B: Result of
cubic spline interpolation of the sampled data. C: Error traces, computed as the difference between the
interpolated traces and the original data sampled at 20 f, and scaled up by a factor of 4. The single-channel
current was — 1.5 pA in this recording, and the rms background noise level o, = 0.15 pA.
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width of the interpolating function is quite narrow, so that “edge effects” (errors caused by
the lack of surrounding data points) persist only about four points in from each edge of a
record. A subroutine for spline interpolation is described in Appendix 3. Other interpolation
techniques, including simple linear interpolation, can also be used but may require higher
sample rates. If interpolation is not used, data sampled at the minimum rate appear sparse
and are hard to evaluate by eye; higher rates, such as 10 to 20 times the filter’'s —3 dB
frequency, are needed.

In general, it is best to digitize the entire experimental record. This is a good because
itallows all of the data to be inspected directly and because it allows all dwell times, including
the longest ones, to be measured directly. Sampling at a rate of 40 kHz (appropriate for a 2
to 4-kHz filter if interpolation is not used) generates 4.8 Mb of data per minute, assuming
that data are stored as two-byte integers; thus, only a limited amount of data can be stored
in computer memory. In order to digitize a long continuous record without gaps, the computer
must have the ability to acquire samples into memory while simultaneously writing the data
from memory to disk. This can be done by means of a separate memory buffer incorporated
into the ADC system or by using direct memory access (DMA) transfer of data. For high
sample rates (say 50 kHz or faster), attention must also be given to the speed at which data
can be written to the storage device.

An example of a high-speed continuous acquisition program is the VCatch program for
Macintosh computers. It acquires digital samples at a 94-kHz rate directly from the playback
of a videotape recording using the VR-10 PCM adapter (Instrutech Corp, Mineola NY) or
at sample rates up to 200 kHz using the ITC-16 ADC interface (Instrutech). In each case,
the interface hardware includes an internal sample buffer (16k or 32k words of first-in/first-
out buffer) that is emptied at regular intervals into a 1 Mb circular buffer in the computer’s
memory by an asynchronous “timer task” running on the host computer. The main program
displays the incoming data and writes blocks of data from this buffer to a large-capacity
hard disk. A similar facility is provided by the CED 1401-plus interface (Cambridge Electronic
Design, Cambridge, U.K.) for IBM-compatible computers. It uses DMA to transfer ADC
samples directly to a 64-kb circular buffer in the computer’s memory, allowing analogue
voltages to be digitized at rates up to 80 kHz while writing the data continuously to the hard
disk. Some commercial interfaces allow continuous sampling and writing to disk only at
lower rates than these, e.g., up to 30 kHz. For high-resolution data, this sampling rate may
not be sufficient; however, if the original data recording is on FM tape, it is sometimes
possible to slow down the tape speed while sampling the data to increase the effective
sample rate.

An alternative to digitizing the entire record is to have some sort of automatic detection
of the points at which opening transitions occur, and to digitize only the sections that contain
openings. In this approach it is necessary that the detection method keep a record of the
time intervals between openings, so that the distribution of shut periods can be constructed.
This approach is satisfactory only to the extent that the detection system is reliable and the
detection parameters have been properly set up before the recording starts. However, the
availability of high-capacity disk drives that can store an entire recording makes this approach
less attractive than it was in the past.

3. Finding Channel Events

The analysis of single-channel records first involves estimating the time and the ampli-
tude of each transition in the current record. The list of these values is described as an
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idealized record that approximates the true channel activity and serves as the data set for
statistical analysis of the kinetics. In practice, some of the original transitions are missed in
the analysis process. To a certain extent, corrections can be made for missing events (see
Section 12 of Chapter 18, this volume; Section 6.11 below), but it is important that the
idealized record be as complete and unbiased as possible, especially when multistate kinetics
are involved.

Finding events and fitting the transitions are considered separately in this section and
the next because the two operations are often carried out separately. For example, a simple
transition finder can rapidly scan a digitized record for putative channel activity. Once each
event is found, it can then be fitted to an idealized time course by a much more time-
consuming fitting routine, which may even require the record to be filtered differently. On
the other hand, event detection and characterization can be combined in the use of a simple
threshold detector, which provides a simple but useful estimator of transition times for
event characterization.

3.1. Description of the Problem

The basic problem in identifying channel activity in an experimental record is that short ‘
channel openings are indistinguishable from random noise fluctuations about the baseling;
similarly, short gaps are indistinguishable from fluctuations away from the open-channel
current level. This is because, as a result of filtering, narrow current pulses as well as random
noise fluctuations take on roughly the same time course as the recording system’s impulse
response. Determining whether a particular blip is a channel opening can therefore be done
only statistically. In order to estimate the reliability and the limits of detection, we consider
amodel situation and apply some classical results from communication theory to the problem.

We assume that the channel activity to be detected consists of widely spaced rectangular
current pulses of random duration but fixed amplitude Ay. The baseline level is zero. The
background noise has a spectral density S,(f) and is assumed to be Gaussian distributed and
independent of the channel activity. (These last two conditions appear to hold in high-quality
patch recordings.) The completely unfiltered current signal x(7) (if it could be observed) is
represented as the sum of noiseless channel activity s(¢) and a noise function n(?), as illustrated =
in Fig. 2.

The detection strategy is the following: at each time point ¢ we form a linear combination
y(2) of signal values according to

y() = Jm h(t — 7)x(T)dT (13)

]

where £ is a normalized weighting function that determines, in effect, the amount of time

n(t)

| I || I I L - Threshold

e [ del
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Figure 2. Model of single-channel event detection
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averaging that is done in forming y. The value of y is then compared with a threshold ob; if
y > ¢ at some time ¢, channel activity is said to be detected at .

This detection scheme is general in the sense that it includes all possible linear signal-
processing operations in the specification of the function h. It is also an optimum detection
scheme in the sense that, for a signal consisting of pulses of defined shape and size, it can
yield the lowest probability of error in detecting these pulses (VanTrees, 1968). We do not
know, however, whether it is the optimum scheme for detecting pulses having random widths,
as are actually encountered in single-channel records.

The operation described by equation 13 is a filtering operation; in fact, the function
y(f) is just what one obtains as the output from a filter with impulse response h(f). Thus, we
can represent a linear detection scheme of this kind simply as a filter followed by a threshold
detector, as shown in Fig. 2. The filter in this diagram actually represents the transfer function
of the entire recording system, including the characteristics of the pipette, patch-clamp
amplifier, analog filter, and any computations that are performed on the digital samples. One
step in event detection is often performed by a computer program in which y is computed
as a weighted sum over discrete sample values rather than as an integral. This is equivalent
to operating on the signal by a digital filter, which in turn is equivalent to continuous-time
filtering, by the sampling theorem. Regardless of how the filtering is performed, the problem
of determining the best way to detect events is reduced to finding a suitable value for the
threshold ¢ and a suitable response characteristic for the filter.

3.2. Choosing the Filter Characteristics

3.2.1. Signal-to-Noise Ratio

The filter’s cutoff frequency f; and the form of the filter’s frequency response characteris-
fic can be varied to optimize the probability of detection of channel events. One strategy for
doing this is to maximize the signal-to-noise ratio (SNR) for the response to a pulse of a
given width, w, in the presence of noise. If SNR is defined to be the ratio of the peak
amplitude Y of the filtered pulse to the standard deviation of the filtered noise, it can be
expressed in terms of the filter transfer function, B(f), and the noise spectrum, Sa.(f), as

r B(f)xmd/‘

on - 72
U |B()! ZSn(f)df]

(14)

where X(f) is the complex Fourier transform of the original pulse shape. We will see that
the choice of the best filter setting depends strongly on the form of S,. The background noise
in the patch clamp should theoretically show flat spectral density at low frequencies (below
about 1 kHz) and rise asymptotically as £? at high frequencies (see Chapter 4, this volume).
In the frequency range between 1 kHz and 10 kHz, the spectral density typically is seen to
rise roughly proportionally to f.
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Two useful models for background noise are, therefore, the so-called “1 + f spectrum,

having the form
Ifl
Sa=So| 1 + -
( fo>

and “1 + f?” noise,

_ o
S, = so<1 +f0)

In each case, f; is a characteristic “corner” frequency. In order to give numerical values for
the results of calculations, we adopt a standard background noise spectrum of the 1 + fform
with the (one-sided) spectral density Sy = 107*° A%¥Hz and with f, = 1 kHz. This is a noise
level that can be obtained with present-day amplifiers and pipette technology when some
care is exercised.

If we assume a tunable filter with a variable cutoff frequency, f., of the form B(f) =
By(f/f.), then we can calculate the dependence of o, on f, by evaluating the denominator of
equation 14. In the case that S,(f) is proportional to f¢ for some exponent a, o, will be
proportional to £, * D2,

In the case of a Gaussian filter response, o, can be computed directly from equation -
9. The dependence of o, on f; for various spectral types (flat, 1 + f, and 1 + f 2) is illustrated
by the lower curves in Fig. 3.

The numerator of equation 14 is the peak value y,,, of the filtered pulse. For a rectangular
pulse of fixed width, yy, is small and proportional to £ for low f. values (heavy filtering).
For a pulse of amplitude A, and width w, the size of the response is related to the filter risetime,

Ymax =~ AO% w << Tr (15)

r

As f. is increased, T, decreases, and y.x approaches the original pulse height when w = T
This last condition corresponds to filter bandwidths at which the rectangular shape of the
original pulse can be resolved. The relation between ynm,, and f; is shown by the upper curve
in Fig. 3.

The choice of the optimum f, for the three spectral types is indicated by the dashed
lines in Fig. 3. In the case of a flat spectrum, the largest SNR value is obtained for a relatively
high value of f, because o, grows only as f;'2, whereas ymx rises more quickly at low f,
values. For S,(f) rising proportionally to f, the choice of f; is relatively uncritical, since g,
and ymax rise in parallel. Finally, for S,(f) rising as f2, f; is best chosen to be small, since
o, is rising relatively steeply, as f,*. Figure 3 presents an extreme case in which the pulse
width w was chosen to be small (10 ps) compared with the time scale of the corner frequency
fo. As a result, the optimum f; values differ widely. For longer pulses, the spread in optimal
f. values would be less.

3.2.2. Matched Filter

The exact form of the filter response that maximizes the SNR for a given noise spectrum
and pulse shape is the so-called matched filter, which has the transfer function (see, for
example, Van Trees, 1968)
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Figure 3. Effect of filter cutoff frequency f, on signal and noise amplitudes. The upper curve shows the
peak amplitude y,, of the response of a Gaussian filter to a 10-ps pulse of unit amplitude. Below about 40
kHz, the pulse is appreciably attenuated by the filter. The lower curves show the dependence of the rms
noise amplitude o, on f, assuming flat, 1 + f,and 1 + 2 spectral characteristics. (The noise corner frequency
was f, = 1 kHz in each case, and S, values were chosen arbitrarily.) The dashed lines indicate the points
of widest separation between y,,, and o,, i.c., the highest signal-to-noise ratios. The f. values giving the
best SNR were 36, 10, and 2 kHz for the three spectral types. In 1 + f? noise, the optimally fitted pulse
would be attenuated to only 6% of its original amplitude. The absolute value of o, for the “standard” noise

spectrum (S, = 1073° A*Hz) can be read directly from the 1 + f noise curve if the relative amplitude values
are multiplied by 50 pA.

_ X
B(f)y=c 5.0 (16)
where X* is the complex conjugate of X, and c is an arbitrary gain factor. [The transfer
function can be multiplied by an arbitrary delay factor of the form exp(—j 2w ft,), but we
ignore this.] In the case of a flat noise spectrum, the matched filter’s impulse response is a
time-reversed copy of the matching signal—in our case, a pulse of width w; the filter is then
just a running averager, averaging over a time w. If instead the noise spectrum is not flat,
the matched filter has a different form.
It should be noted that the matched filter does not necessarily preserve the shape of the
original pulse, since it is optimized only for the peak of the response. In the flat-spectrum
case, for example, the response to the matched rectangular pulse is a triangular pulse.

3.2.3. Gaussian Filter

Although matched digital filters are not difficult to program, analog matched filters are
difficult to make. Besides, one would prefer to have a general-purpose filter with only one
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adjustable parameter, say, the cutoff frequency, as opposed to one with the complicated
adjustments implied by equation 16. As was mentioned in Section 2.2, the Gaussian filter
has various appropriate properties for single-channel analysis. Surprisingly, this filter also
gives SNR values nearly as large as those from a matched filter. Figures 4A and D compare
SNR values for the matched filter and the Gaussian filter as a function of the pulse width
w, assuming noise spectral densities of the 1 + fand 1 + f? types, respectively. The SNR
values for the Gaussian filter were never less than 0.84 times the matched-filter values and"
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Figure 4. Filtering for optimum signal-to-noise ratios in the presence of background noise with 1 + f and
1 + f? spectra. A and D: Ratio of peak signal, y,.x, to rms noise, o, for the matched filter (heavy curve)
and the optimally tuned Gaussian filter (thin curve) as a function of the matched pulse width w. B and E:
Gaussian filter cutoff frequency f, yielding the SNR values plotted above. The choice of f is not extremely =
critical, as indicated by the thin curves, which denote the range of f. curves giving at least 90% of the
maximum SNR. C and F: The corresponding peak signal amplitudes after Gaussian filtering. The thin curves *
show the range of amplitudes resulting from the range of f. values in B and E. The noise spectral densities
were taken to be one-sided, S, = S,(1 + f/f,) and S, = S,[1 + (f/f.)%], with S, = 1073 A%Hz in each
case, and the pulse amplitude A, = 1 pA. The SNR, f, and y,,, values from these curves can be scaled for :
other values of S,, fo, and A, by forming the ratios § = S/107% A?s, f = f/1 kHz, and A = A/l pA.
The resulting values SNR', f;, and ., are given by SNR’ = [A/(SH2ISNR(Wf); fi = ff(wf); and iy =
A ymax(wf)~
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Iy, Iy, and r, are not exactly parallel. Figure 7.7 shows the
geometry. We use the law of cosines to write [remember
that cos(7— 6)=—cos 6]

ri=rol1+(2x /ry)cos 8+x3/r3]"2,
ra=rol1=(2x,/rp)cos 6+x3/r2]"2

When these are inserted in Eq. (7.4) and a Taylor’s-series
expansion is done to second order in both x1/rg and
x5 /7y, the result is

B 2ma? o; Avy(x,+x,) 3cos? §—1
YT 4ar a, 2 2

(7.16)

The constants have been arranged to show that the term
Av;(x;tx,)/2 is the area under the impulse when v is
plotted as a function of distance along the cell. The angular
factor as written with its factor of 2 in the denominator is
tabulated in many places as the ‘‘Legendre polynomial
Py(cos ). The exterior potential now falls off more
rapidly with distance, as 1/r3. The angular dependence,
shown in Fig. 7.8, is symmetric about 7/2. This shows the
angular dependence as one moves around the impulse at a
constant distance from it. This is a very different situation
and a very different curve from the potential measured at a
fixed point near the cell as an impulse travels past. In the
latter case r as well as 6 is changing. This behavior is
discussed in Problems 7.6 and 7.7. The results are shown in
Fig. 7.9. The potential from the depolarization is biphasic;
that from the complete pulse is triphasic, being positive,
then negative, then positive again.

For a single axon in an ionic solution the exterior conduc-
tivity is usually higher than in the cell, so 0;/0,=0.2. The
conductivity of tissue is considerably less than the conduc-
tivity of an ionic solution, and the ratio becomes greater

P

FIGURE 7.7. When the observation point is not so far away,
or when a complete nerve impulse is being considered, the
law of cosines must be used to relate r; and ro to ry.
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FIGURE 7.8. Plot of the angular dependence of the potential
from the entire impulse, Eq. (7.16). J

than one. For the electrocardiogram it will be more appro-
priate to use 0,=0.33 Sm~! (muscle) or 0.08 Sm™!
(lung), in which case o;/0, is 6 or 25. We will use an
approximate value of 10.

7.4 THE EXTERIOR POTENTIAL FOR AN
ARBITRARY PULSE

We have derived the results of the previous sections for an
action potential that varies linearly during depolarization
and repolarization, a piecewise-linear approximation. In
general the action potential does not have sharp changes in
slope. We will now consider the general case and find that
the results are very similar. For depolarization alone, we
will again have a potential depending on the dipole
moment. For a complete pulse the potential will depend on
the area under the pulse curve.

Again, the axon is stretched along the x axis in an infi-
nite, homogeneous conducting medium. Consider a small
segment of axon between x and x+dx. If the current
entering this segment at x is greater than the current leaving
at x+dx, the difference must flow into the external
medium. From Eq. (6.45b),

Depolarization Only

Complete Pulse

Relative Potential

time

FIGURE 7.9. The potential far from the axon as a function of
time as an impulse travels from left to right along the axis.
The potential from the complete pulse has been multiplied by
a factor of 10 in order to show it.
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spectrum is flat, whereas k = 1.25 for S, proportional to f% practical recording situations
correspond to intermediate values.

The function in equation 17 is plotted in Fig. 5 assuming f, = 1 kHz. The false event
rate is seen to be a very steep function of the ratio d/a, decreasing from about 10 eventsls
at &/, = 3 t0 0.004 events/s at b/, = 5. What constitutes an acceptable value of A depends
on the frequency of true events. For detecting relatively rare channel openings, A should be
at least one or two orders of magnitude smaller than the opening rate, which implies a ¢/
0, ratio of perhaps 5 or more. On the other hand, in the case that a burst of channel openings
has been found, the problem might then be to find all channel-closing events. Since the true
events in this case would be much more frequent, \¢ could be larger, and ¢/o, might be
chosen to be 3, for example. It is a good idea to be conservative and choose a somewht
larger value for ¢/, than that given by equation 17 or Fig. 5 to allow for possible errors
in the estimation of the baseline level or small changes in the noise level, which could have
a large effect on the false-event rate.

The threshold must also be chosen low enough that the desired events will be detected
One strategy for choosing ¢ would be to optimize the detection of the shortest possible
events. Let wp,, be the minimum detectable event width, and Ymax the peak amplitude of a
filtered pulse of this width. If we set & = y,., approximately half of all such events will
be detected, since noise fluctuations will cause some events to cross the threshold and others

103

/

T TT7Y T=TTTVw T 7T TTTTVT T 'l7v

False event rate (s-')

Figure 5. False-event rate, A as a
function of the threshold-to-rms-noise
ratio. The curves were calculated
according to equation 17 with f, = [
kHz for the case of 1 + f2 (upper curve)
and flat spectral densities of back-
ground noise. False-event rates corres-
ponding to practical background noise
spectra are expected to fall between the
curves. Note that \; should be scaled
proportionally to f, for other f, values,
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to remain below it. To determine the value of w,,,, we can use the signal-to-noise ratio
curves of Fig. 4. The SNR in this case is just equal to the desired ¢/o, ratio. Given this,
the values for wy,;, and f, can be read from the curves. Unfortunately, this procedure requires
that parameters S, and f; of the noise spectrum be known in order to scale properly the
results from Fig. 4.

A simpler approach is suggested by the fact that for the 1 + f spectrum, Ymax Varies
only weakly with w (Fig. 4C), and for each w, a considerable range of y..., values can result
in nearly maximum SNR values. Thus, one could pick ¢ equal to a reasonable Ymax Value
and then tune the filter while measuring o, to give the desired ¢/c, ratio. What is a reasonable
Ymax Value? This issue is discussed in Appendix 1; in summary, a good choice of b is 0.7
Ao in the case of small-amplitude events, which will require heavy filtering (f. < f,), or 0.5
A, for larger-amplitude events for which a wider filter bandwidth will be used. This choice
of & = 0.5 Ay is of practical interest because it allows simple event characterization as well,
as described in Section 4.1.

3.4. Practical Event Detection
3.4.1. Optimal Threshold Detection

A general procedure for setting up the filter and threshold detector can now be summa-
rized as follows: (1) given the channel amplitude A, pick a threshold level b, e.g., in the
range 0.4 to 0.7 times Ay; (2) adjust the filter’s corner frequency to bring the rms noise, o,
to the desired fraction, e.g., one-fifth, of ¢ (3) optionally, ¢ can be readjusted slightly in
view of the relationship between f, and the frequency of the corner of the noise spectrum.

In typical patch recordings the background noise spectrum has, up to now, commonly
been of the 1 + f form, for which the above strategies are appropriate. The final asymptote
of the noise spectral density is, however, proportional to 2, and it is likely that as techniques
improve and extraneous noise sources are eliminated, the background noise in practical
recordings will more nearly approach this asymptote. Once the noise density is seen to rise
more steeply than linearly with frequency, a different strategy for choosing the threshold
and filter frequency should be used. Recall that in this case the SNR is not improved when
Je increases beyond a critical value (Fig. 4E); therefore, it would be best in the case of large
events to set the filter first to the critical frequency, about 1.2 times f,. Then, the threshold
level can be chosen to be the proper multiple of o, to achieve an acceptably low false-
event rate.

Some convenient means for measuring o, is clearly required in order to set up the filter
and threshold in the ways just described. A “true rms” voltmeter can be used to read On
directly, provided that sufficiently long event-free stretches are available for the measurement
to be made. If the record is digitized, a segment can first be checked visually for the absence
of obvious events. A calculation of the standard deviation of all the points in the segment
then yields o,,. A fairly long segment (or collection of segments) is needed for a precise
estimate; 1000 points yields a standard deviation for o of roughly 5%, depending on the
spectral type and the relative sampling rate. For example, if the sampling rate is higher than o)
more points will be required because of the increased correlation between adjacent samples.

Throughout this section, we have assumed that the baseline level is zero. Since in
experimental records the baseline current level is nonzero and typically shows a slow drift
with time, any event-finding procedure needs to compensate for this. One strategy for
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levels. Still other methods exist that do not rely on the detection of individual events at all
but obtain indirect information about dwell times and amplitudes from the statistics of the
entire record., Examples of these are power spectra and all-points histograms computed from
single-channe| fecords. These provide less information than a full evaluation of closed and

4.1. Half-Amplitude Threshold Analysis
4.1.1. The Technique

a8 an estimate of the channel-open
time. As was pointed out by Sachs et gl (1982), choosing the threshold to pe Ap/2 is

convenient becauge W is then an unbiased estimate of the trye pulse width w, for long pulses
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of either polarity and can therefore be used to estimate both open and closed times. However,
for short events with wq of the order of the filter risetime T, w, underestimates wy (see Fig
6). Events shorter than a dead time of about T,/2 are missed altogether, because, after filtering
they never reach the threshold.

The exact value of the dead time T of this detection technique can be either measured
experimentally or calculated by finding the pulse width that gives a half-amplitude response
from the recording system. If, for example, an analogue filter is used and has its bandwidth
set far below that of the other parts of the recording system, it suffices to observe its output
while variable-width pulses are applied to the input by a stimulator. In the case of a Gaussian
filter, T4 is found (see equation 8) according to

erf(T4/2%%0,) = % (19)

which yields Ty = 0.538 T; or, equivalently, Ty = 0.179/f.. If, for example, a sample rate of
10f, is used (see Section 2.3), T, is 1.79 sample intervals. Alternatively, a dead time can b
imposed retrospectively, as described in Section 5.2 (as long as all events longer than the
chosen value have been measured). This method ensures a consistent dead time throughout.

If not only the dead time but also the complete relationship between w, and wo is known,
then the distorting effect of the threshold-crossing analysis can be estimated. In terms of the
filter step response H(?), which is assumed for simplicity to be symmetrical about ¢ = 0, the
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Figure 6. Relationship between true pulses with width w, and the width w, at the 50% threshold for Gaussian:
filtered pulses. A: Simulated pulses with lengths given in units of 7,. The shortest pulse fails to reach
threshold, and the pulses of intermediate width result in low values of the threshold-crossing width, w, B:
The relationship between w, and true pulse width in the absence of noise. For w, equal to T, or longer, W
and w, are essentially equal (dashed line). The points (barely visible under the curve) are values of the

approximation function (equation 21).
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relationship is given implicitly by

WI+W0 W(_WO 1
H(==20) 4 W= wo) _ 1
e e

which must be evaluated numerically. Figure 6B show

pulses. A convenient approximation to the relationshi
is given by the function

s this relationship for Gaussian-filtered
P, having relative errors less than 1073,

Wo = g(wy)

=Wt arexp(-wla, — ayw? — azw?), we >0 (21)
witha; = 0.5382 T.,a, =0.837 7,72, and a; = 1.
given in terms of the filter cutoff frequency as ¢ |
Jf*. The function & can be used directly to cony

values. Alternatively, the function can be used
(pdf) of threshold—crossing intervals, fi(w,), from

120 7,73, These coefficients are alternatively
=0.1787 /f,, a, = 7.58 f2, and a; = 30.58
ert the observed wy values to effective Wy
to predict the probability density function
the pdf of true durations Swe) according to

JSilwy) = f[g(Wt)]g’(Wt)

deviation in the apparent corrected width, w, ig approximately

W:21/2ETr 23
Y 4, (23)

If the duration, w, of short events is corrected, for example, according to equation 21, the
error in these estimates for w near 7y is

and is also approximately Gaussian distributed.
The threshold—crossing technique automaticall
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the threshold-analysis technique is implemented on a computer, an additional problem arises
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Simulated rectangular events (top trace) were filtered A
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(middle trace) with twice the vertical scaling. The recon- ke
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is shown in the lower trace. Events 1 and 2 had lengths
of 0.57; and were just below threshold. Event 4 was even
event 3 (0.67T;) by a shut interval of only 0.57;. Event
5 had a length of 2.57;. 2ms

4.1.3. Estimating the Amplitude

The threshold-crossing technique assumes that the event amplitude is known a priori,
50 that the threshold can be set correctly. In practice, this presents little problem in interactive
(as opposed to entirely automatic) fitting programs, since the operator can usually find
sufficiently “square” events to provide an initial estimate for the amplitude. An estimate of
the amplitude of an individual event, provided it is long enough, can be made by averaging
the amplitude of the trace between threshold crossings, excluding the points within a given
distance (e.g., 0.7 T,) of the threshold-crossing points. Because of this exclusion, only events
longer than about 27; can be used for determining the amplitude. As will be shown below,
the time-course-fitting technique can give amplitude estimates for events shorter than this,
but only at the expense of increased error in the duration estimates. This method suffers
from the problem that the amplitude estimates so found will be too low if the region of the
trace that is averaged contains brief shuttings that have not been detected because they did
not cross the threshold level. If such brief shuttings are at all common (which is often the
case), then it is necessary to inspect each amplitude fit to make sure that such bias has
not occurred.

4.2. Direct Fitting of the Current Time Course

4.2.1. The Technique

A theoretical time course of the current can be computed on the basis of the step
response of the recording system and fitted to the actual record. The step response can be
measured by injecting a square-wave signal into the input of the patch-clamp amplifier, for
example using a built-in integrator (see Chapter 4, this volume), or by coupling the triangle-
wave output of a function generator into the headstage input through a small capacitance
(e.g., by simply holding a wire near the headstage). A high-quality triangular wave is needed
for this job. The resulting output signal, filtered and digitized in the same way as the data
fo be analyzed, is stored in a computer file for subsequent use. Usually, a suitable trigger
pulse is also recorded, so that several sweeps can be averaged to obtain a smooth output
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curve. Such a curve is illustrated in Fig. 9A; it is scaled so that it covers the range from (
to 1.

Once the output of the apparatus to a step is known, it is easy to calculate the output
expected for a series of steps such as a channel opening and shutting. The process is illustrated .
in Fig. 9 for single-channel openings of two different durations, f,. The response to the |
opening transition is simply the step response function, which has already been stored. The
response to the shutting transition is exactly the same but inverted and displaced to the right
by ¢, seconds. If these two curves are added, we obtain the expected output to a rectangular
input, as illustrated for two examples in Figs. 9C and F.

This calculated output can be used to fit actual data as follows. The data are displayed
on the screen, on which is superimposed the calculated response (output) to a rectangular
input, which has been scaled by multiplying it by the amplitude of the opening. The amplitude
cannot be measured from the event itself if it is very brief, so the amplitude must then be
taken as the mean amplitude of all previous openings that have been fitted or as the amplitude
of the last opening fitted. The times of the two transitions are then adjusted until the calculated
output superimposes, as well as possible, on the data, as illustrated in Fig. 12. The adjustment
of the amplitudes and transition times can be done manually or by means of a least-squares
fit, as described below.
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Figure 9. Illustration of the method of calculation of the expected response of the system from the measured
response to a step input. The left-hand column illustrates a short (45-ps) pulse, and the right-hand column
a longer (450-ws) pulse. The dashed lines in A and D show (on different time scales) the experimentally
measured response to a step input, shown schematically as a continuous line, for a system (patch clamp,
tape recorder, and filter) for which the final filter (eight-pole Bessel) was set at 3 kHz (—3 dB). A: The
response to a unit step at time zero is shown. B shows the same signal but shifted 45 ws to the right and
inverted. The sum of the continuous lines in A and B gives the 45 ps unit pulse shown as a continuous line
in C. The sum of the dashed lines in A and B is shown as a dashed line in C and is the predicted response
of the apparatus to the 45-us pulse. It reaches about 41% of the maximum amplitude, which is very close
to the value of 39% expected for a Gaussian filter (see equation 8). D, E, and F show, except for the time
scale, the same as A, B, and C but for a 450-ps pulse, which achieves full amplitude.
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4.2.2. Theory

The formal justification of the procedure illustrated in Fig. 9 is as follows. The step
input at + = 0 is denoted u(r), which is zero for r < 0 and unity for ¢ > 0. A rectangular
pulse input extending from time O to time w is therefore

s() = u(t) — ut — w) (25)

The output expected for this input can then be found (as long as the system behaves linearly)
by convolving this input with the impulse response function of the system A(?); i.e.,

y() = ft [u@®) — u(t — w)]h(t — T)dT (26)

0

The system’s response to a unit step input u(?) is defined to be the system step response
H(z), which is the integral of A. Expressed in terms of H(), equation 26 simplifies to

W) = HEy— 8 —w) (27)

This is the calculation illustrated in Fig. 9. When the form of the input is inferred by
superimposing this calculated response on the experimental data, we are performing a sort
of graphic deconvolution.

This process can be extended to any number of transitions. In Fig. 10, some of the
outputs that can result from four transitions (two rectangular pulses) are illustrated. If the
transitions are well separated, the output, of course, simply looks like two somewhat rounded
rectangular pulses (Fig. 10A). If the middle two transitions are close together, we have an
opening with an incompletely resolved short gap (Fig. 10B). If the first three transitions are
close together, the response looks like a single opening with an erratic rising phase (Fig.
10C). And if all four transitions are close together, the response looks like a (rather noisy)
opening of less than full amplitude (Fig. 10D). If the channel were initially open in Fig.
10D, the response might be mistaken for an incomplete shutting to a conductance sublevel.

Before we go on to discuss the practical aspects of time course fitting, it is appropriate

first to discuss the problems that may arise in attempting to fit both duration and ampli-
tude simultaneously.

4.2.3. Simultaneous Determination of Amplitude and Duration

In theory, both the times and amplitudes of transitions in the theoretical trace could be
varied to provide a best fit to the time course of the experimental record. The practical
difficulty is that for pulse widths, w, shorter than the recording system risetime, 7;, the shape
of the observed current pulse is relatively insensitive to w. In Fig. 11A, we compare the time
courses of Gaussian-filtered pulses that have widths that differ by a factor of two but equal
areas. Even in the absence of noise, the time courses are nearly indistinguishable for w less
than about 7,/2.

To obtain a quantitative estimate of the errors to be expected in fitting the amplitude
and duration simultaneously, the performance of a least-squares fitting routine for fitting the
time course was evaluated. Figure 11B shows the behavior of the expected standard deviations,
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Figure 10. Examples of the calculated out
of an ion channel (upper traces). The step
inFig. 9. The curves are generated by a com
driven by the digital-to-analogue output of
A fully resolved opening (435 us) and gaj
Two long openings (485 and 937 Ls) sep:

put of the apparatus (lower traces) in response to two openings
response function used to generate the response is that specified
puter subroutine and were photographed on a monitor oscilloscope
the computer. Openings are shown as downward deflections. A:
p (972 ps) followed by a partially resolved opening (67 us). B:
arated by a partially resolved gap (45.5 ws). C: A brief opening
(60.7 ws) and gap (53.1 ws) followed by a long opening (1113 ps); this gives the appearance of a single
opening with an erratic opening transition. D: Two short openings (both 58.2 ps) separated by a short gap
(48.1 ws); this generates the appearance of a single opening that is only 55% of the real amplitude but
appears to have a more-or-less flat top, so it could easily be mistaken for a fully resolved subconductance level.

04 and o,,, for the estimates of the amplitude and width, respectively, that are found using
a linearized fitting process. Because the errors are proportional to the background noise
standard deviation, o, the values plotted in the figure are normalized with respect to o,;
Le., they are o,4/0, and o, Ao/o,T;. The behavior of the errors as a function of the original
pulse width, w, depends on the form of the background noise spectrum; the two extreme
cases of a flat spectrum and an f? spectrum are shown.

For long pulses, the error in the estimation of w is constant and is approximately 1.8
and 1.3 times T,0,/A, for the flat and f? spectra, respectively. In a typical situation, Aplo,
= 10, which yields o,, values in the range of 10-20% of T.. The fact that g, 1S constant at
large w can be understood from the way the duration of a long pulse is measured, as the
interval between two transitions. If the transitions are far enough apart, the errors caused by
noise in the determination of the transition times will be uncorrelated and independent of
the time between them. On the other hand, amplitude estimates become more precise for
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longer pulses, with the error decreasing as w12 in the case of a flat background spectrum
and large w.

As the pulse width becomes comparable to T, or shorter, the errors of estimates of both
amplitude and width increase sharply, becoming double their asymptotic values at about 08§
T. in the flat-spectrum case. This sharp rise does not occur if the amplitude is constrained
and the duration alone is fitted, as illustrated by the dotted curves in Fig. 11B. This rise
reflects the difficulty of simultaneous fitting. Because it occurs in the vicinity of T, it can
be seen that a small T;, i.e., the largest possible filter bandwidth, is best for simultaneous
fitting. Of course, in practice the filter bandwidth must be chosen low enough to avoid
false events.

If the duration alone is fitted, with the amplitude held fixed, the error in the duration
estimate depends only weakly on w and, in fact, decreases slightly as w becomes small, a
shown by the dotted curves in Fig. 11B. The absolute size of the error is much smaller, and
the criterion for choosing f. to minimize the error (which is essentially proportional to T;ay) ‘
is similar to that for event detection. ,

In conclusion, it is possible to obtain some amplitude information from events shorter
than the recording system risetime 7. In practice, this information is difficult to obtain
because it is based on fine details of the pulse shape, but it could conceivably be useful for
statistically testing hypotheses such as the existence of multiple channel populations. Much
more precise estimates for the duration of short channel events can be obtained by fixing
the amplitude in the fitting process. For longer events withw =2 T; the concurrent estimation ¢

of the amplitude has only a small effect on the error of the duration estimates. Estimating
the amplitude of these events would then be worthwhile provided that the size of the error
in the amplitude estimates (approximately equal in magnitude to o, at w = 2 T,) is acceptable.

4.2.4. Time-Course Fitting in Practice

Personal computers are now fast enough that it has become feasible to fit simultaneously
both the duration and amplitude of single-channel openings. With the program SCAN, which

is under development at University College London, the fit does not take any noticeable §

length of time for fitting up to four transitions and is still quite acceptable for fitting say ten
or more transitions when run on an 80486 or Pentium processor machine. The data trace is
scrolled across the screen until an event is detected, as described in Section 3.4.2. The trace
is then expanded, contracted, or shifted as necessary to get a suitable section of data for
fitting on the screen. The program then makes initial guesses for the positions of all the
transitions and amplitudes, performs a least-squares fit on the basis of these guesses, and
displays the fitted curve for acceptance, rejection, or modification by the operator. Three
examples of fits done in this way are shown in Fig. 12.

When the channel is shut at each end of the fitted region, as in Fig. 12A and B, fitting

n transitions involves estimation of 2n + 1 parameters (the time at which each transition

occurs, the amplitude following each transition, and the amplitude before the first transition).
The fit of the amplitude after the last transition is taken as a new estimate of the current
baseline position. The program “knows” that the channel is shut at this point, so the next
transition must be an opening; t
therefore be taken as a temporary baseline estimate, even if drift has occurred, thereby
allowing reasonable initial guesses to be made for the next fitting. In this way it is possible
to keep track of the baseline level. Other options in the program allow fits to be done with

he average of a section of trace before the next opening can

only one open level for all openings or to be done by specifying the amplitudes in advance
and fitting only the transition times (as was always done with earlier programs).
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with I mM Ca and no added Mg, 2 kHz, -3 dB, risetime 166 Ws; methods as in
Gibb and Colquhoun, 1991; data of A, J Gibb). The dashed line shows the baseline (shut) level. The record
was sampled at 50 kHz (though 20 kHz would have been sufficient and more usual). The transition times,
and amplitudes (for events that were longer than two risetimes), were fitted simultaneously by least squares.
Shut periods shorter than two risetimes had their amplitudes fixed to zero, Open periods shorter than two
risetimes had their amplitude constrained to be the same as that of the closest opening that was longer than
three risetimes. The fitted curve

A: Two contiguous fittings. The durations and
amplitudes in this fit, starting fro

m the first opening, are as follows: 0.707 ms, —4.48 PA; 0.491 ms, 0 PA;
0.248 ms, —5.22 PA; 0.321 ms, 0 PA; 5.33 ms, —5.24 PA;

0.894 ms, —3.69 PA; 0.802 ms, 0 PA; 3.08 ms,
=3.75 pA; 0.216 ms, 0 PA; 0.074 ms, —3.73 PA; 1.83 ms, 0 PA; 0.092 ms, —3.91 PA; 0.448 ms, 0 PA;
1.02 ms, —3.91 PA; 1.07 ms, —3.52 PA; 0.131 ms, 0 PA; 3.17 ms, —3.74 PA; 0.156 ms, 0 PA; 0.756 ms,

=4.04 pA; 0.511 ms, 0 PA; 1.39 ms, —3.80 PA; 0.865 ms, 0 PA; 2.47 ms, —3.75 PA; 1.92 ms, 0 pA; 1.59
ms, —=5.06 pA. Note that the transition from —3.91 PA to —3.52 PA (marked with arrow) is dubious, and
this would probably be removed later, at € resolution is imposed on the data (see text,
Section 5.2), when adjacent openings that differ in amplitude by less than some spe
concatenated into a single opening (with the average amplitude). B and C: Two more ex
is a very small transition (from —4.98 to —4.90 pA) sho
triggered by the wobble in the data at this poi

is the continuous line.

cified amount are

amples. In B there
ttly after the first opening transition; this was
nt but would certainly be removed before analysis (see A).

three risetimes, if such an opening is present in the
region of trace being fitted. Otherwise, the amplitude of short openings is fixed at the current
mean full amplitude (or some other specified value).
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exclude points that are in the region of transition from one level to another (see Section
5.3.2). This procedure means that these three sorts of histogram can be viewed at any timg
during the fitting process.

4.2.5. Advantages and Disadvantages of Time-Course Fitting

There are two major advantages in using the time-course-fitting method. The first is that
itis the only well-tested method for dealing with records that contain multiple conductances or
subconductance states. The second is that the resolution of measurements can be somewhat
greater than can be obtained with the threshold-crossing method.

It is quite likely that, during time-course fitting, some of the events fitted will not be
real openings or shuttings of the ion channel but merely random noise or small artifacts.
This is not really a disadvantage of the method (except insofar as it takes time), because
such events should be eliminated at a later stage, when a realistic resolution is imposed on
the idealized record (Section 5.2). In fact, it is actually an advantage, because it minimizes
the bias in amplitude estimates that result from the presence of brief events that may be
detectable but would not normally be fitted.

There will, from time to time, be events on the screen that are ambiguous. It may be
impossible to tell whether an event is a genuine channel opening at all, or whether it is some
form of interference. And even if the event is “obviously” an opening, it may be impossible
to be sure whether it is an opening to a subconductance level or whether it is two or more
brief full openings separated by short gap(s) (as illustrated in Figs. 8 and 10). Such events
will necessitate a subjective decision by the operator about the most likely interpretation of
the data. Magleby (1992) has criticized the method because of the “operator bias” that i
introduced into the analysis in this way. However, exactly the same sort of operator bias
will occur in any form of threshold-crossing analysis in which the operator inspects and
approves or disapproves what the program has done. As mentioned above, it is highly
desirable that the operator should know what the program has done. It is equally very
desirable that the operator should be aware that the data contain ambiguous events, even if
he/she is not sure what to do with them. The only case in which the argument about operator
bias seems to be valid is when data are analyzed automatically by the “total simulation’
method proposed by Magleby and Weiss (1990). In this case, it is necessary that a completely
automatic method of analysis be used because of the immense amount of computation that
is involved, and it is necessary that the simulated and experimental records be analyzed by
identical methods (including the ambiguous bits). In all other cases, there is little to be gained
by sweeping the ambiguities under the carpet.

The question of ambiguous events has been discussed at some length. However, it is
probably true, at least for channels that have a reasonably good signal-to-noise ratio, that
such events are sufficiently rare that the conclusions from the analysis are unlikely to be
much altered by the subjective decisions that must occasionally be made.

4.3. Event Characterization Using a Computer
4.3.1. Data Display

The single most important feature of a computer system for analyzing single-channel
data is a responsive and flexible means of displaying the digitized data. Before and during

Practical /

the quai
recordin
data. Vi
analysis
atic cha

An
DataSel
resoluti
allowin;
progran
data in
the trac
importa

Figure
of potas
The top
duration
the mid
is visibl
has appi
channel
were tr
An off-
Hz, 1 §
the disp



avid Colquhoun and F, J, Sigworth

Vel to another (see Sectiop
' Can be vieweq at any time

ing

ng met.hod. The first i that
1 multip]e conductanceg o
féments cap pe Somewhat

events fitted wijjj not be
Roise or sma]j artifacts,
S 1t takes time), because
'esolution jg Imposed o
e, because jt minimizeg
rief events thay may be

- ambiguoys, [ may be
1, Or whether jt jg Some
S, It may pe impossible
ether it is two Or more
§.and 10). Such events
Ilkely interpretation of
‘Operator bias” that i
S0rt of operator bias
Operator inspects ang
d above, jt is highly
€. It is Cqually very
2UOouS cvents, evep if
iment aboyt Operator
e “tota] simulatjop”
ary that 4 Completely
of Computation that
).rds be analyzed by
18 little to he gained

oth. However, j; is

l0-nojse ratio, that
are unlikely te be

f Single-channel
fore ang during

Practical Analysis of Records 511

the quantitative event characterization, it is essential that the user be able to examine the
recording, millisecond by millisecond if necessary, to be able to judge the quality of the
data. Visual inspection can show features that could be missed or misinterpreted by automatic
analysis programs, such as the presence of artifacts or superimposed channel events, system-
atic changes or “rundown” of the channel activity, and subconductance levels.

An example of a suitable display for long, continuous data recordings is that of the
DataSelector program shown in Fig. 13. Here the data are shown at three different time
resolutions, providing an overview of the entire multimegabyte file (top trace) while also
allowing inspection of a selected region at high resolution. One important feature of the
program is the ability of the user to select the position and degree of magnification of the
data in each trace. As the box in a trace is dragged or resized using the computer’s mouse,
the trace below it is redrawn to correspond to the region enclosed by the box. Another
important feature of the program is the rapid, flicker-free redrawing of the traces as they are

= Flle Oisploy Search (G

\&

T

4 d
1pA
P 20ms
6 0.10n8 4«80 6.25E-1S S.00€+00 “1T1-3628 .00Sk"—not found—
Enter files to display (-1 to exil)
Flia to disptay (O1 : 2

File to display (31 :

Flle to display 4) :

File to disploy (SI : -1 Inalid.

Looding IT1-3626 2k 670131 points. . .done.
Loading IT1-3626 1k 620151 points. .. done

Loading IT1-3628 .25k... whole file...done.
Y-ain value (~1.00000E+041 : -1150

Y-wox valua ( 1.00000E+04]1 : -1850

Figure 13. Perusal of a recording using the DATA SELECTOR program. Data are shown from a 4-min recording
of potassium-channel currents that includes a slow baseline drift and several spikes from electrical interference.
The top trace shows an overview of the entire recording; the region indicated by the box, about 10 s in
duration, is expanded as the middle trace. The mouse cursor is positioned to change the size of the box in

An off-line Gaussian filtering program, in turn, created synchronized, filtered files with bandwidths of 250

Hz, 1 kHz, and 2kHz. The DATA SELECTOR program reads data from these files as needed to draw and update
the display.
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rescaled. This is accomplished by first drawing each trace on an off-screen pixel map ai
then copying it to the screen buffer. The copyi

to the user. ‘

For this sort of display, it is important to have fast graphics. The trace-drawing routing
used in DataSelector was written in assembly language and is optimized for rapidly graphin
arrays of thousands of data points.* It draws directly to the offscreen pixel-map memog
rather than making calls to the operating system’s graphics routines. Similarly, high-sped
displays on IBM-compatible personal computers typically use graphics subroutines that writ
directly to the video memory rather than using the BIOS interrupts.

For the characterization of events the computer display must also be able to superimpos
CUTSOrs or reconstructed transitions over the raw data and allow the user to make manug
adjustments and corrections. For the 50% threshold analysis, it is sufficient to use f

4.3.2. Programs

It is still the case, 18 years after the invention of the patch clamp, that no comme
program is available that can perform all of the methods that are described in this chap|
Perhaps the most serious thing that is lacking is a satisfactory program fo

the job you require.
Many programs offer the choice of full
of how th

baseline stability, conductance sublevels, ambiguous events, and artifacts are all wi n
range that the program can cope with safely (e.g., see Magleby, 1992). If done thoroy
such a check may take almost as long as checking individual fits unless your recordi
of exceptionally high quality. The speed of automatic methods obviously makes the n

*The drawing algorithm is based on the observation that the display of a trace can be generated by a
vertical lines, one for each horizontal pixel position in the display. Often there are many more dal
to be graphed, say 10* or 10°, than the number of horizontal pixel positions, which might be only ¢
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attractive, but the computer maxim “
channel analysis, and it may require s
“garbage out.”

The earlier forms of time-course fi
threshold-crossing analysis, even when the fits produced by the latter were inspected. How-

garbage in, garbage out” certainly applies to single-
ome investment of time to ensure that you do not get

are usually satisfactory, so few manual adjustments are needed. As personal computers get
faster, so the time taken for least-squares fitting of many parameters will be reduced still
further, and the difference between the various methods will become negligible. The speed
of the analysis will depend only on the amount of visual checking that is done.

4.3.3. Storing the Idealized Record

, which performs threshold-crossing
he following information as an entry for each transition:
1. AbsTime, the time of the transition (LONGREAL in seconds)

2. EventType, the kind of event. This is an enumerated type, having values corresponding

to (1) normal transition, (2) interval of data to be ignored, (3) transition between
conductance levels, etc.

3. Level, the number of channels open after the transition (INTEGER)
4. PreAmp, the current amplitude before the transition (REAL, in amperes)
5

- NumPre, the number of data samples used to estimate the preamplitude (zero if the
amplitude was not determined automatically; INTEGER)

6. PostAmp, the current amplitude after the transition (REAL, in amperes)

7. NumPost, the number of data samples used to estimate the postamplitude (INTEGER)
The use of a LONGREAL
tion (better than 1 nanosec

analysis, stores a record containing t

shorter than the raw data files they describe.

The NumPre, NumPost, and EventType indicators allow the subsequent analyses to be
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S. The Display of Distributions

Analysis of the experimental results by one of the methods described in Section 4
produces an idealized record. This takes the form of an event list that contains the duration
of each event and the amplitude of the single-channel current following each transition (or,
for some sorts of analysis, only a record of whether the channel was open or shut). We now

wish to move on to discuss the ways in which the information in this event list can be viewed
and fitted with appropriate curves.

5.1. Histograms and Probability Density Functions

S.1.1. Stability Plots

se, for example, of
measured open times, the approach is to construct a moving average of open times and to

plot this average against time or, more commonly, against the interval number (e.g., the
number of the interval at the center of the averaged values). A common procedure is to
average 50 consecutive open times and then increment the starting point by 25 (i.e., average
open times 1 to 50, 26 to 75, 51 to 100, etc). The overlap between samples smoothes the
graph (and so also blurs detail). An exactly similar procedure can be followed for shut times
and for open probabilities. In the case of open probabilities, a value for P

open 18 calculated
for each set of 50 (or whatever number is chosen) open and shut times as total open time

“unusable” during

next valid opening.

Figure 14 shows examples of stability plots for amplitudes (in A, C, and E) and for
open times, shut times, and Popen (in B, D, and F). Graphs for A—
with recombinant NMDA receptors. The two amplitude levels a
recording for the experiment shown in Fig. 14A and B, though th
in B for shut times to decrease and for P, to increase correspondin
In contrast, Fig. 14C shows a different experiment in which the
show a sudden decrease after about the 900th interval. Amplitude histograms from such an
experiment would show three or four levels but would of course give no hint that there had
been a sudden change in the middle of the experiment. The corresponding stability plots for
open times, shut times, and Pipens shown in Fig. 14D, also show instability; shut times
decrease, and Piith correspondingly increases, at about the same point in the experiment
where the amplitude changes. The open times, however, remain much the same throughout
in D, as is also the case for B and F. Figure 14E and F show similar plots from an experiment
on adult frog endplate nicotinic receptors, in which all the measured quantities remain stable
throughout the recording; data from this experiment were used to construct the shut-time
histogram shown in Fig. 15.

Plots of this sort can be used to mark (e.g., by superimposing cursors on the plot)
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Figure 14. Examples of stability plots. Data for A, B, C, and D are from NMDA-type glutamate receptors
expressed in oocytes (unppublished data of P. Stern, P. Béhé, R. Schoepfer, and D. Colquhoun; methods as
in Stern et al., 1992). Oocytes were transfected with NR1 + NR2C subunits in A and B (4002 resolved
intervals) and with NR1 + NR2A + NR2C subunits in C and D (2810 resolved intervals). A and C show
amplitude stability plots; the horizontal lines in A mark the amplitudes that were fitted to the amplitude
histogram, —1.01 pA and —1.75 pA. B and D show stability plots for shut time (top), open time (middle),
and P, (bottom). Average of 50 values plotted, with increment of 25 intervals. Horizontal lines show the
average values for the whole run. E and F show the same two types of stability plot for the same frog
endplate nicotinic receptor data that was used to construct the histograms in Fig. 15 (amplitudes are plotted
as positive numbers in E).

sections of the data that are to be omitted from the analysis. For example, this approach has
been used to inspect, separately, the channel properties when the channel is in a high-Py.,
period and when it is behaving normally.

It should be noted that when the average Py, value (the value for the whole of the
data) is plotted on the stability plot, it can sometimes appear to be in the wrong position.
This may happen when the record contains a very long shut period that reduces the overall
P, but affects only one point on the stability plot (which is normally constructed with
interval number on the abscissa rather than time).
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5.1.2. Probability Density Functions

Most of the data with which we have to deal consist of continuous variables (channel
amplitudes, durations of open periods, etc.) rather than discontinuous or integer variables.
One exception is the distribution of the number of openings per burst, which is discussed
below; this number can, of course, take only integer values. The probability distribution of
a continuous variable may be specified as a probability density function, which is a function
specified such that the area under the curve represents probability (or frequency). Most
commonly, the pdf is an exponential or sum of exponentials (see Chapter 18, this volume).
For example, if a time interval has a simple exponential with mean T = 1/, its pdf is

f() = he™™ t>0 (28)

which has dimensions of s~!. Alternatively, the exponential density can be written in terms
of the time constant, 7, rather than the rate constant, \. This is preferable for two reasons.
First, it is easier to think in terms of time rather that rate or frequency. Second, use of time
constants prevents confusion between observed rate constants (denoted A) and the rate
constants for transitions between states in the underlying mechanism (see Chapter 18, this
volume). Thus, equation 28 will be written in the form

f@) = a7le¥m (29)

The area under this curve, as for any pdf, is unity. When there is more than one exponential
component, the distribution is referred to as a mixture of exponential distributions (or a “sum
of exponentials,” but the former term is preferred since the total area must be 1). If g
represents the area of the ith component, and T, is its mean, then

f@® = arle™ ™ + gyrylem + ...
= Saa7 et i
The areas add up to unity; i.e.,
ata+ =1
or
Sa; =1 31)

and they are proportional, roughly speaking, to number of events in each component. The
overall mean duration is given by:

mean duration = Sg;T, (32)

In practice, the data consist of an idealized record of time intervals constructed by one
of the methods described above (see Section 4). This record may be revised to ensure
consistent time resolution (see Section 5.2). The open times, shut times, and other quantities
of interest can be obtained from it. For example, the data might consist of a series of n open
times ¢, b, . .., t,. They might be, for example, 1.41, 5.82, 3.91, 10.9 ..., 6.43 ms. The
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probability density function is, roughly speaking, proportional to the probability that the
observation falls within an infinitesimal interval (from ¢ to ¢t + dt; see Chapter 18, this
volume). But we have not got an infinite data set, so the pdf of the data looks like a series
of delta functions (one at each measured value). This sort of display is not very helpful as
it stands, so we smooth it by using a finite binwidth. In other words, we display a histogram
as an approximation to the pdf by counting the number of observations that fall in intervals
(bins) of specified width. In the example above, we might use 1 ms as the bin width and
count the number of observations between 0 and 1 ms, 1 and 2 ms, and so on. These can
then be plotted on a histogram as illustrated, for example, in Fig. 15. The histogram is
discontinuous, and its ordinate is a dimensionless number. The pdf it approximates is, on
the other hand, a continuous variable with dimensions of s™!, so care is needed when both
histogram and pdf are plotted on the same graph (see Section 5.1.5).

Figure 15A shows a histogram of shut times, with a time scale running from 0 to 1500
ms, with a bin width of 80 ms. This range includes virtually all the shut times that were
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Figure 15. Example of a distribution of shut times. In A, B, and C, the histogram of shut times is shown
(on three different time scales), and in D the distribution of log(shut times) for the same data is shown. The
data are from nicotinic channels of frog endplate (suberyldicholine 100 nM, —130 mV). Resolutions of 80
ws for open times and 60 ps for shut times were imposed as described in the text; this resulted in 1348 shut
times, which were used to construct each of the histograms. The dashed bins (which are off scale in B and
C) represent the number of observations above the upper limit. The data were fitted by the method of
maximum likelihood with either two exponentials (dashed curve) or three exponentials (continuous curve).
The same fits were superimposed on all of the histograms. The estimated parameters are shown in D. (D.
Colquhoun and B. Sakmann, unpublished data.)
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observed. The first bin actually starts at r = 60
of 60 ws was imposed on the data (see Sectio

display of the same data in Fig. 15B, in which all

shut times up to 8 ms are shown (with a
bin width of 0.6 ms), where an exponential with a

mean of about 1 ms is visible. The data

Clearly, the conventional histogram display is inconvenient for intervals that cover such
a wide range of values. The logarithmic display described next is preferable.

5.1.3. Logarithmic Display of Time Intervals

oduce a curve with no peak, and would have
bins of variable width on the log scale). Sine and Sigworth suggested, in addition, the use

of a square-root transformation of the ordinate in order to keep the errors approximately
constant throughout the plot.

The distribution has the following form. If the length of an interval is denoted f, and
In denotes the natural (base e) logarithm, we define

x = In(?)

then we can find the pdf of x, f,

(%), as follows. First we note that if a ¢ is less than some
specified value #,, then it will als

0 be true that In(?) is less than In(z,). Thus,
Prob[r < ¢] = Prob[In(s) < In(¢))] = P (33)

In other words, the cumulative distribution
out in Chapter 18 (this volume, Section 3.1
cumulative distribution. Thus, denoting the

s for ¢ and In() are the same. Now it is pointed
) that the pdf can be found by differentiating the
probability defined in equation 33 as P,
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ply the original distribution of time intervals,
f(®); it shows, oddly, that the distribution of x = In(#) can be e€xpressed most simply not in

terms of x but in terms of . When f(1) is multiexponential, as defined in equation 30, and
We express fi(x) in terms of x by substituting ¢ = e*, we obtain the result in equation 34,
This function is not €xponential in shape but s (for a single €Xponential component) a

i which, very conveniently, occurs at ¢ = 1.
A, B, and C are shown in Fig 15D as the
urves are also shown (the fitting uses the

5.1.4. The Cumulative Distribution

The area under the pdf up to any particular value, 1, of

the time interval is the cumulative
form of the distribution, or distribution Junction, namely

t
F(5) = P(time interval < 1) = f f@dt =1 — g-ur
0

I = F(t) = P(interval > 7) = f ) foydt = =i

or, for more than one component, the sum of such integrals:

I = F(#) = P(interval > 1) = Zqge ' (36)

Occasionally, the data histogram is plotted in this

function (36) superimposed on it. This presentation will always look smoother than the usual
sort of histogram (the number of values in the early bins is large), but it should never be
used, because the impression of precision that this display gives is entirely spurious. Tt results
from the fact that each bin contains al] the observations in all earlier bins, so adjacent bins

contain nearly the same data. In other words, successive points on the graph are not indepen-

dent but are strongly correlated, and this makes the results highly unsuitable for curve fitting.
To make matters worse, i i

cumulative form with the fitted

data; they are highly misleading. In any case, it i
uses the same form of presentation.
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S.1.5. Superimposition of a Probability Density Function on the Histogram
It is helpful to regard the ordinate

as a “frequency” or “number per unit ti
then becomes directly analogous to

of the histogram not as a dimensionless number but
me” with dimensions of reciprocal time; the ordinate
probability density. Rather than regarding the height of
observations between, say, 4 and 6 ms,
number. The ordinate, the height of the

example of a simple exponential distribution of open time durations with
and rate constant A = 1/r = 100 s~ The pdf is thus f(z) = 100100
that there are N = 494 observations altogether (including those that mi
be seen in practice—see Section 6.1).

The histogram is plotted with a bin width of 2 ms, so the ordinate is number per 2-mgs
bin. The pdf has, of course, unit area. In order to obtain a curve that can be superimposed
on the histogram, we must multiply the pdf by the total number of events and convert its
units from s~! to (2 ms)~! by dividing by 500. The continuous curve is therefore g(r) =
(494/500)£(r) = 98.8¢ 100 (2 ms)~". The number of observations that are expected between
4 and 6 ms is the area under the continuous curve; i.e., from equation 35 or 36, it is
494(g ™" ~ £~y = 60.6. This is almost the same as the ordinate of the continuous curve
at the midpoint (¢ = 5 ms) of the bin: g(r) = 98.9¢ 5" = 59.9 (per 2 ms). This approximation
will always be good as long as the bin width is much less than 7. Thus, if we actually
observed the expected number of observations (60.6) between 4 and 6 ms, the histogram
bin would fit the continuous curve closely, as shown in Fig. 16.

Generalizing this argument, the function, g(7), to be plotted on the histogram is

s™!. It is supposed
ght be too short to

8(1) = Nd f(r) (37

where f(7) is the probability density function, with units s
as described in Section 6), d is the bin width (with units of
total number of events as calculated by equations 87, 91,

! (estimated by fitting the data
seconds), and N is the estimated
or 101, as appropriate. Note that

5|

between 4 and 6 ms and has an area equal
to that under the continuous curve between
4 and 6 ms. The ordinate of the continuous

0 4 5 6 curve at the midpoint of the bin (t = 5ms)
length of open fime (ms) i 59.9 (2 ms)~". See text for further details

E 599»99- ————— T
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3 ! |
N |: Figure 16. Schematic illustration of the |
§ ! superimposition of a continuous curve ’
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equation 37 is dimensionless, so it is really the pdf that is scaled to the data rather than the
other way around.

In the case where the log(interval length) is displayed, as described in section 5.1.3,
the probability density function, f(z), would usually be fitted, as described in Section 6, by
the method of maximum likelihood applied to the original observations (not to their loga-
rithms). The distribution of log,o(¢) is, from equation 34, 2.30259:f(f), where the factor
2.30259 [= In(10)] converts from natural logarithm units to common logarithm units. The
curve, g(f), to be plotted on the logarithmic histogram is thus

g(t) = Nd' 2.30259 1£(z) (38)

where d’ denotes the bin width in log,, units.

5.1.6. Variable Bin Width

The approach discussed above makes it immediately clear how one should construct a
histogram with unequal bin widths. It is sometimes useful to use a narrower bin width for
shorter intervals than for long ones (there are usually more short intervals, and the pdf
changes most rapidly in this region). Thus, if the ordinate is specified as, for example,
frequency per 2 ms, then the height of the ordinate for a bin width of 2 ms (say the bin for
6 to 8 ms) is the actual number of observations found to fall within this bin. However, if
the shorter intervals are plotted with a bin width of 1 ms rather than 2 ms, then the height
of the ordinate for the the 1-ms-wide bins should be twice the number actually observed to
fall into the bin. Thus, the area still represents the actual number observed. The plotted
function is still as given in equation 37 above, but d is now interpreted as the base width
of the bins, i.e., 2 ms in this example, because the ordinate is the frequency per 2 ms bin.

5.1.7. Measurement of P,

One often wishes to measure the probability that a channel is open from a single-channel
record. This quantity is usually denoted P, and is sometimes called the “open probability.”
It is undesirable to refer to P, as the probability of opening, because this sounds like a
rate constant (probability of opening in a short time interval; see Chapter 18, this volume),
which is not what is intended.

Measurements of P, are useful as an empirical index of the activity in a record,
though the overall P, for a whole record will often be so distorted by long sojourns in
desensitized or inactivated states as to be uninterpretable. More fundamentally, if it is possible
to identify the parts of the record when channels are desensitized, then measurements of
Popen 01 the remaining sections provide the best means of constructing equilibrium concentra-
tion-response curves (e.g., Colquhoun and Ogden, 1988). Such Pgpen curves have the advan-
tages over other methods that (1) they are corrected for desensitization, (2) they measure
response on an absolute scale (the maximum possible response is known in advance to be
1), and (3) they allow direct inspection of the channels that underlie the response so there can
be little doubt about their identity and homogeneity (see Section 5.9 for tests of homogeneity).

In a record that is in the steady state, Py, is simply the average fraction of time spent
in the open state. An absolute value for P, can, however, be measured only from a record
that contains only one individual channel (or from a section of a record, such as a burst or
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cluster, where only one channel is active; see Sections 5.6 an

d 5.9). However, for the purposes
of assessment of stability (Section 5.1.1), this is not really important.

When all of the open and shut times have been measured, Py, can be calculated as
total open time divided by total length of the record. For records where there is essentially

only one open level, this is the same thing as the average current level throughout the record,

divided by the open-channel current level. In this case, the best method to measure Popen s
to integrate the record (with an analogue integrator circuit or digitally). This is a good method
in principle because the record is filtered, and linear filters do not affect the area of the
response, only its shape, so integration should be unaffected by the imperfect resolution of
open and shut times. Use of digital integration is equivalent to the use of point-amplitude
histograms to measure Popen as described in Section 5.3.2. It is important to notice, however,
that integration will be satisfactory only as long as adequate allowance can be made for the
drift in the baseline (shut) level that occurs in most real records.

When the system is not in a steady state, Popen Will be a function of time and can no
longer be defined as the average fraction of time spent in the open state. This is the case,
for example, following a voltage or concentration Jump or during a synaptic current. In such

cases, Popen() must be measured by repeating the jump many times and measuring the fraction
of occasions when the channel is open at time .

5.2. Missed Events: Imposition of a Consistent Time Resolution

Unless the mean length of an opening is very long compared with the minimum resolvable
duration, it is inevitable that some short openings will remain undetected. Similarly,
short shuttings will also be missed. Methods for making appropriate allowances or corrections
for such missed events are considered briefly in Section 6.11 and in rather more detail in
Chapter 18 (this volume). In this section we discuss only the aspects of the problem that
require action to be taken before histograms are constructed.

Some

5.2.1. Definition of Resolution

When the single-channel record is scanned to fit the time of each opening and shutting,
as discussed in Sections 3 and 4, the usual procedure would be to fit every detectable opening
and gap (shut time). The length of opening (or gap) considered “detectable” will depend on
the sort of detection method used. For the threshold-crossing analysis described in Section
4.1, the minimum length is set by T}, although observed durations up to about twice this
value are biased and need to be corrected (e.g., with equation 21) before insertion into a
histogram. With time-course fitting, the minimum length is not clearly defined and will
certainly depend on the details of the method that is used, on who the operator is, and, quite
possibly, on how tired he or she is. This will not matter too much as long as care is taken
to fit everything that might possibly be an opening or shutting, so that when a realistic
resolution is subsequently imposed (Section 5.2.3), it can be said with certainty that events
longer than this chosen resolution will not have been omitted during the fitting process.

5.2.2. Effects of Missed Events

Consider, for example, the distribution of the open time when there is a substantial
proportion of undetected short gaps; openings will appear to be longer than they actually
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are, because two (or more) openings separated by an undetected gap will be counted as a
single opening (the measured open times are, therefore, more properly referred to as apparent
open times).

When the histogram of shut or of open times is plotted, the frequency will tend to fall
ch some or all events are too short to be detected.
Thus, the distribution may appear to have a peak. One way to deal with this is to look at
the histogram and decide on a duration above which it is thought that all openings will be
detected and accurately measured; only observations that are longer than this minimum time
are used for the fitting process. There is, of course, a large arbitrary element in this decision
(and it is also always possible that the open time distribution really does go through a

i Nevertheless, if the value chosen is on the safe
ory. But it is actually fundamentally inconsistent,
effect of the open-time resolution on the shut-

side, this method may seem to be satisfact
as becomes clear when we consider the
time distribution.

One way in which inconsistency arises becomes obvious when we consider fitting of
shut times. If we look at the histogram and see that it has a peak near 100 ws but falls off
for shorter shut times, we may decide, quite reasonably, that it is safe to fit (see Section 6)
all shut times longer than, say, 140 ws. However, the shut times shorter than 140 us are still
present in the data, and even though they have Just been deemed to be too short to be reliable,

resolvable duration.

A third reason why it is important to know about the resolution is encountered when,
for example, measurements of open times are made at different membrane potentials. The
resolution for, say, brief shuttings, will be worse when the single-channel currents are smaller
(potentials closer to the reversal potential), so more of them will be missed. The apparent

us have been detected.
For all of these reasons, it is important that the resolution (the shortest event fitted) be
stated in published work; without knowing the resolution, it is impossible for other authors

to compare their results for quantities as mean “apparent open time” (though this rarely stops
them from trying).

5.2.3. Imposition of Resolution

One way to avoid the inconsistencies just described is to impose a resolution on the
data retrospectively (Colquhoun and Sakmann, 1985). In the analysis of the original experi-
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mental record, every event is fitted even if it is so short that its reality is dubious. While
this is done, a judgment is made as to the shortest duration (fres say) that can be trusted (the
value of 7., may not be the same for open times and for shut times). Again, this is quite
subjective; a value on the safe side should be chosen. The most important criterion for the
choice of #,; is that it should be chosen so that it ensures a sufficiently low false-event rate,
e.g., below 1078 s! (see Section 3.3).

When the analysis is completed, and the idealized record is stored (see Section 4), the
chosen value of #. can be specified and the idealized record revised as follows:

1. All open times that are shorter than Ires must be removed. Shut times that are separated
by openings shorter than t,. are treated as single shut periods. The lengths of all
such shut times are concatenated (together with the lengths of intervening short
openings) and inserted in the revised data record as single shut times.

. Similarly, all shut times that are shorter than tes must be removed. If the two openings
that are separated by the short gap have both got the same amplitude, then the two |
open times are concatenated (together with the intervening shut time) and inserted
into the revised record as a single opening. If the two openings have different
amplitudes, they are inserted into the revised record as two openings with a direct
transition from the first open level to the second. This procedure entails deciding
exactly what “the same amplitude” means. Some criterion must be specified, which
will depend on what amplitude difference is deemed large enough to be detectable;

for example, amplitudes that are separated by less than 10% of the full amplitude
might be deemed “the same.”

In this way a new idealized record, with consistent time resolution throughout, is
produced, and it is this that is used for subsequent construction of histograms and fitting,
The new record cannot, of course, contain any openings (or gaps) shorter than f,, so the
histograms start at this point. As long as the original idealized record is kept, it is easy to
repeat the fitting with a different resolution if necessary.

It may be noticed that, for example, imposition of a 50-ws resolution on a perfect record,
followed by imposition of 100-ps resolution, will not necessarily give exactly the same result
as imposition of 100-us resolution directly on the perfect record. To the extent that the data
we start with are never perfectly resolved, this approach does not give precisely the required
results, but it is, nevertheless, the best that can be done.

5.2.4. Resolution, Sublevels, and Fit Range

It must be remembered that events (openings or shuttings) may be detected with certainty
in the single-channel record even when their duration is shorter than the risetime (7}) of the
recording system. However, their duration must be at least 2T, before their amplitude can
be measured accurately (see Section 4). If, for example, it is desired to construct a distribution
of the apparent times but to include in the distribution only those open times that are
sufficiently long for their amplitudes to be known, then only openings longer than 2T, or
2.5T, can be used. However, this does nor mean that the resolution of 27} should be imposed
on the data. If this resolution were imposed on the shut times, many brief shuttings, which
are nevertheless long enough to be detected with certainty, would be excluded, thus causing
the apparent open times to be longer and causing unnecessary error in the estimation of the
open time. The resolution that is imposed should depend on what can be detected reliably
(i.e., distinguished from random noise), but, in the case just described, the range of values
that are used for fitting should exclude values shorter than 2T.. When conditional distributions
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are used for maximum-likelihood fitting, as dest:ribed below,
only those observations that lje within any specified range.

» and it may be desirable to impose different resolutions
and/or different filtering for different sorts of analysis.

For example, Howe et af (1991) descri

Aso = (Ao — 2s30) _ erf(0.886w/T,)

measurements are often a useful way
subunit compositions or with mutations.
It has been shown in Section 4.

2.3 that the amplitude of a channel opening can be
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urements should, therefore, be included in the amplitude
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Y, still many analysis programs in use that cannot do this.
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5.3.1. How Variable Are Single-Channel Amplitudes?
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data) but very large for some neuronal nicotinic receptors (e.g., Mathie et al, 1991). It is
likely that the phenomenon is intrinsic to the Teceptor protein; it appears in recombinant
receptors and can be strongly influenced by small mutations. It seems likely that it can be
regarded as resulting from fluctuations in channel structure that produce small changes in
conductance or from entry into subconductance states that

One, probably quite common, reason for this is heterogeneity of the chann.
patch. In addition, though, it has become apparent that most types of ion channel have more
than one conductance level. For some types these conductance sublevels are rare, but for
others they are quite common. For example, the NMDA-type glutamate receptors all show
this phenomenon clearly, as illustrated in Figs. 12 and 18. These channels have a 50-pS main
level and a briefer 40-pS sublevel. It is not known whether such sublevels have any functional

importance (though it seems unlikely), but they are certainly useful for characterizing subunit
combinations (Stern et al., 1992).

In this case of NMDA receptors, the 50-pS and 40-pS peaks are quite clear and reproduc-
ible from experiment to experiment. There is, however, some question as to whether all “50-
pS” openings have exactly the same conductance (apart from random measurement errors).
There is some reason to suspect that they may not.

The various methods that are used for investigation of amplitudes are discussed next.

5.3.2. Point-Amplitude Histograms

, they would need to be about one risetime (T}) apart, but the
sample rate is normally a good deal higher than this. For statistical purposes, the “effective
number of points” could taken roughly as (sample duration)/T,.

The relative areas of the peaks in a point-am

data points, i.e., the length of time spent

(see also Section 5.1.7).
5.3.2a. The All-
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An example of an all-point histogram constructed in the latter way is shown in Fig.
18B and C. The peaks for the shut level and for the main (about 5-pA) open level are
obvious. However, there is a smear of points between the two (the data points that lie in the
transition regions between open and shut), and this partially obscures the small peak that
corresponds to the sublevel at about 4 pA; this is shown on an enlarged scale in Fig. 18C.
This smearing can be reduced as follows.

5.3.2b. Open-Point and Shut-Point Amplitude Histograms. Once transitions have
been located by one of the methods described in Section 4, then it becomes possible to exclude
data points that lie on the transitions from one conductance level to another. Knowledge of
the step-response function of the recording system allows the transition period to be defined
accurately. An example is shown in Fig. 12; only those data points that correspond to the
flat sections of the fitted curve (i.e., areas where no transitions were detected) are entered
into the histogram. The open-point amplitude histogram in Fig. 18E was constructed in this
way. Most of the smearing has gone, and the rather small 4-pA component is more clearly
defined than in the all-point histogram, as shown on an enlarged scale in Fig. 18F. And,
since the baseline adjacent to the openings is fitted along with the openings, there should
be no distortion caused by baseline drift.

The data points that correspond to shut periods are entered into a separate histogram,
as for the open points. A shut-point histogram is shown in Fig. 18D; it is usually found, as
in this case, that the shut-point histogram is fitted very well by a simple Gaussian curve
(i.e., the baseline noise is Gaussian). Open-point histograms, on the other hand, may not be

perfectly Gaussian because of such effects as undetected sublevel transitions or brief closures.

5.3.2¢c. Analysis of Flickery Block. The asymmetry in point-amplitude histograms
contains information about the nature of open-channel noise. This information can be interpre-
ted by use of either noise analysis (Sigworth, 1985, 1986; Ogden and Colquhoun, 1985;
Heinemann and Sigworth, 1990) or the amplitude histogram itself (Yellen, 1984; Heinemann
and Sigworth, 1991). These methods have been used, for example, to analyze rapid channel
block. High concentrations of a low-affinity channel-blocking agent produce so-called “flick-
ery noise.” Because of the high concentration, blockages are frequent, and openings are
short, and when blockages are so brief that they cannot be resolved easily in the single-
channel record, the open channel appears to be very noisy and to have a reduced amplitude
(see Chapter 18, this volume). Such flickery noise, when it happens to be in the right
frequency range, will produce a characteristically shaped smear in the all-point amplitude
histogram. If the blocking process is approximated as a two-state process, and we look at
the channel only while it is open or blocked, the mechanism can be written thus

open

blocked, (40)

where k_g is the dissociation rate constant for the blocker, k. is the association rate constant,
and xg is the blocker concentration, so kypxp is the transition rate from open to blocked
state (per unit open time).

One approach, which works best for events that are close to being resolvable (mean
duration comparable to the filter risetime), is based on the work of Fitzhugh (1983). This
theory showed that, for data that have been filtered through a simple RC filter with time
constant 1¢ = RC, the point-amplitude histogram should be described by the beta distribution.
The beta distribution was used to analyse fast block by Yellen (1984). If we denote as y the
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Figure 18. Examples of various sorts of amplitude histograms. Data were from a 10-s recording of NMDA
channels (same data as were illustrated in Fig. 12, where details are given). Resolution was set to 30 ws for
shuttings and 40 ps for openings, with concatenation of contiguous open levels that differed by less than
0.5 pA. A: Distribution of fitted amplitudes (of the type listed in legend of Fig. 12). Openings with a duration
of less than two risetimes (332 us) were excluded, which left 1049 amplitudes to be fitted (between 3.4 and
6.0 pA) with a mixture of two Gaussian distributions by maximum-likelihood method using the original
values. The components had means of 3.97 PA and 5.18 pA (the usual “40-pS” and “50-pS” components
seen in 1 mM Ca). The areas of the components were 11.8% and 88.2%, and the standard deviations were
0.36 pA and 0.17 pA, respectively. B and C: All-points amplitude histogram. This histogram shows the
amplitude of all data points within the fitted range (solid line in Fig. 12). This ensures freedom from the
effects of baseline drift but means that the relative area occupied by the shut points is arbitrary. The small
“40-pS” component is shown on an enlarged scale in C; this also makes more obvious the smearing that is
inevitable in an all-points histogram. D, E, and F: Separate open-point and shut-point histograms. The data
points that correspond to the regions where the fitted curve (see Fig. 12) was flat were collected separately
for regions where the channel was shut and where it was open. This eliminates the smeared points during
the transition from shut to open. The shut-point histogram in D is well fitted with a single Gaussian (standard
deviation 0.12 pA). The open-point histogram in E (and, on an enlarged scale, in F) shows much clearer
demarcation of the subconductance level than the all-points histogram. The fit with two Gaussian components

is not perfect, though the fitted means, 3.97 pA and 5.17 pA, are almost identical to those found from the
fitted amplitudes in A.
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5.3.3. Amplitude Histograms from Fitted Amplitudes

The other main method for display of single-channel amplitudes
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level is present, the relative areas of the

components will represent the relative Jrequencies
with which the levels occur (rather than

the relative time spent at each level).

both to amplitude histograms and to point-

different conductance levels, In fact, this may not be appropriate in either case (as discussed
in the preceding section for point-amplitude histograms). In the case of fitted amplitudes,
the distribution often shows a sharper peak and broader tails than is expected for a Gaussian,
as illustrated in Fig. 18A or, particularly clearly, in Fig. 17.

A distribution of this sort is to be expected because the amplitude values are obtained
from events of variable duration. The long events give the most precise estimates and cluster
around the true value to give the sharp peak. Short events give values with more scatter and
contribute to the tails. The distribution that would be expected is derived in Appendix 2.
This result, although preferable to Gaussian fits, has not yet been used much in practice,

probably because of the inconvenience involved in determining the background noise spec-
trum.

5.3.4. Mean Low-Variance Amplitude Histograms

Patlak (1988) suggested a method for
searching the digitized data record for sectj
“flat.” This is done by looking at sections of the data of fixed length (e.g., ten points). The
mean and standard deviation of each such section is calculated, and this process is repeated

after advancing the start of the data section by, for example, one point, until the end of the
data is reached. A data section is deemed to be

5.3.5. Subconductance Transition F requencies

When there is more than one open-channel conductance level, it may be of interest to
measure the frequency of transitions from one open level to another (and from each open
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Calculation of a Critical Amplitude

The amplitude components almost always overlap to some extent, so the classification
of openings (into 40-pS and 50-pS classes in the above example) will not be entirely
unambiguous. A critical amplitude, A, that minimizes the total number of amplitudes misclag-
sified was used by Howe et al. ( 1991). This number is proportional to

00 AC
Nmis = a j H(A)dA + a, J fo(A)dA
A, 0

= 05{aill - erf(u,/ /2)] + a,[1 — erf(u,/ /2)]} (42)

where f and £, are the Gaussian densities for the components with smaller and larger means,
respectively; a, and a, are proportional to the areas of these components; erf represents the
error function (see Appendix 3.3); and uy and u, are standard normal deviates; i.e., U =
(A = w)loyl, u, = (A = wy)/o,l, where K1, 0y and p,, o, are the means and standard
deviations of the components. This is at a minimum when

(a/a))e=4i12 = (ay/ ay)e 13"
Thus, A. may be found by solving the quadratic equation
A+ bA, + c =0
Wwhere the coefficients are defined as

a = (l/o3) — (/o)
b =2[(m/o}) = (wa/od),
¢ = (n3/03) — (uilod) — 2 In[(ay/0)/(a,/0)].

5.4. The Open and Shut Lifetime Distributions

There are only two directly observable types of distribution, the distribution of open
times and the distribution of shut times or gaps (i.e., of the durations of the intervals between
times are an obvious focus of attention, the shut times are

(see Chapter 18, this volume). Usually it is sensible to look
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at the shut-time distribution first, because it is this that dictates whether Or not it is feasible
to divide the openings into bursts,

It is preferable to refer to these distributions ag those of apparent open times and

openings will be too long, because Some actually consist of two Or more openings separated
by unresolved gaps. The shut times m y also be too long if they contain brief undetected
openings. However the word “apparent” will, for brevity, be dropped when the intention is
clear from the context,

Both distributions are usually fitted by mixtures of €xponentials, as in €quation 30. The
number of components in the open-time distribution should be equal to the number of open
states, and the number of components in the shut-time distribution should be equal to the
number of shut states. It is, of course, always possible that some of the components will be
too small or too fast to be detected, so the distributions can provide only a lower bound for
the numbers of states. Although these distributions are much more susceptible to errors
resulting from missed events than are distributions such ag that of the tota] open time per
burst (see below), it is remarkable that such errors should not much affect the numper of
components that are found, even when the time constants of the components are quite wrong
(see Section 12 of Chapter 18, this volume, Hawkes ef g/ 1992).

When the patch contains more than one channel, even when no multiple openings are
seen, there is no Way to be sure whether or not a particular opening originates from the same
channel as the preceding opening. This complicates the interpretation of the results (see

with multiple openings are unsuitable for looking at distributions of open times and shut
times because, if two channels are open, there is no way of telling, when one of them closes,
whether the one that closes is that which opened first or that which opened second.
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lifetimes of only the single openings before and after this group. The time between these
openings is not a valid shut time and must be marked as “unusable” in the idealized list of
shut times so that it can be excluded from the shut-time distribution. This procedure tends
to select against long openings, so the open times thus measured will be slightly too short
on average. An alternative procedure would be to take the length of the group of multiple
openings as a single open time, which would make the open times too long on average. If
there are enough multiple openings in the record that the bias could be substantial, then both
of these methods could be used; if the two methods give results that disagree by enough to
matter, then the number of multiple openings is too large to allow any simple analysis.

5.4.2. Distributions of Open Times Conditional on Amplitude

When there is more than one conductance level, it will usually be interesting to look
separately at open times for each level. For example, in the data shown in Fig. 18 there are
components with means of about 4 pA and 5 PA (i.e., conductances of about 40 pS and 50
PS). When amplitudes have been fitted to each opening (Section 5.3.3), it is simple to 20
through each opening and select the openings whose amplitudes lie in a specified range. The
histogram is then plotted using the durations of these openings. A method for calculating
an optimum critical amplitude that minimizes the number of misclassified amplitudes has
been given above, in Section 5.3.5.

It is, of course, necessary to exclude openings that are too short for their amplitudes to
be well defined. This is done by excluding from fitting (see Section 6.8.1) all values below
tmin = 2T, or 2.5T,, rather than by imposing a low resolution on the data, as described in
Section 5.2.4. Such analyses obviously can not be done with computer programs that do not
fit an amplitude to every opening but rely only on all-point amplitude histograms.

5.5. Burst Distributions

5.5.1 Definition of Bursts

In extreme cases, it will be obvious to a casual observer that openings are occurring in
groups, separated by long silent periods, rather than at random (exponentially distributed)
intervals. For example, Colquhoun and Sakmann (1985) observed groups of channel openings
separated by very short shut periods of average duration around 40 ps, even though the
agonist concentration was so low that these groups occurred, on average, at intervals of the
order of 500 ms (i.e., 10* times longer). Empirically speaking, openings will appear to be
grouped into bursts whenever the distribution of all shut times requires two (or more)
exponentials to fit it. If the time constants for the exponentials are very different, as in the
above example, the bursts will be very obvious, and it will usually be quite clear whether
any particular shut period should be classified as being within a burst or between bursts. If
the time constants differ by less than a factor of 100 or s0, the distinction becomes progres-
sively more ambiguous.

Burst characteristics can be rigorously defined in at least two different ways. These two
definitions will be, for practical purposes, equivalent in cases (such as the example given
above) in which the bursts are very obvious, but in general, they are different. The definitions
are as follows.

1. A burst of openings can be defined empirically as any series of openings separated
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by gaps that are all less than a specified length (t, say). In the example given above, we

might take ¢, = (0.4 ms; the probability that a gap with a mean duration of 50 s will be
ution. This procedure tends longer than 0.4 ms is about 0.3 per 1000, and the probability that a gap with a mean duration
d will be slightly too short of 500 ms is less than 0.4 ms is about 0.8 per 1000. Thus, there is little chance that a gap
th of the group of multiple would be wrongly classified in this case. A suitable value for Lerir must be chosen by inspection

Bes too long on average. If of the distribution of all shut periods before burst analysis is attempted.
lld be substantia], then beth .

that disagree by enough to particular (short-li
W any simple analysis.

de of states. This definition was adopted by Colquhoun and Hawkes (1982; see Chapters 18

and 20, this volume). Unlike the first definition, it depends on an interpretation of the
: : . observations in terms of mechanism. Conversely, though, it allows inferences about mecha-
ally be Interesting to look

own in Fig. 13 g1 nisrp from the observ.a.tions'; iF connects the theory with the observatiops.
. & cre are unhl.<e the first definition, it is not an algorithm .that can b.e automatical
E g 4(_) PS and 50 applied to a set of data regardless of subsequent Interpretation.

9.3.3), it is simple to go

LN a specified range. The
l;:;gl:j ;;;ﬁ?i;fjigf There is no unique criterion for the optimum way to divide an e
: bursts. At least three methods have been proposed.

for their amplitudes 1o Suppose that we wish to find a value of ¢

erie that lies between two components of the

16.8.1) all values P shut-time di.stributi'on. The slower component has, Say, an area a, and mean t,, and the faster

he data, as describe din component is specified by a; and ¢ (see equation 30). . . .

€r programs that do no . chkson et al. (1983) propos.ed thaF Lerit ghould be de.fmec_i as the. shut-time du-ratlon that

de histo minimizes the total number of misclassified intervals. This criterion involves solving for ¢,
A, the equation

On the other hand,
ly and empirically

Choice of the Critical Shut Time for Definition of Bursts

xperimental record into

gf e‘fcrit/"rf = & e‘fcril/'fs (45)
Tr Ts
E The criterion proposed by Magleby and Pallotta (1983) and by Clapham and Neher (1984)
inin . is to choose 1.5, so that equal numbers of short and long intervals are misclassified. This
> OC-CHIjrmg n involves solving for ¢, the equation
nentially distributed)
DS of channel] openings terit/ ;
Tlerit/ T — — o lerit/Ts
ius, even though the are @l = emnl, 2
g€, at intervals of th
: i © A third approach is to choose lerit SO that equal proportions of short and long intervals are
1gs will appear to be PP 7 . e g Inf
bires two (or more) misclassified (Colquhoun and Sakmann, 1985). In this case, f 1s given by solving
y different, as in the WY —
 quite clear whether erert/Th = ] — g erit/s (47)
Or between bursts. If

On becomes progres- None of these three equations can be solved explicitly, but the value of Ierit can be found
easily by numerical solution by, for example, the bisection method (Press et al., 1992) with
Tr and T as the initial guesses between which i must lie.

The three methods defined by equations 45-47 a] give different values for Lerir» though
46 and 47 will be the same when as = ar. When the areas for short and long intervals differ
greatly, the first two methods (especially the fi

1st) may result in misclassification of a large
proportion of the rarer type of interval, and so it may sometimes be felt to be more appropriate
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Openings Separated




536 David Colquhoun and F J. Sigworth:

to use the third method, despite the fact that it does not minimize the tota] number of
misclassifications,

When the time constants, Ty and T, are very different, as in the example above, it will
make very little difference which of the methods is used. But the difference that is needed
is often underestimated. If the record contains N shut times (and N open times) the number |
of bursts that are found will be N times the probability that a shut time is greater than ¢
The latter probability is, from equation 36,

crit: |

P(shut time > lerit) = g e torit/Ti 9)
In the case of the two-component shut-time distribution,

P(shut time > 1,.) = gueterivre | age ™ ferit/s

decreases monotonically a
independent of Locies

Consider, for €xample, the case where T is 100 times longer than Te
and 7; = 100 ms. When ar = a; = 0.5, the three methods i
lerie = 4.65 ms, 3.40 ms, and 3.4
respectively, 2.75, 3.34 i i ifi of long openings

i . When there are |
r = 0.9, a; = 0.1, the
it = 6.87 ms and 5.18 mg
ified per 100 as only 0.757,
though 6.6% of long openings short are misclassified.

If, however, Ts s only 10 times longer than T €&, T = 1 ms and 7, = 10 ms, then,
whena; =g, =05 » the three methods give ., = 1.80 ms, 1.80 ms, and 2.56 ms, respectively,
but even equation 45 misclassifies 15.2 shut times per 100, with 22.69% of long shut timeg |

i i factor of 10 is not big enough. This is apparent immediately
Ins are greater than ¢, = .80
shorter than 1.80 ms,

5.5.2. The Distribution of the Number of Openings per Burst
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p=1/1 - p) (50)

Further details are given in Sections 6.1 and 6.8. Notice that P(r) decreases by a constant
factor (p) each time r is incremented by 1. This property is characteristic of exponential
curves, and the geometric distribution is in fact the discrete equivalent of the exponential
distribution encountered elsewhere. When the mean becomes large, the distribution approxi-
mates the exponential distribution with mean w, namely, p~'e~",

In general, the distribution will be a mixture of several such geometric terms; the number
of terms will often be equal to the number of open states but may be fewer in principle
(apart from the problem that not all components may be detectable). The question of the

expected number of components is quite complex and is discussed in Section 13.4 of Chapter
18 (this volume).

5.5.3. The Distribution of Burst Length

This is the length of time from the beginning of the first opening of a burst to the end
of the last opening. Clearly, it will be relatively unaffected by the presence of short unresolved
gaps, compared with the distributions of open times and of number of openings per burst.
The distribution should be described by a mixture of exponentials, as in equation 30, under
the usual assumptions. The number of exponential components is, in principle, quite large,
being equal to the number of open states plus the number of short-lived shut states (see
Chapter 18, this volume; Colquhoun and Hawkes, 1982). In practice it is unlikely that all
components will be resolved, and under some circumstances the burst length distribution

may be well-approximated by a single exponential, as described in Section 5.3 of Chapter
18 (this volume).

5.5.4. The Distribution of the Total Open Time per Burst

This is the total length of all the openings in each burst. It is also relatively insensitive
to undetected brief openings or shuttings (shuttings that are brief enough to be missed will
cause only a small error in measuring the total open time). This distribution should also be
described by a mixture of exponentials, as in equation 30. It is, in principle, simpler than
the distribution of burst length, because the number of components is expected to be equal
to the number of open states (Chapter 18, this volume; Colquhoun and Hawkes, 1982). This,
together with the fact that it is less sensitive to missed events than the distribution of apparent
open times, makes it the best distribution to look at in order to make inferences about the
(minimum) number of open states. The distribution of the total open time per burst is also
of interest because it is predicted, surprisingly, that it will not be affected by a simple channel
blocker (see Chapter 18, this volume). This prediction provides a useful way of investigating
blocking mechanisms (Neher and Steinbach, 1978; Neher, 1983; Colquhoun and Ogden,
1985; Johnson and Ascher, 1990).

The distribution of the total shut time per burst may also be of interest for some sorts
of interpretation (Colquhoun and Hawkes, 1982).

5.6. Cluster Distributions

Sakmann er al. (1980) observed that bursts of openings could themselves be grouped
together into clusters of bursts with long gaps between clusters. They were looking at nicotinic
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channels with high agonist concentrations, and the long silent periods between clusters
occurred when all the ion channels in the patch were in long-lived desensitized states. In
records of this sort it is often possible to say, with a high degree of certainty, that all of the
openings in one cluster originate from the same individual ion channel. All of the shut times
within a cluster can therefore be interpreted in terms of mechanism, even when the number
of channels in the patch is not known (see Section 8 of Chapter 18, this volume). Such
clusters are also useful for measurement of the probability that a channel is open (Poper),
described in Section 5.1.7.

Another case in which clusters of bursts (and superclusters of clusters) have been
observed is the NMDA-type glutamate receptor (Gibb and Colquhoun, 1991, 1992). Measure-
ments at very low agonist concentrations allow resolution of this unusually complex structure
if the individual channel activations and subdivision of the record into bursts of openings
and into clusters of bursts should aid in the interpretation of such records. The relevant
theory has been given by Colquhoun and Hawkes (1982). This can, of course, be done only
when the time constants of the shut-time distribution are sufficiently well separated (see
Section 5.1). The mean gap between clusters should preferably be at least 100 times greater
than the mean gap between bursts (within a cluster); and the latter should preferably be 100
times greater than the shut times within a burst.

Of course, we are quite free to treat the whole cluster as a long burst by an appropriate
choice of 7. (see Section 5.5.1); these bursts can then be analyzed like any other (they will
have a rather complex distribution of gaps within bursts). Equally, we can ignore the clustering
and analyze the individual bursts as above (the distribution of gaps between bursts would
then be rather complex).

When the record is divided into clusters of bursts, a large number of different sorts of
distributions can then be constructed, for example, the length of the kth burst in a cluster
and the distribution of gaps between bursts within clusters; further details are given by
Colquhoun and Hawkes (1982).

5.7. Measurement and Display of Correlations

Certain types of mechanism can give rise to correlations between the length of one ¢
opening and the next or between the length of an opening and that of the following shut
time. When this happens, the correlation will gradually die out over successive openings:
there will be a smaller correlation between the length of an opening and the length of the
next but one opening (described as a correlation with lag = 2), and so on for increasing
lags. Such correlations have been observed for both nicotinic and NMDA receptors. Measure-
ments of correlation can give information about mechanisms, in particular information about
how states are connected, that cannot be found in any other way. The origin and interpretation
of correlations are discussed in Section 10 of Chapter 18 (this volume), where appropriate
references will be found. We shall discuss here the ways in which correlations may be
measured and displayed.

5.7.1. Correlation Coefficients and Runs Test

Perhaps the simplest way to test for correlations is to use a runs test, as employed by
Colquhoun and Sakmann (1985). To do this, open times (or shut times or burst lengths, etc.)
that are shorter than some specified length (e.g., 1 ms) are represented as 0, and values
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longer than this length are represented as 1. We then ask whether runs of consecutive 0
values (or of consecutive 1 values) occur with the frequency expected for independent events.
If, for example, long openings tend to occur together, this will produce long runs of 1 values.
Say there are nj zero values, n; unity values, and n = ng + n; values altogether. The number
of runs, N, say, in the data is then counted, a run being defined as a contiguous section of
the series that consists entirely of (one or more) O values or entirely of 1 values (thus 110001
has three runs). If the series is random, then the mean and variance of N, will be

2}’101’11(2”0”1 = n)
n*(n — 1)

2nyn,

E(N,) = + 1 var(N,) =

(629

The test statistic

_ N, — E(N)
©7 a1 i

will have an approximately Gaussian distribution with zero mean and unit standard deviation,
so a value of Izl larger than about 2 is unlikely to occur by chance.

The extent of correlation for any specified lag m can be calculated as a correlation
coefficient, r,,. If the observations (e.g., open times, shut times, burst lengths, etc.) are denoted
t, tyy . . ., t,, with mean 1, then the correlation coefficient is calculated as

> = Biteem = D
r, = i=1 (53)

1:2" (5 — 17
=1

5.7.2. Distributions Conditional on Length of Adjacent Event

The calculations in the last section give no visual impression of the strength of correla-
tions, but various graphical displays that do so can be made. For example, the distribution
of the length of openings conditional on the length of adjacent shut time can be constructed.
Examples of such conditional distributions are shown in Chapter 18, this volume, (Section
10, Fig. 13). If, as in these examples, short openings tend to occur next to long shuttings,
then the distribution of open times, conditional on the open time being next to a long shutting,
will show an excess of short openings (relative to the overall open-time distribution). In
order to construct such a conditional distribution from experimental data, it is necessary to
specify a range of shut times rather than a single value. For example, to construct a distribution
of open times conditional on the adjacent shut time being between 0.05 and 0.3 ms, simply
locate all the open times that are adjacent to shut times that fall in this range and plot the
histogram of these openings.

A more synoptic view can be obtained by restricting attention to the mean open times
rather than looking at their distribution. Define several shut-time ranges and then plot the
mean open time (for openings that are adjacent to shut times in each range) against the
midpoint of the range. It will generally be best to center these shut-time ranges around the
time constants of the shut-time distribution. The mean open time may also be plotted against
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the mean of the shut times in the range rather than against the midpoint of the range. An
example is shown in Chapter 18 (this volume, Fig. 12). The mean open time decreases as
the adjacent shut time increases.

A third way to display correlation information is to construct a two-dimensional depen-

dency plot (Magleby and Song, 1992). This plot is explained and illustrated in Chapter 18
(this volume, Section 10).

5.7.3. Distribution of Open Time Conditional on Position within the Burst

The distributions of quantities such as (1) the length of the kth opening in a burst or
(2) the length of the kth opening in a burst for bursts that have exactly r openings are
potentially informative when there are correlations in the data. If these distributions differ
for different values of k (or of r), these variations can be tested against the predictions of
specific mechanisms, which can be calculated as described by Colquhoun and Hawkes, 1982;
Chapter 20, this volume). Such distributions are, however, likely to be rather sensitive to
undetected brief events (see Section 6.11 below; Section 12 of Chapter 18, this volume).
Their potential has yet to be exploited.

5.8. Distributions following a Jump: Open Times, Shut Times, and
Bursts

It is often of interest to measure single-channel currents following a rapid (step-like)
change of membrane potential or of ligand concentration (a voltage jump or concentration
Jump). The principles underlying such measurements are discussed and exemplified in Section
11 of Chapter 18 (this volume).

Notice that application of a rectangular pulse (of membrane potential or of ligand
concentration) is actually two concentration jumps. In terms of macroscopic current, the first
step 1s sometimes referred to as the “on-relaxation,” and the second, when the stimulus is
returned (usually) to the prejump condition, is referred to as the “off-relaxation.” In the
context of voltage-activated channels (but, for no particular reason, not for agonist-activated
channels), the off-relaxation is often referred to as a “tail current”™; it is probably rather
unhelpful, though harmless, to use a separate term for an off-jump, since it does not differ
in principle from an on-jump. Sometimes attention is focused mainly on the on-relaxation
(e.g., when a step depolarization opens a voltage-activated channel); sometimes the main
focus is more on the off-relaxation (e.g., the events following a brief pulse of agonist applied
to an agonist-activated channel).

The distribution of the latency until the first opening occurs is of crucial importance for
understanding topics such as the shape of synaptic currents or the mechanism of inactivation of
sodium channels (see Chapter 18, this volume). In principle it is easy to measure it from
experimental records. The main problem in practice is that it cannot be interpreted unless
there is only one channel in the patch (or at least a known number of channels). This is
often hard to achieve.

Even when the channel shows no correlations, the distribution of first latencies is
expected to differ from that of other shut times (see Chapter 18, this volume), though in this
case the distributions of all subsequent shut and open times should be the same as those at
equilibrium. When the channel shows correlations, the distributions (and hence means) of
the first, second, . . . open time, and shut time, after the jump may difter from their equilibrium
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values. If the channel also shows correlations between burst lengths, then the distributions
of the first, second, etc. burst length following the jump will also differ. After a sufficient
number of openings has occurred, the equilibrium distributions will eventually be attained.
Further details and examples can be found in Chapter 18 (this volume, Sections 10 and 11).

38.1 Delays in the Recording System

When first latencies are being measured, it is obviously very important that we know
precisely when the step was applied (i.e., where t = 0 lies on the experimental record).

Voltage Jumps

In the case of voltage jumps, this problem has been discussed in detail by Sigworth
and Zhou (1992). It is important to compensate properly for the large capacitative current
artifact that accompanies a voltage jump applied with the patch clamp. Methods for doing
this are discussed in Chapter 7 (this volume) and by Sigworth and Zhou (1992). The voltage
jump may not be applied to the patch at the precise moment that the command pulse is
applied. This can happen because vagaries of the relative timing of DAC outputs and ADC
inputs: these depend on the characteristics of the computer’s real-time interface and on
precisely how it is programmed. Delays may also occur when the command pulse is filtered
(to reduce its maximum rate of rise). The true t = 0 point on the record can be estimated
by measuring the time from when the command pulse starts to the midpoint of the instanta-
neous current (the current that flows “instantly” through channels that are already open when
the potential changes). Alternatively, the capacity compensation can be slightly misadjusted,
and then one can measure the time to the peak of the resulting capacitative current. These
procedures are illustrated by Sigworth and Zhou (1992).

Concentration Jumps

In the case of concentration jumps, delays may be much greater than for voltage jumps.
Typically, a jump is applied to an outside-out patch by moving (by means of a piezoelectric
device) a theta glass pipette from which two solutions flow, so the interface between the
solutions moves across the patch. Delays arise primarily because of the time taken for the
command pulse to be translated into movement of the piezo and the time taken for the
solution leaving the theta glass to reach the patch. The delay can be measured as follows.
Break the patch at the end of the experiment and flow a hypotonic solution through one side
of the application pipette; then measure the time from application of a command pulse to
the piezo to the appearance of a junction response. It is obviously important that the relative
position of patch and application pipette remains the same throughout. It is still better if the
measurement of delay can be made with the patch intact, as it is during the experiment proper.
This may be possible, for example, by applying a step change in potassium concentration while
a potassium-permeable channel is open (the channel opening itself can be used to trigger
the command pulse to the piezo). This method was used by Colquhoun er al. (1992) to
estimate the rate at which concentration changes at the patch surface; it is also an ideal
method to measure delay (as long as an appropriate channel can be found).

There will also be a delay in the current-measurement pathway, essentially all of which
is caused by filtering. An eight-pole Bessel filter introduces a delay (in seconds) of 0.51/f,,
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where f, is the —3 dB frequency in Hertz. For example, a 1-kHz filter introduces a delay of

510 ws (Sigworth and Zhou, 1992).
The fitting of the results of jump experiments is considered later, in Section 6.13.

5.9. Tests for Heterogeneity

It is, unfortunately, quite common for more than one sort of channel to be in the patch
of membrane from which a recording is made. This may be the case not only with native
receptors but also with recombinant channels expressed in oocytes (e.g., Gibb et al., 1990);
injection of a defined set of subunit RNAs does not necessarily guarantee that a single well-
defined sort of channel will be produced (see also Edmonds et al., 1995a,b). This sort of
heterogeneity will make distributions confusing and serious kinetic analysis impossible. It

is, therefore, important to know when it is present.
One criterion that has been used for agonist-activated channels is based on P, measure-

ments (see Section 5.1.7). At high agonist concentrations, when the probability of the channel
being open is high, openings appear in long clusters separated by even longer desensitized
periods (Sakmann ef al., 1980; see also Section 5.6). Because all of the openings in one
cluster are likely to arise from the same individual channel, a value of Pope, can be measured
from each cluster (by integration or by measuring individual open and shut times; see
Colquhoun and Ogden, 1988, for example). The next cluster may arise from a different
channel, but it should give, within sampling error, the same value for Popen if all the channels
in the patch are identical.

An excellent method for assessing whether the Popen values (or open times or shut times,
etc.) vary to a greater extent than expected from sampling error was proposed by Patlak et
al. (1986). They used a randomization test (an elementary account of the principles of
randomization tests is given by Colquhoun, 1971). This method has been used, for example,
by Mathie et al. (1991) and by Newland et al. (1991). Suppose that measurements are made
on N clusters of openings, and #; is the number of openings in the ith cluster. The observed
scatter of the measurements, Sgps, Can be measured as

N

Sobs = 2 ni(yi — ;)2

i=1

(54)

where y; represents the measurement of interest (€.g., Popen OF Mean open time or mean shut
time) for the ith cluster. The probability of observing a value of S, (or larger) on the null
hypothesis that the clusters are homogeneous, can then be found as follows. Take all the
measured open and shut times from all the clusters as a single group and select at random
from them N groups of n; values. Then calculate the scatter from these artificially generated
clusters, using equation 54 in exactly the same way as was done for the real measurements;
this will produce a value that may be denoted S,,,. This randomization procedure is then
repeated many times (e.g., 1000 or more). A histogram can be constructed from the values
of S,,, so generated. The fraction of cases in which S,,, exceeds the observed value, Sops, 1
the required probability. If it is very small, then it is unlikely that the null hypothesis was
correct, and it must be supposed that the channels are heterogeneous.
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6. The Fitting of Distributions

6.1. The Nature of the Problem

The term fitting means the process of finding the values of the constants in some
specified equation that produce the best fit of that equation to the experimental data. This
definition implies that one must (1) decide on an appropriate equation to fit to the data, 2)
decide what the term “best” means, and (3) find an algorithm that can then find the best fit.
It is perhaps worth noting that the process of fitting involves thinking in a somewhat inverted
way. Normally, one thinks of the data as being variable and the parameters in an equation
(e.g., the slope and intercept of a straight line) as being constants. During the process of
fitting, though, the data are constant (whatever we happened to observe), but the parameters
(“constants”) are varied to make the equation fit the observations.

There are two quite different approaches to fitting, which may be called (1) empirical
fitting and (2) fitting a mechanism directly. In the former case, exponentials (or geometrics)
are fitted without necessarily specifying any particular mechanism; the parameters are the
time constants and areas of the exponential components. In the latter approach, the parameters
to be fitted are not the time constants of the exponentials but the underlying rate constants
in a specified mechanism. The former approach is by far the most common, and it will be
discussed next. The direct fitting of mechanisms requires consideration of missed events and

will be discussed later, in Section 6.12.

6.1.1. Empirical Fitting of Exponentials

In practice, this usually means fitting a mixture of exponential distributions to data that
consist of a list of time intervals (e.g., a list of apparent open times, shut times, or burst
lengths, found as described earlier). Similarly, a mixture of geometric distributions may be
used to fit the number of openings per burst, etc. This process is not entirely empirical,
however, because there is good reason to expect that these may be appropriate equations.
Any “memoryless” reaction mechanism is expected to result in observations that can be
described by exponentials (or geometrics), as described in Chapter 18 (this volume), s0 they
are obviously sensible things to fit. There is, of course, no guarantee that they will fit
adequately. For example, (1) the effect of limited time resolution will, in principle, result in
nonexponential distributions (e.g., Section 6.11, Chapter 18, this volume; Hawkes et al.,
1990, 1992), or (2) the transition rates may not be constant, €.g., because membrane potential
or ligand concentration are not constant, or (3) the mechanism may be genuinely non-
Markovian. These topics are discussed at greater length in Chapter 18 (this volume).

The general form for a mixture of exponential densities has already been given in
equation 30. If a; represents the area of the ith component, and 7, is its mean or time constant,

then, when there are k components,

Il

alTl»leﬂ/T eIt az,.rileft/-rz 4+ ..

k
= 2 a;m et (55)

1
= 1, and the overall mean duration is Sa,t;. Although it
1, roughly speaking, to the number of events

f®

i=
The areas add up to unity, i.e., Sa;
was stated above that the areas are proportiona
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interpretation of the components may be

The density is sometimes written in the alternative form

k
£y =Y wemim
i=1

where the coefficients w; are the amplitudes (dimensions s
Clearly, they are related to the areas thus:

w; = a,-/T,-.

6.1.2. Empirical Fitting of Geometrics

The general form for a mixture of geometric distributions
components, is

k

P() = ai(l = php;~),

=1

r=1,2,..

k
P(r) = Y wipl™!
i=1

where the coefficients w; are the relative amplitudes, at r = 1, of
and amplitudes are related by

a; = wi/(1 — p)

The “means”, w,, of the individual componen
have any separate physical significance) are

W = 1/(1 — p)

and the overall mean is

k
b= E a; |
i=1
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in each component, it must be emphasized that, in general, the areas and time constants

(means) of the components have no separate physical significance. An approximate physical

possible in particular cases (some examples are
given in Chapter 18, this volume), but they must be demonstrated separately in each case.

(56)

~!) of the components at 1 = (;

G

The cumulative exponential distributions have already been given in equations 35 and 36,

(see Section 5.5.2) with k

., ® (58)

where q; is the area of the ith component, and p; is a dimensionless parameter (p; < 1) (see
Chapters 18 and 20, this volume). Alternatively, this can be written as

(39

the components. The area
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Thus, yet another general form for a mixture of geometric distributions is

k

P() = 3 a1 = pily~! (63)

i=1

Under certain circumstances (see Section 13.4 of Chapter 18, this volume), it is predicted
that there will be a component with p =0, i.e., from equation 62, a component with a mean
of exactly one opening per burst. Such a component will contribute to P(1) only.

The cumulative form of the geometric distribution, i.e., the probability that we observe
n or more (e.g., the probability of observing n or more openings per burst) is

k

Pr=n) = gp-! (64)

i=1
6.1.3. The Number of Parameters to Be Estimated

In the cases of both exponential and geometric distributions there are 2k — 1 parameters,
the values of which must be estimated from the data by the fitting process. For exponentials
there are k different time constants, ; (or rate constants, \; = 1/7;) and k — 1 values for the
areas, a; (the areas must sum to 1, so estimation of k — 1 values defines the kth value). For
geometrics, the parameters could be k values of ; (or of p;), plus k — 1 values for the areas,
a;. Sometimes it may be desirable not to estimate all of these parameters from the data but
to fix the values of one or more of them (they might, for example, be fixed at values that
have already been determined from earlier experiments). This should improve the precision
of the remaining parameters that are estimated from the data.

It will always be sensible to constrain the values of the time constants, T;, to be positive
when fitting exponentials. Negative values are obviously impossible, so the fitting routine
should be prevented from trying negative values. Similarly, in fitting geometrics, the values
of p; should be constrained to be not less than 1 (or, if fitting p,, the p; values should be
constrained to lie between 0 and 1). When fitting steady-state distributions, the areas, a;, of
the components are expected to be nonnegative too, so it may help the fitting process if they
too are constrained. However, some sorts of distribution (for example that of the shut time
preceding the first opening after a Jjump) may well have one or more negative areas; in such

cases it is important that the program not constrain areas to be positive (see Sections 7 and
11 of Chapter 18, this volume).

6.2. Criteria for the Best Fit

The usual approach is to define a measure of the goodness of fit (or of the badness of
fit) of the fitted distribution to the experimental observations. The parameter values are then
chosen to maximize the goodness of fit (or to minimize the badness of fit). Different measures
of goodness of fit will give different estimates of the parameters from the same data.

For conventional curve fitting (e.g., to ordinary graphs or to macroscopic currents), the
weighted least-squares criterion is usually supposed (and in some cases has been shown) to
be the best method. In such cases the distribution of the observations is almost always




546

David Colquhoun and F. J. Sigworth

unknown. In the single-channel context, though, the problem is rather different. The distribu-
tion of the observations is known—it is what is being fitted. It is, therefore, possible to do
better by using the maximum-likelihood approach.

The likelihood function provides a measure of goodness of fit and is discussed in
Sections 6.5-6.9. Other, less good, methods appear in the literature, e.g., the x? statistic
(which provides one measure of badness of fit and is discussed in Section 6.4). Still worse,
one can find some wholly inappropriate use of least-squares criteria, or even
on semilogarithmic plots, but they are not worth discussion here.

All fitting methods will give much the same results if the amount of data is very large
and the fit very close, but this is rarely the case in the real world. The maximum-likelihood
method is undoubtedly preferable to any other for the purposes of fitting distributions, and
the speed of computers is now such that there is no reason to use any other method.

curve stripping”

6.2.1. How Many Components Should Be Fitted?

If a specified mechanism is being fitted (see Section 6.12), the mechanism dictates the
number of exponential components, so there is no problem. But when exponentials are being
fitted without reference to a mechanism, it is often difficult to decide how many components
should be fitted to the observations. For example, in Fig. 15 the shut-time data are shown
fitted with both a two-exponential fit and a three-exponential fit. The fastest and slowest
components are obvious, but the intermediate component (with T = 1.31 ms) has only 3.7%
of the area and could easily be missed, especially if the log display were not used and the
histogram that reveals this component most clearly (Fig. 15B) were not inspected. It could
also be missed easily if the amount of data were smaller.

There are three ways in which to judge the number of components that are needed: (1)
visual inspection of the histograms—e.g., in Fig. 15 the need for the third component is pretty
convincing when the appropriate display is inspected. (2) By checking the reproducibility of
the time constants and areas from one experiment to another (if they are not reasonably
reproducible you are probably trying to fit too many components). And (3) statistical tests -
the question can be asked ‘is there a statistically-significant improvement in the fit when an
extra component is added?” The second of these methods is by far the most reliable.

The Statistical Approach

The statistical approach is easy to apply when the fitting is done by the method of
maximum likelihood (see below). This and related questions are discussed by Horn (1987).
Denote as L the maximum value for the log(likelihood), i.e., the value evaluated with the
best-fit parameters, L(8) (see Sections 6.5-6.8). Suppose that the same data are fitted twice.
First we fit k; components (and hence ny = 2k; — 1 parameters), yielding a maximum value
for the log-likelihood of L,. Next we fit the same data again, but with more components
(say k, components and hence n, = 2k, — 1 parameters); this time the maximum value for
the log-likelihood is L,. With more free parameters to adjust, the second fit is bound to be

better (so L, > L)), but is it significantly better or not? The extent of the improvement in
fit can be measured by

R:Lz“Lz

where R is the log likelihood ratio, i.e.,

the logarithm of the ratio of the two likelihoods,
defined such that the ratio is greater than

I (R > 0). It can be shown (e.g., Rao, 1973) that,
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if the correct number of components were k;, then 2R would have (for large samples) a x*
distribution with n = n, — n; degrees of freedom. Thus, by obtaining the probability
corresponding to 2R (by computation or from a x? table), it is possible to judge whether the
second fit is significantly better. The P value so found is the (approximate) probability that
fitting with k, components would produce, by chance, an improvement in fit equal to (or
greater than) that observed, if in fact the fit with k, components were correct. If Pis
sufficiently small, it would be concluded that chance alone is unlikely to account for the
observed improvement, so the larger number of components is justified.

The Criterion of Reproducibility

The problems with the statistical approach are, as for all significance tests, of two sorts.
First, a nonsignificant difference does not mean that there is no difference, merely that a
difference could not be detected (possibly because it was not a good experiment). Second,
the test copes only with random errors and cannot allow for the systematic errors that are
50 common in real experiments. Nevertheless, if the experiment cannot be repeated, this is
probably the best approach.

Normally, though, a distribution (such as that in Fig. 15) is not determined only once
but many (or at least several) times in separate experiments. The question then arises about
what should be done if some experiments appear to be fitted well by two components but
others require three. This question shows the inadequacy of the statistical approach. The
number of components that are required is dictated by the mechanism involved and does
not change from one experiment to another (as long as they are all done with the same
channel type and are not invalidated by heterogeneity of the channels). However, the amount,
and quality, of the data, and hence one’s ability to defect components, may vary considerably
from experiment to experiment. This is illustrated nicely by the history of the data shown
in Fig. 15. At first distributions of this sort were usually fitted with two components. However,
it became apparent that quite often the data needed three components, as in the case shown.
Once this had become quite convincing, the earlier data sets were all refitted with three
components, whether or not this produced a significant improvement in any individual
experiment. The results showed that, within reasonable limits, the time constant and area of
all three components were reproducible from one experiment to another. This is the strongest
sort of evidence for the need for three components, and it is the procedure that should be
adopted whenever possible.

6.3. Optimizing Methods

In order to begin, one should obtain a good optimizing computer subroutine or procedure.
These are general-purpose programs that are designed to find (given initial guesses for them)
the parameter values that minimize (or maximize) any specified function and so can be used
to maximize the likelihood (or, equivalently, to minimize the negative likelihood—most
routines are designed to mimimize).

The user has to supply only a subroutine or procedure that, when supplied with values
for the parameters, will calculate a value for the quantity to be minimized (e.g., a value for
the minus log-likelihood; see below). The minimization subroutine then adjusts the values
for the parameters, and for each set of parameters it calls the user’s routine to see how well
the parameters fit the data. It is not expected that the user’s routine will itself change the
parameter values (though it can be useful to have it do so, as described below).
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The fitting process is shown graphically in Fig. 19 in the case where there is only one
parameter to be estimated. We simply find the value of the parameter that corresponds to
the maximum log-likelihood. In the case where two parameters are to be fitted, we would
need a three-dimensional version of this graph, with the possible values of the two parameters
on the x and y axes and the value of the likelihood that corresponds to each pair of parameter
values sticking out of the paper on the z axis. This sort of graph is often shown as a contour
map in two dimensions, with parameter values on x and y axes and the corresponding
likelihood values marked on contours. The contour map portrays, in geographic terms, a
hill, and the problem is now simply to find the top of the hill; this is the maximum likelihood,
and the pair of parameters that are the coordinates of the maximum are the maximum-likelihood
estimates of the parameters. Since optimizing subroutines usually minimize functions, the
more common geographic analogy is that we are searching for the bottommost point in a
valley. These graphical analogies are usually an excellent way to picture what is happening
(though in ill-behaved cases it is possible for contour lines to cross each other, which is not
allowed in ordinary maps; e.g., see Colquhoun, 1971, Fig. 12.8.2).

There are very many programs available. They may be found in many standard libraries
(such as NAG or IMSL) or by inquiry from your local computer center. The main choice
lies between simple search methods and more complicated gradient methods. A much faster,
noniterative method for fitting macroscopic exponential curves by use of Chebyshev polyno-
mials is available, but it is inappropriate for fitting distributions. Even for macroscopic
exponentials, it cannot be recommended until such time as the properties of the estimates it
provides (in comparison with least-squares estimates) have been fully explored.

6.3.1. Simple Search Methods

The simple search methods look for the bottom of a valley by trying various sets of
parameter values and simply noting whether one set of values is better than the previous
set. “Better” means “further down the valley”; i.e., the user-defined subroutine produces a
smaller value of the quantity to be minimized.

An advantage of search methods is that they usually converge (approach the bottom of
the valley) reliably, even with poor initial guesses or when the function is ill behaved. These
properties can be quite important. It is a considerable advantage in practice to be able to
give rather rough initial guesses (it takes time to find good guesses). Even more important
is the ability of these methods to cope with any sort of constraint on the values being fitted.
For example, in fitting the time course of single-channel openings, as described in Section

Figure 19. The log-likelihood, L(7), of a particular value of the time constant, 7, plotted against T (continuous
line) for the case of a simple exponential distribution (from equation 71). Graphs are given for samples of
size n = 3 (A), n = 10 (B), and n = 100 (C). The dashed line shows the quadratic curve that has the same
curvature at the maximum as L(7), namely Q(7) = Q&) — (7 — 2)2/2s? where s = "r/\/; (see equation 80).
The curves have been drawn for the case 4 = 1, and the abscissa can be interpreted as /. In graph A, the
definition of standard deviations and likelihood intervals is illustrated for the case of m = 2 unit likelihood
intervals and the corresponding *2-standard-deviation intervals (see Table I and Section 6.7.2). A horizontal
dashed line is drawn two units below the maximum, i.e., at L(#) — 2. The points at which this intersects the
continuous line give the lower and upper limits (Tioy and Thig) for 4. The points of intersection with the
dashed line give the 2-standard-deviation limits, # = 2s(%). For large samples, the dashed and continuous
lines become similar, so the two approaches to error specification give similar results (see also Table I).
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4.2, it is desirable to constrain the amplitude of a short opening to be the same as that of
the nearest opening that is long enough to have a well-defined amplitude. But as the parameter
estimates are adjusted, what is considered “short” and “long” may change, so the function
being fitted changes as the fitting progresses, and this function may itself change the parameter
values. A similar sort of thing occurs in fitting distributions. If the k — 1 areas being fitted
are adjusted by the minimization routine so that they add up to 1 or more, and it is desired
to prevent the kth area being negative (this is not always desirable—see Section 6.1.3), then
the function that is being minimized can scale all the area values down so they add up to,
say, 0.99, and return the altered values to the minimization routine. Such tricks are very
useful, but gradient methods tend to take grave exception to them, whereas search methods,
which care only about whether the function is reduced or not, carry on quite happily.
Search methods also take little computer memory (though this is rarely critical with modern
computers). On the other hand, search methods are usually rather slow, especially in the
later stages of convergence when high precision is demanded.

Simple search methods include patrernsearch (see Colquhoun, 1971), and the simplex
method (Nelder and Mead, 1965; O’Neill, 1971; Hill, 1978; Press et al., 1992). Care is
needed because there are many versions of simplex in circulation, some of which are not
very good. The version given by Press et al. (1992), called AMOERA, appears to be quite
satisfactory; the version they give is somewhat inconvenient to use as it stands, so an example
is given, in Appendix 3 (Section A3.4), of a small subroutine that may conveniently be used
to call AMOEBA. The program as it stands is rather minimal; it can be improved, for example,
by adding code (1) to print out the progress of the iterations, (2) to abort the program from
the keyboard if it appears to be stuck, (3) to test the convergence by the parameter step size
rather than by the reduction in the function, (4) to keep track of the absolute minimum
encountered (which may sometimes be better than the final result), and (5) to restart the
minimization if a local search after convergence suggests that further improvement is possible.
A particularly valuable addition is code to allow the values of specified parameters to be
fixed (e.g., at values determined from other experiments) rather than estimated. This can be
achieved by defining the parameter array (theta, in Section A3.4) to contain all of the
parameters (so it can be used for calls to the function or for printing the current parameter
values), but defining a second array from which the fixed values are omitted for use by
simplex when it is adjusting the parameter values.

6.3.2. Gradient Methods

There are many types of gradient methods (see Press er al., 1992, for a brief survey).
They have in common the characteristic that, given a set of parameter values that define a
point on the surface of the value, they calculate the slope of the surface at that point and
use this value to work out the next set of parameter values to try. For example, they may
work out the direction of steepest descent and follow this path in the hope that it is the
fastest way to the bottom of the valley.

Gradient methods fall into two main categories, as far as the user is concerned. One
category requires only that the user supply a subroutine to calculate, for a specified set of
parameter values, the value of the function to be minimized, exactly as for search methods.
The other category requires that, in addition, the user supply a subroutine to calculate the
first derivatives of the function to be minimized. The latter type allows gradients to be
calculated faster, but is much less flexible for the user, because for each function that is to
be fitted the user must differentiate it algebraically and write a subroutine to evaluate these
derivatives, which may be quite complicated.
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The gradient methods usually take fewer iterations to converge and so may be much
faster than search methods. On the other hand, they often converge less reliably and require
better initial guesses, and it may be difficult or impossible to impose the required constraints
on the fit with this sort of method, as exemplified above.

6.4. The Minimum-x> Method

This method is really obsolete, but it will be described here because it has been quite
widely used in the past and will give satisfactory results if the data are good enough. In
order for this method to be used, the observations must first be grouped into a histogram.
The data for the fitting are the frequencies of the observations in each bin. Thus, the parameter
values will depend, to some extent, on the bin widths that are chosen to display the histogram
(this is not the case with the maximum-likelihood method). The observed number of values
in the jth bin will be denoted f9. The X statistic is a measure of the deviation of this
observed value from the fitted (or calculated or expected) frequency. The value of the expected
frequency depends, of course, on the values of the parameters (time constants, etc.) that are
chosen, so we shall denote it J;(6) where 0 represents the values of all the parameters. For
example, when fitting two exponentials, the parameters could be T, T2, and a;, so 0 =
[11 T2 ai] (this is, in the notation of the appendix to Chapter 20, this volume, a vector, but
it can be read here as a set of parameter values). The expected frequency is calculated from
the equation for the distribution (e.g., equation 55), which, as discussed in Section 5.1.5, is
approximately proportional to the frequencies if the bin width is not too wide. The values
of the parameters are adjusted (by the optimizing program) to minimize X2 i.e., to minimize
the badness of fit.

The x? statistic is defined as

Nbin

bs 2

S N Vi /1C))
= 65
X ,-:El 0 (65)

where ny;, is the number of bins in the histogram. Notice that, as in any fitting procedure,
the data are treated as constants, and the parameters are treated as variables,

This method can be regarded as a sort of weighted least-squares approach; the denomina-
tor would be an estimate of the variance (reciprocal weight) of the numerator for a Poisson-
distributed variable (the observed frequency in a given bin should be multinomially distrib-
uted, and this may approximate a Poisson distribution).

The fact that the denominator depends on the values of the parameters slows down the
fitting procedure, and sometimes a modified x> method has been used in which the observed,
rather than the expected, values are used in the denominator. In other words, the parameters
are chosen to minimize

W U~ £OF
S, (66)

j=1 J

If an observed value, 9, is zero, it must be replaced by unity (or by an average value over
nearby bins) to avoid division by zero.
The x? criterion, though reasonable, is arbitrary. It is also clear that, in principle, some
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information must be lost when the original time intervals are grouped into bins. For example,

! ec are treated as though they were both 1.5 msec if they

sec. There is another, more natural way to fit the results
that does not involve these disadvantages, namely, the method of maximum likelihood. This

method also allows sensible estimates of error for the fitted parameters and is described next.

6.5. The Method of Maximum Likelihood: Background

When we have done an experiment and wish to choose the best values of the parameters,
it seems sensible to ask what values of the parameters are, in the light of our data, the most
probable. Although this may appear an innocent enough question, it has given rise to fierce
debate for over three centuries. The debate still continues. The essential argument is about
whether it is proper to talk about the probability of a hypothesis at all. If we measure durations
of ion channel openings, we imagine that there is some real true value of the mean open
time. Suppose our observed mean is 8 ms, and the true mean (which is never known of
course) is 10 ms. The probability of the hypothesis that the true mean is 10 ms is unity; the
probability that it is anything else (including 8 ms) is zero. Therefore, one cannot speak of

the probability that the parameters have particular values (not, at least, if we wish

to retain
the familiar frequency interpretati

on of probability). Most people now think that the best
way to circumvent this problem is to speak not of the probability of a hypothesis (given
some data) but of the probability of getting the data (given an hypothesis). This latter
probability was first used to measure the plausibility of hypotheses by Bernoulli in 1777; it

was greatly developed and popularized by R. A. Fisher, who termed it likelihood from
1921 onwards.

we regard the data as fixed (as they are when we wish to anal
and the hypothesis as varying, then this
we term it the likelihood of the hypothes

yze a particular experiment)
quantity no longer behaves like a probability, and
is. In summary, denoting likelihood by Lik,

Prob[data|hypothesis] = Lik[hypothesis |data] (67)

In this expression, the vertical bar stands for “given” (see Section 2 of Chapter 18, this volume),

The method of maximum likelihood consists of varying the values of the parameters
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is uncertain. However, with data of the sort we are discussing here, we do know about the
distribution. It is the very thing that we look at and wish to fit; this is why maximum
likelihood is a natural procedure to adopt.

6.6. Maximum Likelihood for a Simple Exponential Distribution

These ideas can most easily be made clear by discussing data that follow a simple
exponential distribution before going on to more general cases.

The data consist, say, of n time intervals, which we can denote t, tp...,t, These are
fixed, and this list provides the data on which fitting is based. Histogram frequencies are
not used, and the values obtained are quite independent of the bin width(s) that are chosen
for the histogram. It is still necessary to construct a histogram in order to display the final
results of the fit, and the appearence of the histogram will vary to some extent according to
the bin width(s) that are chosen, but the fitted line will not.

What, given some hypothetical value of the time constant 7, is the probability of making
these observations; in other words, what is the likelihood of this value of 7? The time values
are (in principle) continuous variables, so we must use probability densities rather than
probabilities (but this does not matter much because we only need something that is directly
proportional to the likelihood). The simple exponential distribution can be written

f@) = 17le7n 0<t< oo, (68)

so the probability (density) of making the first observation t is

ft) = 77lem/m (69)

The probability of making all the observations (tyand tyand . . . and t,) is, if the observations

are independent, simply proportional to the product of the separate probability densities, and
this is the likelihood of the specified value of 7. Thus,

Lik(r) = f(t)f(t) - - f(z,). (70)

It is more convenient to work with the logarithm of this quantity (so we get sums rather
than products), and this log-likelihood is denoted L(t). From equations 69 and 70, it is simply

L(t) = 2 Inf(t) = nln(r-') — 7! E 1 (71)
i=1 i=1

This log-likelihood must, of course, reach its maximum at the same value of 7 as does the
likelihood (equation 70) itself. When L(7) is plotted against various possible values of T, it
produces a curve like those shown in Fig. 19 (continuous lines). This curve summarizes all
of the information that the data contain about 7. The curve goes through a maximum and
the value of T at the maximum is the value that makes the data most probable. It is the
maximum-likelihood estimate (denoted %) of the unknown true value of T, i.e., of the true
mean lifetime.

The position of the maximum can easily be found analytically in this simple case by
differentiating equation 71 with respect to T and equating the result to zero. This gives
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N(e—t/-? _ e*(HAt)/fr) (78)

(72)
" This can be compared directly with the observed frequency (see Section 5.1).

In these cases there was no need for iterative computer optimization because the maxi-
mum-likelihood estimates could easily be calculated explicitly from equation 72 or 76. This
cannot be done in general (see Section 6.8).

observations.
ten in a form that shows
ends only on the ratio,

Non-independent Observations

: The multiplication in equation 70 is correct only if the observations are independent.

This is not always true. It is quite common, for example, for open times to be correlated;
in the case of the muscle nicotinic receptor a long opening tends to be followed by another
long opening. The question of correlations is discussed in more detail in Sections 5.7 and
58 and particularly in Chapter 18 (this volume, Sections 10, 11, and 13). When such
correlations are present, the estimates obtained by the methods described here will not be
genuine maximum-likelihood estimates, and errors calculated for the estimates will, to some
extent, be erroneous. The effect of correlations on the fitting process has never been investi-
gated in detail. It seems unlikely that the effects will be serious, and the bias of the estimates
is unlikely to be worse than that of genuine maximum-likelihood estimates.

73)

bose that it is impossible -
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, t0 infinity. Therefore,
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y that an observation is
), from equation 36, is

(74)
6.7. Errors of Estimates: The Simple Exponential Case

Once an estimate (4) of the mean lifetime is obtained, it is natural to ask how accurate
this estimate is likely to be. Estimates of error calculated from within a single experiment
are notoriously unreliable and overoptimistic. The only reasonable estimate of error is found
by repeating the whole experiment several times. Nevertheless, internal error estimates may
be useful as a warning when an attempt is made to extract more information than the data
contain, or in cases where repetition of the experiment is impossible. Two ways of estimating
errors follow naturally from the maximum-likelihood approach. They are discussed next for
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—L(7) twice and then substituting % for 7. From equation 71 or 75 we obtain

972

:

7

1 a bin between ¢ and

the simple exponential case and generalized below. (It should be noted that these are not the
only ways in which errors can be assessed; there is no general agreement about how this

The first approach is to attach some sort of standard deviation to the estimate, 7, that
has been found. A standard approach is to calculate the observed information by differentiating

_[azL(T)] _n__1 (79)

The quantity in equation 79 has a simple interpretation. The second derivative measures the
curvature of the graph (e.g., Fig. 19) near the maximum. If it is small, the graph is flat; i.e.,
the likelihood is rather insensitive to the exact value of T; therefore, # is rather ill defined
and has a large standard deviation. The reciprocal of expression 79 provides an estimate of
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the variance of %, and its square root is an estimate of the standard deviation of 7, denoted
s(%). Thus, we obtain

s() = 4%/ /n (80)

It should be noted that the validity of this estimate of error depends entirely on the
assumption that the observations really do come from a population described by a single
exponential pdf, so that we are fitting the right thing. Insofar as this will never be exactly
true, the estimate is optimistic (or even meaningless).

The standard deviation for 4 found above, as for any standard deviation, can be interpreted
in terms of a confidence interval only if we know the distribution of % (i.e., what the
distribution of 4 values would be if we had many such estimates). If we suppose that % has
a Gaussian distribution, which, from the central limit theorem, will be approximately trug
when the number of observations is large, then an approximate 95% confidence interval for
% might be calculated as 4 + 2 standard deviations; i.e.,

T 25(%). (81)

The imperfection of this approach can easily be illustrated by an extreme example. Suppose
we have only three observations, and their mean indicates that # = 2 ms. Then the standard
deviation of the mean is estimated as 2/\/3— = 1.15 ms. Now calculate a confidence interval
for # by taking two standard deviations on either side of %, 1e,2 * 23 ms or —0.3 msto
+4.3 ms. According to this calculation, a value of 1 = —0.3 ms for the true mean lifetime
is compatible with the observations, although it is obvious that all negative values are actually
quite impossible. One way of looking at the reason for this silly result is that intervals
calculated in this way are necessarily symmetrical (the Gaussian distribution is Symmetrical),
but more realistic error limits, such as those described in the next section, will not generally
be symmetrical.

This example may be thought not to matter much because we never use such small
numbers of observations. However, in some cases, we do wish to calculate the mean of quite
small numbers. Consider, for example, the “intermediate shut times” (with T = 1.31 ms) in
Fig. 15. Their mean length is of interest, but even in a long experiment, not many values
can be observed, so absurdities like that Just illustrated can easily occur in practice. They
can be avoided by the method described in Section 6.7.2.

Standard Deviations and Standard Errors

Since the time intervals, r;, follow a simple exponential distribution in this case, the
standard deviation of the individual observations should, on average, be equal to the mean
lifetime (e.g., Colquhoun, 1971); i.e., s(t) = . The standard deviation of the mean of n
lifetimes, often known as the standard error of the mean, is calculated as s(t,-)/\/z;, which,
since ¥ = 7 in this case, is just the result obtained in equation 80, but here it was obtained
via the rather general method of equation 79. When quantities like that in equation 80 are
obtained, it is often asked whether they are standard deviations or standard errors. This
question is based on a common misunderstanding, because these are not two separate things,
In fact, there is only one sort of measure of variability involved, and that is the standard |
deviation. This measure can be applied to any sort of variable quantity, as an index of how
variable it is. It can be applied, for example, to a set of measured time intervals, #;, and it
will measure how much they vary for one interval to another. It can equally be applied to
the mean of 7 lifetimes to measure how much repeated measurements of such means vary.
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Orit can be applied to a time constant of a distribution (a T value, equation 30), as a measure
of how much repeated measurements of that T value will vary. The standard error, a term
that perhaps causes more misunderstanding than any other in elementary statistics, is not a
separate sort of thing but is merely a piece of jargon standing for “the standard deviation of
the mean of n observations” or, more generally, for “the (predicted) standard deviation of
any quantity derived from the raw observations.” The term standard error of the mean is
still worse—it is not only misleading but also tautologous. The valid distinction is not between
standard deviation and standard error but between (1) standard deviations that are estimated
directly from a set of replicate observations (e.g., a set of measurements of individual
lifetimes), the scatter of which can be directly observed, and (2) standard deviations that are
calculated indirectly (e.g., standard deviation of the mean, or the standard deviation of a 7
value) when we have actually got only one value (for the mean or for 7). In order to understand
what the standard deviation means in the latter cases, we need to consider the standard
deviation as a measure of how scattered the values would be if the quantity in question (the
mean, or the T value) were repeatedly estimated under identical conditions.

6.7.2. Likelihood Intervals

The second approach to estimation of errors, the calculation of likelihood intervals,
overcomes these problems. This is quite easy in the case of simple exponentials (but uses
quite a lot of computer time in more complex cases; see Section 6.9). The method is simply
illustrated by the graph of the log-likelihood function, L(t), against T shown in Fig. 19. The
maximum on the graph is at T = 4, so it is L(f). If a horizontal line is drawn at a fixed
distance, m log, units, below the maximum, it intersects the graph at two points, one below
% and one above 7.

The values of T at these intersection points, Ty and Ty say, are, more formally, the
(two) solutions of

L(t)=L(#&) —m (82)

The values of Tjo and Thigh are clearly both less likely than % to the same extent (m log,-
likelihood units), so it seems that they are good candidates to provide limits for the uncertainty
in #. They are called m-unit likelihood intervals or support intervals (see Edwards, 1972).
Conventional confidence intervals have an exact probability associated with them, but
this is generally not possible in nonlinear problems of the sort that we have. Consider,
however, a Gaussian variable with mean . In this case, the curve L(p.) has a simple quadratic
form with constant curvature, from equation 79, and {i is simply the arithmetic mean. In
this case, the m-unit likelihood interval is just the conventional confidence interval defined
as w plus or minus (2m)"? standard deviations, i.e.,

i = (2m)'2s(p) (83)

Thus, there is a correspondence between m = 0.5 limits and one-standard-deviation limits;
similarly, there is a correspondence between m = 2 limits and two-standard-deviation limits,
and between m = 4.5 limits and three-standard-deviation limits.

The likelihood curves for a simple exponential distribution from equation 71 are plotted
as continuous lines in Fig. 19 for samples of size n = 3, n = 10, and n = 100. The dashed
curves in Fig. 19 show the corresponding quadratic curves that are implicitly assumed in
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6.8. Maximum-Likelihood Estimates: The General Case
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Yn- The probability (density) of a particular observation, y, say, given some trial values of
the parameters, 6, is denoted J(116). The probability of observing all of our particular data
values is, for the specified 0, proportional to the product of all the individual probabilities

(densities). This is, by definition, the likelihood of 6 for our particular data. As before, we
prefer to work with the logarithm of this quantity, which is
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This procedure can be made clearer if it is illustrated by the three most common sorts

~ of distribution.

6.8.1. Mixtures of Exponentials

Distributions that have the form of a mixture of a number (k) of exponential densities
are the most common; they have already been defined in Section 6.1. The parameters in this
case are the time constants, Ty, T2, . - - » Tk and the relative areas, a;, ds, . . - » Ge—1- Alternatively,
we could estimate the T; and the amplitudes w;, or we could estimate the rate constants \;
and the areas, a;. It makes no difference which of these ways we choose, because, for example,
&y = 1/A;, so we get the same result whether the distribution is written in terms of rate
constants or of time constants. However, the areas (a,) are likely to be more nearly independent
of the time constants than are the amplitudes (see also Section 6.10), so convergence may
be easier if areas are estimated.

The distribution can be written, if we choose the time constants and areas as parameters,
as in equation 55. Notice again that there are not 2k parameters but 2k — 1, because the
areas must add up to unity, as in equation 31.

Limiting the Fitted Range

In practice, limited frequency resolution means that nothing shorter than 7, can be
measured; this limitation can be incorporated into the fitting procedure, as described in
Section 6.6. Sometimes we may wish to exclude values below some f.;, value that is greater
than the resolution. We may also sometimes wish to exclude from the fit all values that are
longer than some specified length t,, (€.8., to exclude a small number of exceptionally large
values). Therefore, we need, in general, the conditional pdf, given that all the observations
are between I, and g, This is given by

k

2 ai,ri—le—t/'r,'

i=1

= ———_—_ — be < <
f(t) Pl < I < foad) (tmin t — (85)

which is a generalization of equation 74. The mean value of such censored observations is

k
D 6t TP =t + T
E@) = i=1

P(tmin <t < tmax)

The denominator in these results is simply the probability that an observation with the
distribution in equation 55 lies between fyin and fyax, Namely, from equation 36,

k
Plltnin < 1 < ) = ), @it — g™imx/T) (86)

i=1

The observations consist of n measured time intervals t,, f, ..., Ip. Equation 85 can
be evaluated for each of these in turn using some particular trial values (8) of the parameters.
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where the denominator is as given by equation 80, with 4;, &; substituted for 7, ai. A numerical

example 18 considered in Section 6.10.

6.8.2. Mixtures of Geometric Distributions

s per burst, and similar quantities,

In general, the distribution of the number of opening
ic distributions of the sort defined

is expected to be a mixture of one or more (k, say) geometr
already in equation 58 (see also Chapter 18, this volume). The distribution gives the probability

of observing r (openings per burst, for example), and it can be written in a number of
different ways. Alternative forms are given in equations 58, 59, and 63. In general, we may
wish to include in the fitting process only those observed values that are between Iy, and
Fmax inClUSivVE. Thus, as in the exponential case, We need the conditional distribution, which,

from equation 58, is:

k
2 a;(1 — p)pi !
=l

— = e
P(r) P(rm'm =r= rmux),

(39)

(rm'm =r= rmax)

From equation 64, the denominator is given by

k
P(rmin =r= rmax) = E ai(P{mi“'l - P:rm‘“)

i=1

®9)

of the variable # which we can denote

The data consist of a series of n observations
Fiy T2 s I These might be, for example, the number of openings observed in n different
bursts. The probability of observing all of these values is given by the product of the P(r)

values, so the 10g-1'1kelihood is

L) = Y, In P(r)) (90)
=1

where P(r)) is calculated from equation 88 for particular values of the parameters (d; and
p)), which are collectively denoted 6. The optimizing program adjusts the values of these
parameters until L(0) is maximized, as usual. If there is only a single component, there i
only one parameter, and if all observations are included (Fpin = 15 Tmax = o0), then L(0) can
be maximized analytically in this case. This gives the maximum-likelihoo

d estimate of the

Practical Analysi

mean, L, Sim
An estil
than 7max)> ©

where the |

6.8.3. Mi

The |
(usually ¢
distributi

where

is the

where
and d

some

Unl
exp
mal
erf
err




;~ |
folquhoun and F, J. Sigwor

Practical Analysis of Records 561

;th.e value of L(0). :
f{mze L(6). The valye
12,...,5\11,&2, ..o
ter than ¢, or lon

qQuation 77

‘mean, {L, simply as 7, the arithmetic mean of the observations, and hence, from equation 61,
=1- (/) =1-— (1/p.

~ Anestimate of the true number of observations, N (including those below 7., or greater
than 7,,,,), can then be obtained from the observed number, #, thus:

n
, N =
(87) Plrom=r= Finax) =

3 b - where the denominator is given by equation 89, with p,, d; substituted for p;, a;.
Or'T;, a;. A numerica | ’

6.8.3. Mixtures of Gaussian Distributions

: The principles are exactly the same as in the other cases. Suppose that the variable y
 (usually a single-channel amplitude measurement in the present context) has a Gaussian
* distribution with mean . and standard deviation o. Its probability density function is

d similar quantities,
S of the sort defined
?lvés the probability
€N 10 a number of {
Nl general, we may

> between Fmin andis

. . . 1n
istribution, which,

1 _
fy) = om) P g (92)

is the “standard Gaussian deviate.”

(88) A mixture of k Gaussians is, therefore,
k
)= afiy) (94)
i=1
(89) where fi(y) represents the Gaussian in equation 92 with mean p; and standard deviation o,

and q; are the relative areas of the components.
The cumulative form of the Gaussian distribution, the probability that y is less than
some specified value, y, say, is the integral of Ay),

: We can denote
i!d in n different
fuct of the P(ry)

b4l
Py=y)= J S(dy 95)
y=-—o

Unlike the other cumulative distributions given above, this one cannot be written in an
explicit form. However, it is easy to calculate values for it in a computer program, since all
mathematical function libraries contain routines to calculate values of the error function,
erf(x) (see also Appendix 3). The cumulative Gaussian distribution is simply related to the
error function, thus:

(90)
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We shall often want to fit constants over a restricted range of values, excluding valugs
below y,... and values greater than y,.,.. Again, we need the distribution of Y conditional og
y being between Ymin @and y,.... This is given by dividing f(), from €quations 92 and 94, by
POmin <y < Ymax)» Which, from equation 96, can be calculated as

k ' 3
P(Ymin <Y < Ya) = 0.5 E a;[erf(u™//2) — erf(uminy V2] &Y
i=1

Lmax — (ymax - ’J’l) atid min — (ymin - M:)
' 0; ' g;

The distribution of Y, conditional on y being between Ymin and y,.., is therefore

Fobmn < <y = SO

¥ (e.g., channel amplitudes),
which we can denote Y Y25 - .., V. The probability of observing all of these values is given
by the product of the S(y)) values, so the log-likelihood is

L©) = Y In f(y)
J=1

where () is calculated from e
and o), whi
parameters
parameters to be estimated successfully, it may be helpful to constrain the standard deviation
to be the same for all k components. In this case, there will be 2k parameters to be estimated,
namely, k values of the means (1), & — 1 values fo
Optimizing program adjusts the values of
An estimate of the true number of ob
than y,...), can then be obtained from th

n
= B e S
P(ymin < y < ymax)

where the denominator is given by equation 97 with the maximum-likelihood values substi-
tuted for the parameters.

6.8.4. Binned Maximum-Likelihood Fits

The full maximum-likelihood fitting method is quite fast enough for it to be feasible,
on a fast PC, to fit up to, say, five exponential components to several thousand intervals,
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With more components or more data (or a slow computer), the full fit may become inconve-
niently slow. If a faster method is really necessary, the binned maximum likelihood method
(Sigworth and Sine, 1987) should be used. In this method we use, to calculate the likelihood,
not the probability (density) of observing a particular interval (given a set of parameter
values) but, rather, the probability that our particular bin frequencies will be as observed.
The values for the fitted parameters will, therefore, no longer be independent of how the
bin boundaries are chosen. However, it has been shown, for logarithmically binned data (see
Section 5.1.3), that the results are likely to be close to those from the full maximum-likelihood
fit if at least 8—16 bins per decade are used (Sigworth and Sine, 1987).

The quantity to be maximized, the “binned log-likelihood,” can be written in the form

nbin [ Fti) — F(t;) ] (102)

L(e) - 2 nj o P(tmin << tmax)

Jj=1

where the number of terms summed is now the number of bins, ny;, (rather than the total
number of intervals), n; is the number of observations in the jth bin, and is the lower
boundary of the jth bin. The numerator of this expression uses the cumulative distribution,
F(r), as given in equation 35 or 36 to calculate the probability, for the specified parameter
values, 0, that an observation lies in the jth bin. The denominator, which was defined in
equation 86, gives the probability that an observation is within the fitted range, fin tO fmax»

the values of which must, in this case, correspond to bin boundaries.

6.9. Errors of Estimation in the General Case

The treatment in Section 6.7 can be generalized with the help of matrix notation, so
that the two sorts of error calculation can be calculated for distributions with any number
of parameters. An introduction to this notation is given in Chapter 20 (this volume). Further
details can be found in Box and Coutie (1956), Beale (1960), Bliss and James (1966),
Edwards (1972), and Colquhoun (1979). The following procedures are reasonable approaches
to the specification of errors, but they are not unique.

6.9.1. Approximate Standard Deviations

Denote the parameters, v in number, as 6 = (8, 0,, ..., 0,). The analogue of equation
79 is the observed information matrix, I(9), which is a v X v matrix with elements
20
o _6_@ (103)
49,00; -

This form is known as a Hessian matrix. The inverse of this matrix gives the covariance
matrix, C(0), of the parameter estimates, so

C(0) = I(0)! (104)

The elements of this matrix may be denoted cov(8,8,). The diagonal elements of C(6) give
estimates of the variances of the parameter estimates, 0,. Thus,
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var(6;) = cov(,,0;)

Section 6.10 for examples). This tendency

is more conveniently expressed as a correlation
coefficient, r;j» between the two estimates;

this can be calculated as

cov(6,,6,)
i B e CNEDNG)
E [var(0,)var(6,)] /2 (106)

It has been noted that if we fit the sum of k exponentials, only k — | areas (ay, ...,

-1, say) are estimated. The area, ay, for the kth component follows immediately from the
fact that the total area for the pdf is unity:

k—1

ak=1—2a,-.

i=1

A standard deviation can be attached to @, by the relationship

~1 k=1 k=1
var(ay) = E var(a;) + 2 Z E cov(a,a;) (108)
i=1

i=1 j=1
J<i

The right-hand side of this equation is simply the sum of al] the elements in those rows and
columns of C(0) that refer to the k — 1 estimates of areas. If there are only two components,
it reduces to var(a;) = var(a,). For three components it reduces to var(as) = var(a) +
var(a,) + 2cov(a;,a,).

Explicit algebraic derivation of equation 103 or 104 would

be a formidable task in all
but the simplest cases, but, fortunatel

¥, it is not necessary. The second derivatives in equation
have a subroutine to

numerically by means of g matrix-inversion routine (see Chapter 20, this volume) to give
the covariance matrix according to equation 104,

6.9.2. Likelihood Intervals and Likelihood Regions
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for the case where two parameters are estimated is shown in Fig. 20 (see also Colquhoun,
1979). The graph shows a contour for L(8) = L() — 2, so any pair of parameter values, 6,
and 9,, that lie on this contour are 2 log-likelihood units less likely than the best estimates,

f, and 8,. The obliqueness of the contour shows that the estimates of 0, and 0, are positively

correlated in this case; i.e., if both 8; and 0, were decreased, or both were increased, the fit

would be little worse; i.e., L(8) would be reduced only slightly. This may be compared with

the effect of increasing 8, and decreasing 0, (or vice versa); this would cause the fit to

become much worse. The tangents to the contour are also shown in Fig. 20; they define (see

text) 2-unit limits for 6, and 8, separately. When the parameter estimates are correlated, as

in this example, these limits for the individual parameters are, in a sense, pessimistic: if, for
example, the true value of 0, were actually near @'{’W, the correlation makes it improbable
hat the true value of 8, would be near 932" In order properly to take into account the
correlation between the parameter estimates, a joint likelihood region (the contour in Fig.
20) is preferable. Points outside this region define pairs of 6, 6, values that are unlikely.

The numerical calculations that are needed to calculate likelihood regions or intervals
take a good deal longer than those for the approximate standard deviations but are perfectly
feasible on fast personal computers. The principle is very simple. The m-unit likelihood
limits (see Section 6.7 for explanation of this term) for a particular parameter, 6,, say, are
defined as the values of 8, such that, if 0, is held constant at that value, and the likelihood
L(9) is maximized again, allowing all the parameters except 9, to vary freely, then the
maximum value of L(@) that can be attained is L(®) — m; i.e., it is m units less than the true
maximum, L(@), which is attained when all of the parameters are allowed to vary.

In order to calculate the lower or upper limit for 6, iterative procedures are used. An
initial guess is made, and the minimization is performed with 6, fixed at this value; if the
maximum attained is not L(®) — m, then the whole process is repeated by any standard
iterative method (e.g., bisection or Newton—Raphson). This process is illustrated graphically

6,

e

high Oy

O— - —————

]

[}
|
[}
]
[}
|
|
1
1|ow
(¢}

1 1

Figure 20. Schematic illustration of a joint likelihood region and of likelihood limits for the separate
parameters in a case in which there are two parameters, 0, and 6, s0 6 = (6, 0,). The graph shows a contour
map of L(0) with the peak of the hill, L(@), marked with a cross; this corresponds with the maximum-
likelihood estimates, 8, and 8., of the two parameters, as shown. The contour for L(B) — 2 is shown. Further

explanation is given in the text.
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for the case when there are
in Fig. 21.

If there are two components, the likelihood limits for @, are simply unity minug the
limits for a,. If there are i

twWo parameters in Fig. 20. A numerical example is illustrated

» 80 that @, becomes one
ed from the fact that the total

6.10. Numerical Example of F itting of Exponentials

The simultaneous fit of a triple-exponential pdf can be illustrated by data on shut times
that were obtained with a low concentration (100 nM) of suberyldicholine (R, temporarig,
cutaneous pectoris endplate E, = —-123 mV, 10°C). The results are similar to those showp

after imposition (see Section

and z.,,, = 2000 s, a total of 931 shut times.

The estimates of the time constants for the three components, found by maximizing
L(0) from equation 84 with J(t) given by equation 85 were T =452 us %, = 1.28 ms and
%3 = 440 ms. The areas under the pdf accounted for by these components were, respectively,
74.0% (ie. ¢, = 0.740), 2.3% (4, = 0.023), and 23.7% (d3 = 0.237). The maximum value
of L(0) attained was L) = —2899.33. The fitted curve resembles that shown in Fig. 15.
This fit implies, from equations 86 and 87, that the true number of shut times is N = 1860.0,
of which 931 are in the observed range (the data), 922.3 are shorter than 50 ws, and 4.7 are
above 2000 s,

The component with intermediate rate %,
has the largest relative errors. Nevertheless, the
to doubt its reality; and, far more important, th
eye when the data are displayed appropriately (e.
from experiment to experiment.

In general, of course, it is quite im

= 1.28 ms) is quite small and, as expected,
error calculations below give no real reason
e need for this component is visible to the
8. asinFig. 15B or D), and it is reproducible

; Chapter 18, this volume).
id, the data suggest that there are Ny = a,N = 1376
“short gaps,” N, = d;N = 42.8 “intermediate gaps,” and Ny = 4, N = 440.8 “long gaps.”
Of the “short gaps,” only Npe™9452 = 455 would be above 50 ps and therefore detectable,

First consider the errors for these estimates found by the approximate standard deviation

approach (see Section 6.9.1). The second derivatives in equation 103 were estimated numeri-
cally; reason: i i

ncrementing the parameters by +10%
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Table II. Analysis of the Triple-Exponential Fit to Shut Time Duration”
Likelihood intervals

ML estimate Approx SD

Parameter b s(8) m =05 m=2 25(6)
42.9-47.7 40.6-50.5
() 452 2.4 (=23 to +2.5) (—4.6 to +5.3) 48
72.2-75.5 70.5-77.1
100a; (%) 74.0 1.6 (-18to +1.5) (=351t +3.1) 3l
0.90-1.76 0.67-2.45
7, (ms) 1.28 042 (-038to +0.48)  (—0.61 to +1.17) 0.84
1.93-2.74 1.55-3.32
100a; (%) 229 0.43 (-036 to +0.45)  (—0.74 to +1.03) 0.86
418-466 396-494
1 (ms) 440.0 24.0 (=22 to +26) (—44 to +54) 48.0
22.3-25.4 20.8-27.0
100a; (5) 237 1.5 (-l4to +1.7) (-29 to +3.3) 3.0

timate, 8, of each parameter is given, with its approximate standard deviation,As(é). Likelihood
m of intervals, and also, in parentheses, in the form of the deviation from 6. This deviation
e m = 0.5 unit intervals, and with 2s(0) (which is listed in the last column) for the

“The maximum likelihood es
intervals are given in the for
may be compared with s(8) for th
m = 2 unit intervals.

This is then inverted numerically by means of any standard matrix-inversion subroutine to
give the covariance matrix (equation 104) as follows (it is symmetric, so only the lower part

is given):

Ty a T a, T3
573 X 107 Tl
220X 1075 2.44 X 107* a
cov® = | 251 x10™* —197x 107 0.18 ) |
007 X 10-* —1.88 X 1075 —840 X 1075 1.81 X 107 as ]
150 X 103 —121 X 1072 1.28 3.40 X 1073 5783 |y i

(109)

The diagonal elements of this give the approximate variances of the parameter estimates
(the order of the parameters is shown above, and to the right of, the matrix). The square
roots of these variances are the standard deviations of the estimates and are shown in Table
II. For example, for 4, the standard deviation is s(%) = (0.18)2 = 0.42. The standard
deviation for the area of the slowest component (@;) is obtained from equation 108 as var(ds)
=244 % 1074+ 1.88 X 1077 + 2(—1.88 X 1075) = 2.25 X 107*, so the standard deviation
for d; is (2.25 X 107> = 1.5 X 1072, or 1.5%, as shown in Table II.

The correlation matrix is found from equation 109 by means of equation 106. It is

T a; T2 a T

(110)

~0.03 — T
0009 —028 —005 — a
003 —003 013 003 —|m
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The correlation coefficient, for eéxample, between t
—2.2O><10‘5/[5.73><10*6)(2.44><10*“)]“2 =-0.5
found; it reflects the intuitively obvious fact th

decreased and @, increased, or vice versq, In other words, a faster time constant for the fast
component would not reduce the goodness of fit much if the area allocated to this component
were simultaneously increased (this implies a considerable increase in the amplitude of the
fast component, Wi = a/7;: see equation (57). This correlation is aggravated by the lack of

observations below 50 us. There is also a small negative correlation (—0.28) between d
and @, and a small positive correlation (+0.25) bet

he estimates of Trand a; is ry =
9. This modest correlation is the strongest
at the fit would be almost as good if T, were

)

ans that a rough estimate of the standard
t can be calculated (compare equation 79) as ‘r/\//T/S = 21 ms,
which is not far from the value of 24 ms given by the full calculation (see Table II). For

the small intermediate component, this approximation is, however, VEry poor; it gives s(%,)
= 0.19 ms, compared with 0.42 ms from the full calculation.

The fact that only modest correlations are found for this fit is a good sign; it implies
that the parameters are well-defined. If, for example, a strong positive correlation were found
between two parameters, this would mean that if both i
would be little affected. In other words i ined,
their separate values are dubious.

The likelihood intervals for m = 0.5and m = 2.

deviation of its time constan

two approaches is larger in the case of the two

component; for example, %, = 1.28 ms, and T 25(%y) implies an interyal about %, of T,
— 084104, +0.84 ms, whereas the tw

O-unit likelihood interval gives 4, — 0.61 to T +
1.17 ms. The estimation of the limits for %, is illustrated in Fig. 21 (see also Sections 6.7
and 6.9).

6.11. Effects of Limited Time Resolution
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1. Estimation of likelihood
for 7, in the numerical example
in Section 6.10 (see Table II). The
ure is a generalization (to more
0 parameters) of that illustrated
20. The graph shows L, plotted
t7,, where L,,,, was found by hold-
constant at the value shown on
cissa and maximizing L(0) with
ect to the other four parameters (1,
, and 75). The peak of the curve is,
efore, the overall maximum L() =
2899.33 and corresponds to 4, = 1.28
5. The values of 7, corresponding to
x = L() — 2 = —2901.33 are the 2-
limits: 0.67 and 2.45 ms. The 0.5-
limits can similarly be read off at 1 L J
) - 0.5 = —2899.83. In practice, it 05 I wts 29 I 30 T, (ms)
ould be unhecotr;lomical to ((i:alcullatte this - f';'l-28ms high
e graph; the required points are
found nﬁmgrically by iteration (see text). T 0-67ms Ty245ms
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example, by Colquhoun and Sakmann (1985), and in Section 12 of Chapter 18 (this volume),
d they are justified in more detail by Hawkes et al. (1992).

- Exact corrections for missed events are possible only when a specific mechanism for

channel operation is postulated. The methods that are available for doing exact corrections

- 6.12. Direct Fitting of Mechanisms

The discussion so far has concerned the empirical fitting of exponentials (or geometrics)
without specifying any particular reaction mechanism; the parameters to be fitted are the

' time constants and areas of the exponential components. Most investigations of reaction
'~ mechanisms have used such fits as the basis for a post hoc attempt to infer a mechanism.

This procedure is less than ideal. One problem with it is that the information obtained from

- one sort of distribution may overlap strongly with that from another sort. For example, the
distributions of burst length and of total open time per burst will be similar if the gaps within

bursts are short (or rare). No method is known for combining the information from different
sorts of fit in an optimal way to obtain the best idea about how well a specified mechanism
fits the observations. Likewise, this approach makes it hard to compare two different putative
mechanisms. Another problem with the post hoc approach is that, since each sort of distribu-
tion is fitted separately, the constraints on the relationship between them, which are implicit
in the mechanism, are not taken into account.

Clearly, as mentioned in Section 6.1, it would be preferable to fit, as the adjustable
parameters, not the time constants of the exponentials but the underlying rate constants in
aspecified mechanism (e.g., the values of k_;, a,, etc. in the mechanism specified in equation

Sy

TR
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110 of Chapter 18). Furthermore, since one set of values for these rate constants should be
able to predict all the results from any sort of experiment, it is obviously preferable to do
one simultaneous fit of all the observations that have been made. For example, it is desirable
to fit, simultaneously, observations on steady-state records at several different agonist concen-
trations or membrane potentials, observations on channel openings following jumps under
various conditions, and any other data that may have been obtained. Furthermore, it is
undesirable to fit open times and shut times separately, because this procedure cannot take
advantage of the information available from the sequence in which they occur (i.e., information
from correlations—see Sections 5.7 and 5.8 above and Sections 10-13 of Chapter 13,
this volume).

The sort of optimum approach to direct fitting just described was already well understood
at the time of the first edition of this book (see Section 6.1.2 of Chapter 11 of the first
edition), and attempts to implement direct fits had already been made (Horn and Lange,
1983). The problems were that the observations in the idealized record that are to be fitted
suffer from omission of brief events and that retrospective corrections for missed events are
not useful if a direct fit is to be attempted. Nothing very effective could be done until methods
were devised to predict the distributions of what is actually observed rather than what would
have been observed if time resolution had been perfect. Such methods now exist and are
summarized in Sections 12 and 13.7 of Chapter 18 (this volume). They are now coming into
use (e.g., Sine ef al., 1990). The approach is to calculate one value of the total likelihood
from all the sets of data that are being fitted and to find the parameters that maximize this
likelihood. The likelihood is calculated from the sequence of open and shut times rather than
separately from each, so information from correlations is included in the fitting process. An
example is given in Section 12.5 of Chapter 18 (this volume), and the general theory is
summarized in Section 13.7 of Chapter 18 (this volume).

6.13. Fitting the Results after a Jump

The first problem is to get the results. Apart from the problem of estimating the number
of channels, it is also the case that only one first latency can be measured for each jump,
and it may be hard to get enough values in one experiment to make a decent-looking
distribution. There will also be only one value per jump of each subsequent open and shut
time if the first, second, etc. values differ (and this will not be known until their distributions
have been looked at separately). It is perhaps for this reason that first latencies have often
been displayed as cumulative distributions; the spurious appearance of precision that charac-
terizes this sort of display (see Section 5.1.4) makes them look better than they are; this is
highly undesirable.

Channel openings can be fitted by one of the methods already described, and a defined
resolution can be imposed as described in Section 5.2 (this is especially desirable if the
results are to be fitted with allowance for missed events). First latencies would then be
corrected for recording delays (see preceding section). If the shut-time components are
sufficiently well separated, it may be possible to define bursts of openings in the record.
The theoretical distributions describing openings, shuttings, and bursts after a jump are given
by Colquhoun and Hawkes (1987) in the case of a single channel and no missed events (see
also Chapter 18, this volume). It is also possible to fit a mechanism directly, with allowance
for missed events, as described for stationary records in Chapter 18 (this volume) and Section
6.11 (A. G. Hawkes, A. Jalali and D. Colquhoun, unpublished data).

When empirical mixtures of exponentials are being fitted to the first-latency distribution,
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it should be remembered that the areas of some components may be negative, as explained
and illustrated in Chapter 18 (this volume Section 11). It is therefore important to be sure
‘that your fitting program does not constrain all the areas to be positive (see Section 6.1.3).

56.13.1. Latencies with N Channels

If more than one channel is present, the first latencies will, of course, appear to be
shorter than they really are. In the case of the first-latency distribution (but not any of the
others), it is relatively simple to correct the observations if the number of channels is known.
‘When N independent channels are present, the observed first latency will be greater than ¢
if the first latencies for all N individual channels are greater than . Thus, from equation 36,

P(all N latencies > 1) = 1 — Fy(t) = [1 — G

where F,(7) is the probability, for one channel, that the latency is equal to or less than ¢ (see
Section 5.1.4), and the observed cumulative distribution provides an estimate of Fj(?) (Aldrich
et al, 1983). The pdf of the first latency is the first derivative of F\(f), so if we denote the
pdf for N channels as fy(?) we get (Colquhoun and Hawkes, 1987)

_ fn(®
H = NI - FOI"!

6.13.2. Effect of Finite Sample Length

The rectangular pulse of voltage, or ligand concentration, will be of fixed finite length,
and the length of the data record collected after the end of the pulse will usually also be of
fixed length. There will, therefore, always be an incomplete interval at the end of each
record; if the channel was shut at the end of the record, the length of the shutting is not
known because the next opening has not been recorded, and conversely, if the channel is
open at the end of the record, the length of this last opening is not known. But we do know,
in either case, that the interval was at least as long as the bit of it that was observed. It is
easy to take into account this information when doing maximum-likelihood fitting (with or
without allowance for missed events). For all complete intervals of length #;, the log-likelihood
is found as L = XIn f(t;) (see equation 84); the probability of observing an interval of length
at least t is 1 — F(t), so a separate term, SlIn[1 — F(t)], can be added to the log-likelihood
for the incomplete intervals (of length z,). We then maximize the sum of these two terms,
which is the overall log-likelihood (Hoshi and Aldrich, 1988).

Appendix 1. Choice of the Threshold for Event Detection

The choice of the threshold setting that allows the detection of the briefest events was
considered in Section 3.3. However, optimizing the detection of the shortest pulses is not
necessarily the best strategy for detection of single-channel events, because one is interested
in counting events of all widths. The ideal event detector would have a sharp transition at
some width, wpi,, such that events narrower than this would be missed but essentially all
longer events would be counted. In practice, the transition, as seen in a graph of the probability
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of detection as a function of w, is not necessarily sharpest when ¢ and f. are chosen as
described in Section 3.3.

Figure Al demonstrates this property for pulses in the presence of 1 + f noise. The
probability of detection p4, depends not only on w but also on o, f;, the channel amplitude,
and the spectral characteristics. Part A of Fig. Al corresponds to the case of a low channel
amplitude (specifically, Ag = 0.22 pA when the standard noise spectrum is assumed) in
which events of width w,,;, = 3 ms or longer could be resolved. To construct each curve in
the figure, a value of ¢ was first selected, and f, was then chosen to give d/o, = 5. On the
basis of these parameters, pq.(w) was then estimated. The value of ¢ giving the best detection
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Figure Al. Performance of the event detector at various settings of the threshold ¢. A and B: The probability
of detection of isolated pulses of unit amplitude as a function of pulse width w. The parameters in A
correspond to very small currents (Ag = 0.22 pA in S, = 1073° A%Hz noise), giving wy, ~ 3 ms. At each
value of ¢, f. was adjusted to give o, = /5 to keep the false-event rate approximately constant. In B, the
parameters correspond to relatively large currents (A, = 7.1 pA in the same noise); much shorter events
(Wmin =~ 13 ps) can be detected. In this case, f. was adjusted to keep /o, = 3, corresponding to a higher
false-event rate. C and D show the overall fraction, p,;, of pulses detected, given exponential distributions
of pulse widths (equation Al). Each curve represents a different effective event amplitude, with the lowest-
numbered curves corresponding to the largest amplitudes. Values for the amplitudes, time constants of the
distribution, and other parameters are given in Table AL In C, &/c, was fixed at 5, whereas in D, ¢/o, =
3. The larger o, values in D cause the curves to be broadened and the optimum ¢ values to be slightly
lower. Curves 4 and 6 were computed for the same conditions as in parts A and B, respectively.
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¢ and f; are chosen as of the shortest pulses was about 0.8 times Ag; when ¢ was reduced to 0.7 A, the transition
: moved to a slightly higher value of w but was steeper. On the other hand, increasing to 0.9
ice of 1 + f noise. The Ao broadened the transition, so that whereas the very briefest pulses could be detected with
;’ the channel amplitude, higher probability, pulses even twice as long as wp;, would be detected with only 80%
@e Easc Of_ a low channel probability. This sort of broadening of the transition region is very undesirable because it biases
pectrum 1s assumed) in the selection of events in a way that can cause distortion of experimental lifetime distributions.

construct each curve in The broadening of the transition region is most severe when ¢ approaches A,. This can
) give ¢/, = 5. On the be understood intuitively from the fact that if ¢ is near the full event amplitude, even

is set lower (with f, concurrently set lower), the longer events will have relatively larger
peak amplitudes and will have a better chance of exceeding the threshold.

Figure A1B shows py.(w) curves for pulses of relatively large amplitude (4, = 7.1 pA
in the standard noise spectrum; ¢/c,, = 3). The minimum pulse width is about 13 s in this
case, and the optimum ¢ for detection of short pulses is much smaller, approximately 0.36
Ao. As the figure shows, the position and shape of the pg. curve depend only weakly on ¢
in the range 0.2 to 0.5 times A,.

Parts C and D of Fig. Al give a summary of the performance of an event detector in
situations with various ratios of channel amplitude to background noise level. The quantity
that is plotted here is the total fraction of events detected, pi,, Out of an ensemble of pulse-
shaped events having a probability density function fiw) of widths,

|

|

H Piol = J PacW)f(W)dw (AD)
; 10 0

i D

Eglvmg the best detection moderately long events may fail to exceed ¢ when noise fluctuations are present. When ¢
|
|

where f(w) was chosen to be exponential, fiw) = (1/7) exp(—w/7). For each curve, T was
fixed at the value 2w,,;,; the actual values used are given in Table Al. The maximum values

Table Al. Parameters for the Curves in Fig. A1C,D*

¢ =05 A b =07 A,
AO Wmin f;: f;:

Curve dlo, Ab/Safo (pA) (msec) (kHz) Potal (kHz) Plotal
1 5 5000 7.1 0.023 7.62 1.00 10.94 0.96
2 5 500 2.2 0.089 2.00 1.00 3.02 0.99
0 3 L} 50 0.71 0.43 0.375 0.95 0.641 1.00
hold Q/AO 4 5 5 0.22 3.84 0.046 0.87 0.086 0.98
5 5 0.5 0.07 384 0.0047 0.85 0.0092 0.98
. A and B: The probability 6 8 5000 7.1 0.013 13.16 0.99 18.7 0.94
b, The parameters in A 7 3 500 2.2 0.048 3.71 1.00 5.45 0.97
fing Wi, ~ 3 ms. At each 8 3 50 0.71 0.206 0.834 0.98 1.34 0.99
ately constant. In B, the 9 3 5 0.22 1.21 0.121 091 0.222 1.00
ise); much shorter events 10 3 0.5 0.07 10.4 0.0129 0.88 0.025 1.00
11 3 0.05 0.02 104.0 0.0013 0.88 0.0025 1.00

orresponding to a higher
1 exponential distributions
Enplitude, with the lowest-

“Part C was computed with ¢/a,, = 5 (low false-event rate; curves 1-5), and D with &/a, = 3 (curves 6-11). Each curve
represents a different value of the signal-to-noise parameter A3/S,fy, which corresponds to the given A value in the standard

des, time constants of the case (S = 1073 A%Hz, fy = 1 kHz, | + fspectrum). The w,, values give the effective minimum detectable pulse width.
ES, whereas in D, ¢/o, = The distribution of pulse widths for calculating p,,, was chosen to be exponential in each case, with the time constants 7
n  values to be slightly = 2Wpin. For ¢ = 0.5 and 0.7, the corresponding f. values and the relative detection efficiency piu = Protl(d)/Prow(max)

are given. The maximum value py,(max) was always within a few percent of exp(—w,;,/7) = exp(—1/2), the probability

gB’ respectively. expected if only those events shorter than w,,,, were not detected.
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of prowar computed in this way were near 0.6, which is to be expected since, if py.(w) were
zero for w < wy,;, and unity for all larger w, Drotal Would equal exp(—w,,/T) = 0.61.

A comparison of the Ay and wy,;, columns of Table Al shows the approximate limits
of pulse detection, and the f, columns show typical corresponding filter bandwidths. The
choice of the ¢/o, ratio equal to 3 instead of 5 allows pulses shorter by a factor of 2-3 to
be detected, but at the cost of higher false-event rates. For large pulses (Ag > 1 pA in this
case), Wi, decreases as 1/A,, whereas for smaller pulses, w,;, varies as 1/Ay. The A, values
given correspond to the standard noise spectrum; for other 1 + S spectra, the dimensionless
parameter Ay*/(Syfy) is the appropriate measure for the signal-to-noise relationship, and wy;,
values should be scaled as 1/f; for f; differing from 1 kHz.

Although this analysis has been quite complicated, the practical conclusions can be
stated simply. First, for detecting channels of relatively low amplitude, implying that £, must
be set to be below f; (1 kHz in this example) to obtain a suitable background noise level, a
good choice for ¢ is about 0.7A,. This is near the peaks of the corresponding pio, curves
but is low enough to insure a sharp transition in the Paee(W) curves. Second, for detecting
larger channel events, for which £, can be larger than f,, the exact choice of & is less critical,
with the range 0.4 to 0.5A, generally being best. The special case & = 0.5 A, is of interest
for event characterization. It can be seen from Fig. A1C and D that Drotal 1S always at least
85% of its peak value when & = 0.5 A, is chosen.

Appendix 2. The Expected Distribution of Fitted Amplitudes

We derive here the distribution of channel amplitudes that would be expected when
amplitudes are estimated by averaging. Points are averaged over an interval w, that lies
within the “flat-top” portion of an event. This estimate, A, has an expected value (long-term
average) equal to the true channel amplitude, A,.

We assume that the background noise spectrum is flat and that the noise does not change
appreciably when a channel opens. In this case, A has a variance that depends on w,
according to

TA(W) = So/w, (A2)

where S is the (one-sided) spectral density. Strict equality holds in the limit when W, is very
large compared with the recording system risetime 7}, but the approximation is actually very
good for all w, = T,. It is also a good approximation to the error in least-square fitting of
the time course (Fig. 11B).

In practice, the background noise spectrum rises with frequency, but it is usually flat
below 1 kHz. Since the frequencies that predominantly contribute to o4 are below f =
1/2w,, for w, on the order of 1 ms or larger the flat-spectrum assumption is usually justified,
with S, being taken as the low-frequency spectral density.

Assuming that the baseline level is known exactly, 0% is the entire variance of the
channel amplitude estimate. If we assume that the background noise is Gaussian distributed,
the probability density of values of A for a given w, is also Gaussian:

gwlAsw,) =

1 [—(A - Ao)z]
Q™) Paawe) Pl 2020wy
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(W) were In practice, one does not want to hold the averaging interval constant but instead allows it

61, to vary with the channel-open time, #. We assume the relationship

ate limits

dths. The Wy, =1y — Iy (tg = 1) (Ad4)

of 2-3 to

FA in this where 1, is the (fixed) length of an event that is “masked off” before averaging; this would

En values typically be chosen to be between 1 and 2 risetimes in length to avoid any bias toward lower ‘
sionless i

i estimates as a result of the rising and falling edges of the pulse. Finally, we wish to ignore
and w,

min amplitude estimates from the briefest events by setting a lower limit w,,, for averaging !‘ |

[ widths. The resulting pdf for the amplitude from an ensemble of events having random 1
can be widths is then given by

¢ Must
[leve], a w

curves gA) = J gwlAiwa) flwadw, (A5)
Ftecting Wmin
Critical,
interest where f{w,) is the pdf of averaging widths. If #, is distributed according to a mixture of

t least exponential densities, as in equation 30, then f{w,) is also multiexponential,

fwy) = Zag;le™  w, >0 (A6)

Substituting equations A6 and A3 into the integral A5 yields

when R Y .
it lies g(A) = (2mSg)"2 L _ Wa ™ €Xp 25, [Zame ldw, (A7)
tﬂl’m min
Jange I.t is helpful to change the variable of integration to x; = (w,/7,)"”2 and to introduce the defini-
N, tions
Xoi = (‘”"”min/"'ri)y2

j42) oo = (So/T)H2 (A8)
_CW where xo, is dimensionless and gives a measure of the spread of the distribution of w, values,
1y and oy, is the standard deviation of an amplitude estimate when w, = 7,. Finally, we set
of 8 = (A — Ag)2'"* ay; so that §; are the normalized deviations of A from its expected value.
The integral can then be evaluated to yield
rat

=5 1 L p
d, A) = i

58 = Gy 2 o+

e
A 1”

X {xo; exp[—x3(1 + 3})] + 7 erfclxo (1 + 53)”2]} (A9)

2(1 + 8!

where erfc is the complementary error function. (A formula for numerically evaluating this
function is given in Appendix 3).
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Figure A2 shows plots of this distribution for various values of x, in the case where
the open time has a simple exponential distribution with mean . Since o is kept constant,
the figure demonstrates the effect of changing the duration limit w;, on the shape of the
amplitude distribution obtained from a given set of single-channel events. When xy is larger
than unity, the first term of equation A9 predominates, so that the distribution is essentially
Gaussian in shape and has a standard deviation o, =~ 0 ¢/xo = (So/Wmin) /% Large x, corresponds
to the case in which wy;, is large compared to T, so that the distribution of w values dies
off quickly beyond w,,;,. A nearly Gaussian amplitude distribution is therefore to be expected
from the tightly clustered w, values.

As x, decreases, the tails of the distribution become wider, and the distribution becomes
distinctly non-Gaussian, but it remains symmetrical. To obtain the sharpest distribution, it
is best to choose wy,;, (and therefore x,) to be large. However, a high w,;, value implies that
fewer events will be counted in the amplitude histogram. A good compromise is to choose
Wmin = T/2, yielding x3 = 0.5. This allows the fraction exp(—1/2) = 0.6 of the maximum
number of events to be counted while yielding a distribution that is nearly indistinguishable
from a Gaussian having the standard deviation o = 1.24 o, (Fig. A2B).

Rather than computing the background noise power spectrum to determine S, it may
be more convenient in practice to estimate o3 directly. This can be done by forming the
averages of a large number of successive stretches, of length 7, of the background trace. The
variance of these values can then be used directly as an estimate of 3.

Appendix 3. Numerical Techniques for Single-Channel Analysis

A3.1. A Digital Gaussian Filter

This digital filter forms output values y; from input values x; by forming a weighted sum

n

Yi= 2 ajXi—j

j==n

(A10)

where the g; are coefficients that sum to unity.

Relative probability density

Deviation in measured event amplitude (units of o,)

Figure A2. A: Plots of the function in equation A9 for various values of the parameter x3, in the case where
the open time has a simple exponential distribution. The plots were scaled to superimpose the peak values.
B: Comparison of equation A9 with a Gaussian function. The parameter x, was chosen to be 1//2; the
Gaussian function (dotted curve) was fitted by eye and had a standard deviation equal to 1.240,.
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A continuous-time Gaussian filter is characterized by the width parameter or “standard
deviation” o, of its impulse response, which is related to the cutoff frequency f. according
{0 (see equation 2)

o, = 0.1325/f, (A11)

Similarly, for a discrete filter, o, can be defined in units of sample intervals, in which case
gquation A11 holds if f; is expressed in units of the sampling rate.
For a discrete Gaussian filter having width o, the coefficients have the form

a = ! exp(—_ﬁ) (A12)
/ 2mo, 20 f,

and the number of terms, n, is chosen so that the missing terms are negligible in size; in the
implementation described here, 7 is chosen to be 40,

If o, is relatively small, coefficients of the form of equation A12 sum to less than unity
and yield a filter with wider bandwidth than f;; these errors exceed 1% when g, is less than
about 0.6. Since small o, corresponds to relatively light filtering, a suitable choice for the
coefficients in this case is

05/2

a,

ag = 1 - 2a1
a_, = a (A13)

s0 that each output value of the filter depends only on the corresponding input value and its
two neighboring points. This simple filter function causes no problems with aliasing, provided
the original data points are sampled at a sufficient rate, e.g., five times the cutoff frequency
of Bessel-response prefiltering.

Filter procedures are presented in Fig. A3 for FORTRAN and in Fig. A4 for MopULA-
2. The FORTRAN implementation operates on an array of integer input values and produces
integer output; intermediate computations are however, performed in floating point. Note
that because the number of coefficients » (this value is called NC in the FORTRAN subroutine,
NumCoeffs in the MODULA-2 version) increases inversely as f., sufficient room in the
coefficient array A should be provided for the smallest expected f, value. For example, n =
53 for f, = 0.01, but n = 5 for f, = 0.1. The MoDULA-2 implementation consists of two
procedures, one to compute the coefficients and the other to perform the actual filtering. The
latter, DoFilter, operates on real (floating-point) values and is capable of decimating the data,
ie., producing fewer output points than input points.

As an example of the use of these subroutines, suppose that we have a digitized record
that was filtered with a Bessel filter at 2 kHz and sampled at a 10-kHz rate. To reduce the
effective bandwidth to 1 kHz, the second filtering operation should have a cutoff frequency
(see equation 4), of (1 — 1/4)~2 = 1.15 kHz. In calling the filter routine, the FC or Frequency
variable should therefore be set to 0.115.

In both of the implementations shown, the evaluation of the sum (equation A10) is
done only after checking that the input array bounds will not be exceeded; the result is that
the values of the input points before the beginning and after the end of the input array are
in effect assumed to be zero. Although the points in the middle of a long data array will not
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SUBROUTINE FILTER (IN, OUT, NP, FC)

Gaussian filter subroutine. Accepts integer
data from the array IN, filters it with a -3db
frequency FC (in units of sampling frequency)

and returns the integer results in the OUT array.

INTEGER IN(NP), OUT(NP)

REAL A(54)
(Coefficient array. 54 terms are sufficient
for FC >= .01

————— First, calculate the coefficients-----
SIGMA = 0.132505 / FC
IF (SIGMA.LT. 0.62) GOTO 10

Standard gaussian coefficients.
NC is the number of coefficients not counting
the central one A(0).

NC = INT( 4.0 * SIGMA )

IF (NC .GT. 53) NC = 53

B = -0.5/ ( SIGMA * SIGMA )

AEL) = 1.0

SUM = 0.5

DO S5, I =1, NC
TEMP = EXP( (I*I) * B)
A(I+1) = TEMP
SUM = SUM + TEMP
CONTINUE

Normalize the coefficients
SUM = SUM * 2.0
Do 7, I =1, NC + 1
A(I) = A(I) / SUM
CONTINUE
GOTO 20

Alternate routine for narrow impulse
response. Only three terms are used.
A(2) SIGMA * SIGMA / 2.0
A(1l) 1.0 = 2.0 % A(2)

Z
Q

|
o

————— Actual filtering is done here-----
0, I =1, NP

po 30, J = JL, JU

K = TABS(J-I) + 1

SUM = SUM + IN(J) * A(K)
CONTINUE

OUT(I) = SUM
CONTINUE
RETURN

END

Figure A3
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IMPLEMENTATION MODULE FilterReal;

FROM SYSTEM IMPORT ETOX;
FROM InOut IMPORT WriteString,

(* exp function *)
WriteInt, WriteLn;

CONST
MaxFilterCoeffs = 220;

(* Module global variables *)

VAR
NumCoeffs : INTEGER;
Coeffs : ARRAY(0..MaxFilterCoeffs] OF REAL;

PROCEDURE SetGaussFilter ( Frequency: REAL );
(* Load the filter coefficient values according to the cutoff
frequency (in units of the sample frequency) given.

*)

sigma, b, sum : REAL;
i : INTEGER;

BEGIN
sigma:=0.132505/Frequency;
IF sigma < 0.62 THEN (* light filtering *)

Coeffs[l] := sigma*sigma*0.5;
Coeffs[0] := 1.0 - sigma*sigma;
NumCoeffs:=1;

ELSE (* normal filtering *)

NumCoeffs:= TRUNC(4.0 * sigma);
IF NumCoeffs > MaxFilterCoeffs THEN

WriteInt ( NumCoeffs, 4 ); WriteLn;
NumCoeffs:= MaxFilterCoeffs;

END;

b:= -1.0/(2.0*sigma*sigma) ;

(* First make the sum for normalization *)
sum:= 0.5;
FOR i:=1 TO NumCoeffs DO
sum:= sum + ETOX( b * FLOAT(i*i) );
END;
sum:= sum * 2.0;

(* now compute the actual coefficients *)

Coeffs(0):= 1.0 / sum;
FOR i:=1 TO NumCoeffs DO
Coeffs[i]:= ETOX( FLOAT(i*i) * b ) / sum;
END;
END;

END SetGaussFilter;

WriteString ("FilterReal.SetGaussFilter: Too many coefficients:");

Figure A4

total number of points).

be affected by this, the first and last n output values are reduced in magnitude by this
truncation of the sum. This becomes an important issue when one wishes to filter a long
digitized recording that does not fit into a single array of length N. The way to avoid the
“edge effects” is to read overlapping segments of data into the input array and then to write
out only the central N — 2n points of the output array each time (with the exception of the
first and last segments, where the initial and final “edges” should be written to preserve the
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PROCEDURE DoFilter( VAR Input, Output : ARRAY OF REAL;
NumlnputPoints : INTEGER;
Compression : INTEGER) ;
(* From the Input array, create a filtered Output that is
decimated by Compression. Thus the number of output points
is equal to NumInputPoints DIV Compression. SetGaussFilter
must be called before this procedure to set up the filter coefficients.
*)

VAR
10, 44 3 : INTEGER;
jmax, jmin : INTEGER;
sum : REAL;

BEGIN
FOR i0 := 0 TO (NumInputPoints DIV Compression) - 1 DO
i := 10 * Compression;

(* Make sure we stay within bounds of the Input array *)
jmax := NumCoeffs;
jmin := NumCoeffs;
IF jmin > i THEN jmin := i END;
IF jmax >= NumInputPoints - i THEN jmax := NumInputPoints - i - 1 END;

sum := Coeffs[0] * Input(i]; (* Central point *)
FOR j

sum
END;

1 TO jmin DO (* Early points *)
sum + Coeffs[j] * Input(i-j];

FOR j := 1 TO jmax DO (* Late points *)
sum := sum + Coeffs(j] * Input(i+j];
END;

(* Assign the output value *)
Output[i0] := sum;

END; (* FOR i0 *)
END DoFilter;

END FilterReal.

Figure A4. Continued.

A3.2. Cubic Spline Interpolation

A very useful interpolation technique for single-channel recording is the cubic spline,
in which a cubic polynomial spans the interval between each pair of data points. A different
polynomial is used for each interval, with coefficients chosen to match the function values
as well as the first and second derivatives at the sample points. An introduction to the theory
can be found in Hamming (1975). Briefly, we wish to find an interpolating function f whose
values f(1), f(2) . . . match the data values y,, y, . . . obtained at equally spaced sample times.
Intermediate values f(k + 6) for 8 between O and 1 are given by

ftk+0) = yp + yis1 0 + ar(p® — p) + a+1(0° — ) (Al4)

where p = 1 — 0. Before the interpolation is done, the coefficients @, must be computed.
They are specified by the system of equations

Ay T day + agey = Yi-1 — 2V + Yirr (A15)

which can be solved by Gaussian elimination.
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SUBROUTINE SPLINE (IN, OUT, A, N, NOUT)

This subroutine accepts N integer values from array
IN, interpolates them by the factor NE = NOUT/N

and returns the NOUT-NE+1 output points in the
array OUT. The array A is used internally for
coefficients of the cubic term of the interpolating
polynomial.

INTEGER IN(N), OUT (NOUT)
REAL A(N)

B =-1.0/ (2.0 +# SQRT( 3.0 ))
NE = NOUT / N

NEl = NE - 1

E = NE

Form the coefficient array

A(l) = 0.0
A(N) = 0.0
Do 10, I=2, N-1
TEMP = 2 * IN(I) - IN(I-1) - IN(I+1)
A(I) = B * (TEMP + A(I-1))
CONTINUE
DO 20, I=1, N-1
J = N-I
A(J) = A(J) + B * A(J+1)
CONTINUE

Insert the original points into OUT
DO 30, I=1, N
K = NE*T - NE1
OUT(K) = IN(I)
CONTINUE
Handle the intermediate points

DO 40, J=1, NE1l

P = J/E
Q =1.0 = P
P3 =P * (P * P - 1.0)
Q3 =Q * (Q *Q - 1.0)
DO 40, I=1, N-1

I1 = I+1

K =NE * I + J - NE1

OUT(K) = Q*IN(I) + P*IN(I1) + Q3*A(I) + P3*A(Il)
CONTINUE
RETURN
END

Figure AS
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IMPLEMENTATION MODULE SplineReal;

PROCEDURE Spline (VAR In, Work, Out: ARRAY OF REAL;
InNumber : INTEGER;
Expansion : INTEGER) ;

(* From the InNumber input points,
output points, using cubic splin
points Out( Expansion * i] are e
points Inf[i].

The Work array must have at least InNumber elements.

e interpolation. The output
qual to the corres

*)

(* Back-substitution *)
Work [InNumber-1] := -¢ # Work

[InNumber-2] ;
FOR i := InNumber-1 TO 1 BY -1 po
Work [i-1] := Work([i-1] - ¢ * Work[i];
END;

(* Copy the original points *)
j := 0; (*
FOR i:=0 TO InNumber-1 DO

Out(jl:=In(i];

INC(j, Expansion); (* increment J by Expansion *)
END;

j is the output pointer *)

(* Compute the interpolated points *)
FOR k:=1 TO Expansion-1 DO

p:= FLOAT (k) / FLOAT (Expansion) ;

g:= 1.0 - p;

pP3 := p * ( P *p-1.0);

gl := g * ( qQ*qg-1.0);

3 o= k;

ini:= 0;

FOR i:=0 TO InNumber-2 DO
Out[j]l:= q * In(ini] + p »* In[ini+1]

+ g3 * Work(i] + P3 * Work(i+1];

INC(ini) ;
INC(]j, Expansion);

END;

END;

END Spline;

END SplineReal.

CONST
Cc = 0.2674919; (* equals 1 / (2 + sqr(3) ) *)
VAR
b, q,
p3, g3 : REAL;
1,3 .k ind : INTEGER;
BEGIN
(* Compute coefficients: forward calculation *)
Work (0] := 0.0;
FOR i := 1 TO InNumber-2 DO
Work([i]:= ¢ * ¢ In(i-1) - 2.0 * In(i] + In[i+1] - Work(i-1] );
END;

make (InNumber—l) * Expansion - 1

ponding input

;

Figure A6
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Practical Analysis of Records

tepfac,functol,funk,

subroutine AMOCALL(npar,nvert/simp,theta,s

& fmin,niter)
e to simplify call of AMOEBA.FOR from Press et al. (1992)

¢ Subroutin

¢ This subroutine uses the input values (see below) to:

c (1) set up the starting simplex in simp(21,20)

c (2) set the corresponding function values in fval(21)
(o]

¢ SIMP should be declared in calling program, e.g. as simp(21,20) .

(<} (SIMP is defined here, but because of problems in passing values

c in 2-dimensional arrays with variable dimensions, it is simpler

(o) to declare SIMP in the calling program)

c INPUT:

(o npar = number of parameters
c nvert = npar+l
(el theta (npar) = initial guesses for parameters

c stepfac = value to control initial step size, e.g. stepfac=0.1

c starts with step size=0.1*initial guess.

C functol = tolerance for convergence (should be set to machine

c precision, or a bit larger -see Press et al.)

c funk = name of subroutine that calculates the value to be

minimized

OUTPUT:
c theta = final values of parameters
g to the best vertex of final simplex) .

(in this version, set to the

c parameters correspondin
um value for funk(theta)

c fmin = corresponding minim

niter = number of function evaluations done

real simp(nvert,npar),fva1(21),theta(npar),step(ZO)

EXTERNAL funk

(=} nvert=npar+1 | # of vertices in simplex

Figure A7

The FORTRAN subroutine SPLINE (Fig. A5) accepts an integer array of N data values
and fills a second integer array with the original points and interpolated values. The subroutine
first computes the coefficients in an efficient manner that is equivalent to Gaussian elimination
and backsubstitution. The N coefficients are kept in a real array A for further use if desired.

The subroutine forces the second derivative of f to be zero at the first and last data points.

This means that if a long record is to be interpolated in shorter segments, the segments
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do j=1,npar
step (j)=stepfac*theta (3)

enddo
do j=1,npar
simp(l,j):theta(j) I1start values=vertex #1
enddo
fval (1) =funk(theta) tfunction value for these

£ac=(sqrt(float(nvert))-1.)/(float(npar)*sqrt(z.))
do i=2,nvert
do j=1,npar
simp(i,j)=simp (1,3) + step(j) *fac
enddo
simp(i,i-1)=simp(1,i-1) + step(i-1)* (fac+l./sqrt(2.))

do j=1,npar

theta(j)=simp(i,3) tcopy paramters into theta (for funk)
enddo
fval (i) =funk (theta) tfunction value for these
enddo

call AMOEBA(simp,fval,nvert,npar,npar,functol,funk,niter)

Return the best vertex

fmin=£fval (1)

0

do i=2,nvert
if (fval (i) .1lt.fmin) then
fmin=fval (i)
do j=1,npar
theta (j)=simp(i,J)
enddo
endif

enddo

RETURN

end

Figure A7 Continued.

should have some overlap (e.g., ten data points) to allow smooth “splicing” of the interpo-
lated segments.

A MopuLA-2 implementation of the same algorithm is given in Fig. A6. Here the
coefficients a, are stored in the Work array while the input and output data are assumed to
be in arrays of real values.
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Practical Analysis of Records

A3.3. Error Function Evaluation

For computations involving the step response of Gaussian filters, a numerical approxima-
tion for the error function is required. One of the simplest approximations for the complemen-
tary error function is

erfe(x) = (ait + ay1? + azt3)exp(—x2) (A16)

where 1 = 1/(1 + px); p = 0.47047; a, = 0.3480242: a; = —0.0958798; a3 = 0.7478556;
and where x is restricted to positive values. The error in this approximation is less than 2.5
1072

The error function itself can be evaluated as

erfx) =1 — Verfc(x)

and for negative values of x,

erf(x) = —erf(—x)

The formula in equation A16 is from Hastings (1955), which also contains more exact
formulas. These formulas can also be found in Abramovitz and Stegun (1964), p. 299.

A34. A Calling Routine for AMOEBA

The subroutine (in FORTRAN) designed to simplify calling of the simplex minimization
.~ routine by Press er al. (1992) is given in Fig. A7. This was discussed in Section 6.3.
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