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Abstract

Voltage-gated sodium and calcium channels are evolutionarily related trans-
membrane signaling proteins that initiate action potentials, neurotransmis-
sion, excitation-contraction coupling, and other physiological processes.Ge-
netic or acquired dysfunction of these proteins causes numerous diseases,
termed channelopathies, and sodium and calcium channels are the molecu-
lar targets for several major classes of drugs. Recent advances in the struc-
tural biology of these proteins usingX-ray crystallography and cryo-electron
microscopy have given new insights into the molecular basis for their func-
tion and pharmacology. Here we review this recent literature and integrate
findings on sodium and calcium channels to reveal the structural basis for
their voltage-dependent activation, fast and slow inactivation, ion conduc-
tance and selectivity, and complex pharmacology at the atomic level. We
conclude with the theme that new understanding of the diseases and thera-
peutics of these channels will be derived from application of the emerging
structural principles from these recent structural analyses.
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1. INTRODUCTION

Voltage-gated sodium (NaV) channels initiate and conduct action potentials in nerve, muscle,
and other electrically excitable cells (1). The basic functional properties of sodium and calcium
channels were elucidated in classical electrophysiological studies using the voltage clamp method.
Upon depolarization of nerve or muscle fibers, NaV channels are rapidly activated and initiate
the action potential (2). Within a few milliseconds, sodium channels undergo fast inactivation,
which returns the sodium conductance through them nearly to the baseline level (2). Prolonged
depolarization or repetitive depolarizations drive sodium channels into a distinct slow-inactivated
state from which recovery is very slow (3, 4). Sodium conductance is mediated by an ion selectiv-
ity filter that catalyzes sodium entry and restricts the passage of other ions (5, 6). NaV channels
are subject to regulation by intracellular signaling pathways, and they are the molecular targets
for neurologic, psychiatric, and cardiovascular diseases and for related therapeutic agents (7, 8).
Calcium currents were first recorded in cardiac muscle, where depolarization activates voltage-
gated channels that are highly selective for calcium (9, 10). Voltage-gated calcium (CaV) channels
are activated during action potentials in many types of excitable cells, and they conduct calcium
into cells to initiate numerous physiological processes, including contraction, neurotransmission,
secretion, and gene transcription (1, 11). Classical calcium channel–blocking drugs are used in
the treatment of cardiovascular disorders, including cardiac arrhythmia, hypertension, and angina
pectoris (12, 13).

Recent work has given new atomic-level insights into the structure and function of sodium and
calcium channels as well as the sites and mechanisms of action of therapeutic agents that act on
them.NaV and CaV channels are closely related members of the voltage-gated ion channel protein
superfamily, sometimes referred to as the chanome (14; http://www.guidetopharmacology.org/
GRAC/ReceptorFamiliesForward?type=IC). Their close molecular relationships derive from
their common ancestor, the bacterial sodium channels related to NaChBac (14, 15). Here we
review the structure, function, and pharmacology of these kissing-cousin ion channels, which are
about 25% identical in amino acid sequence in their conserved transmembrane domains.

2. STRUCTURE AND FUNCTION OF SODIUM AND CALCIUM
CHANNELS

2.1. Purification and Subunit Structure

Sodium channel proteins isolated from nerve and muscle based on high-affinity neurotoxin bind-
ing are complexes of a large, pore-forming α subunit of 250 kDa with one or two β subunits of
30–40 kDa (7, 16) (Figure 1a). The α subunits are composed of 24 transmembrane segments
organized in four homologous domains containing six transmembrane segments in each (7, 16–
18) (Figure 1b,c). In contrast, the NaVβ subunits are single membrane-spanning glycoproteins
with a small intracellular domain and an extracellular immunoglobulin-like domain, similar to
cell adhesion molecules (7, 19, 20) (Figure 1b). Expression of the α subunit alone is sufficient to
reconstitute sodium channel function in Xenopus oocytes or mammalian cells, but the β subunits
modify the kinetics and voltage dependence of sodium channel activation and inactivation (7, 19,
20).

CaV channels were initially purified, reconstituted, and cloned from skeletal muscle,where they
play a key role in excitation-contraction coupling (21–23). They were isolated based on high-
affinity binding of dihydropyridine calcium antagonist drugs. Calcium channels have a central
pore-forming subunit, designated α1, which has a transmembrane folding pattern like the α sub-
unit of sodium channels (11, 22, 24) (Figure 1b). This pore-forming subunit is associated with
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Figure 1 (Figure appears on preceding page)

Structural components of NaV channels. (a) Representation of a brain sodium channel based on biochemical studies. Wavy lines depict
N-linked glycosylation. (b) Transmembrane folding diagram of the sodium channel subunits, with the extracellular domains of the
β subunits represented as immunoglobulin-like folds. Blue circles indicate fast inactivation gate receptor components. (c) Structure of
the fast inactivation gate in solution as determined by nuclear magnetic resonance. (d ) Structure of the bacterial sodium channel
NaVAb viewed from the extracellular side, including the pore module (dark blue) and the voltage sensor (green and red). (e) Pore domain
of NaVAb viewed from the membrane perspective. Only the pore-forming S5, P, P2, and S6 segments of two subunits are shown, with
gray indicating water-accessible space in the pore. ( f ) Voltage sensor of NaVAb. (g) Structure of the human NaV1.4 channel.
(h) Inactivation gate of NaV1.4 channels. The IFM forms the fast inactivation particle in the linker connecting domains III and IV.
Abbreviations: ENC, extracellular negative cluster; h, fast inactivation particle; HCS, hydrophobic constriction site; IFM,
isoleucine-phenylalanine-methionine motif; Ig, immunoglobulin-like; INC, intracellular negative cluster; NaV, voltage-gated sodium;
P, sites of protein phosphorylation; -S-S-, disulfide bond; S1N, N-terminal alpha helix preceding transmembrane segment S1; ScTx,
scorpion toxin; TM, transmembrane; TTX, tetrodotoxin; VSD, voltage-sensing domain. Panels a–c adapted with permission from
Reference 7; panels d–f adapted with permission from Reference 25; and panels g,h adapted with permission from Reference 32.

up to four distinct classes of auxiliary subunits: an intracellular β subunit; a membrane-associated,
disulfide-linked α2δ subunit complex; and a transmembrane γ subunit (11, 21, 24) (Figure 2a). A
preprotein containing α2 and δ subunits is encoded by a single gene, and the mature subunits are
produced by proteolytic processing at two sites, disulfide linkage, and the addition of a C-terminal
glycophosphatidylinositol anchor (11, 20, 24). These four classes of auxiliary subunits modify cal-
cium channel gating as well as assembly and insertion into the plasma membrane (11, 20, 24).

2.2. The Transmembrane Core of Sodium and Calcium Channels

The three-dimensional structure of the core functional unit of the sodium channel was first re-
vealed by X-ray crystallographic studies of the homotetrameric ancestral bacterial sodium channel
(NaVAb) (25) (Figure 1d ). As expected from structures of potassium channels, the pore is formed
by the S5 and S6 segments in the center of a square array of four subunits, and the voltage sensor
is formed by a bundle of four transmembrane alpha-helices (S1-S4) connected to the pore by the
S4-S5 linker (8, 25, 26) (Figure 1b). Structure-function studies using mutagenesis, electrophysiol-
ogy, and molecular modeling have given a detailed two-dimensional map of the functional parts of
sodium channels (7, 8, 26) (Figure 1b). Voltage-dependent activation is initiated by voltage-driven
outward movement of the positive gating charges, usually arginine residues, in the S4 transmem-
brane segments of the voltage sensors (7, 27–29) (Figure 1b,f ). Sodium conductance is mediated
by the pore domain formed by the S5 and S6 segments and the P loop between them (7, 8, 26)
(Figure 1b,e). Within 1–2 ms after opening, the fast inactivation gate formed by the intracellular
linker connecting domains III and IV folds into the pore and inactivates it (7, 8, 26) (Figure 1b,c).
During prolonged depolarization, sodium channels enter a slow-inactivated state from which re-
covery requires prolonged repolarization (30, 31).

2.3. The Eukaryotic Sodium and Calcium Channel Complexes

Cryo-electron microscopic (cryoEM) analysis of eukaryotic nerve and skeletal muscle sodium
channel complexes has given dramatic new insights into their overall structure (32–35)
(Figure 1g,h). The structure of the functional cores of these channels is virtually identical to
NaVAb (25), which was used as a search template to solve the initial structure (34). The backbones
of the pores and ion selectivity filters in the center of these structures are essentially identical to
their bacterial ancestors, but the high field-strength site in vertebrate sodium channels has four
different side chains: Asp-Glu-Lys-Ala (32–35). The voltage sensors are in a similar activated con-
formation to that observed for bacterial NaV channels (32–34) (Figure 1f ). In addition to these
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Structural components of CaV channels. (a) Representation of the skeletal muscle calcium channel based on biochemical studies.
Panel a adapted with permission from Reference 156. (b) Structure of the skeletal muscle CaV1.1 channel determined by cryo-electron
microscopy. Panel b adapted with permission from References 37 and 156. (c) Structure of the ion selectivity filter of CaVAb. (Left) The
selectivity filter of CaVAb with a line of Ca2+ ions (green) and immobilized water molecules (red ). The narrow point in the selectivity
filter is the high field-strength site formed by Asp177. (Center) A Ca2+ ion with surrounding waters of hydration bound at site 3, which
is formed by the backbone carbonyls of Thr175. (Right) A single blocking Cd2+ ion bound to Asp177 in the high field-strength site.
Electron density is illustrated by the mesh. Panel c adapted with permission from Reference 58. Abbreviations: AID, α interaction
domain; CaV, voltage-gated calcium; CavAb, ancestral bacterial calcium channel construct.

new insights into the core functional unit of sodium channels, the cryoEM studies of eukaryotic
sodium channels have generated extraordinary new information on the structure of the complex
of α and β subunits, the conformation of the fast inactivation gate in situ, and the partial struc-
tures of the large intracellular and extracellular domains that are not present in the bacterial NaV
channels (32–35) (Figure 1g,h).
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The first structure of a eukaryotic calcium channel was determined for the CaV1.1 channel
purified from rabbit skeletal muscle, using biochemical methods similar to those employed
originally for isolation of the channel protein (21, 36, 37) (Figure 2a,b). This structure elegantly
confirms the overall subunit composition and structure of the calcium channel determined with
biochemical methods and gives much more detail on the conformation of the five subunits (36,
37) (Figure 2a,b). As expected from previous crystallographic studies (38, 39), the β subunit
contains an SH3 domain that may interact with other cellular proteins and an NK domain that
interacts with the intracellular linker connecting domains I and II of the α1 subunit through the
α interaction domain (37). The heavily glycosylated α2 subunit projects far into the extracellular
space, consistent with its postulated role as a cell adhesion molecule (24). Only the extracellular
portion of the full-length α2δ precursor protein is observed in the cryoEM structure, consistent
with biochemical studies showing that the C-terminal region of the δ subunit is proteolytically
processed and linked to the membrane by a glycosylphosphatidylinositol anchor (40).

2.4. Voltage-Dependent Activation

The voltage-dependent activation of sodium channels is driven by transmembrane movement
of the Arg gating charges in the S4 segments of the voltage sensors. Classical studies detected
this transmembrane charge movement as an outward capacitive gating current, whose magnitude
is equivalent to movement of 2–3 gating charges across the transmembrane electrical field per
voltage sensor (28, 41). The implied outward movement of the sodium channel S4 segment has
been detected in voltage-dependent chemical labeling and disulfide-locking studies (42–46). The
NaVAb voltage sensor is a four-helix bundle with a substantial aqueous cleft that faces the extra-
cellular milieu (25) (Figure 1b, f ). The gating charges in the S4 segment are usually Arg residues
spaced at three-residue intervals, which span the membrane (see R1–4 in Figure 1f ). Upon de-
polarization, the S4 segment moves outward, exchanging ion pair partners and transporting the
Arg gating charges through the hydrophobic constriction site (HCS) according to a sliding-helix
model (44–48) (see HCS in Figure 1f ). The presence of the large side chain of the Arg gating
charges serves to seal the voltage sensor and prevent transmembrane movement of water and
ions. Changes in membrane potential drive the S4 segment inward and outward in response to
hyperpolarization and depolarization,moving the gating charges through the HCS and across the
complete transmembrane electric field (47). These voltage-driven conformational changes pro-
vide electromechanical coupling of depolarization and repolarization to opening and closing of
the pore, respectively.

Pore opening takes place at the intracellular ends of the S6 segments, which cross and inter-
act closely to form the closed activation gate (Figures 1e and 3a) (25, 26, 49). The bundle of
S6 helices opens in an iris-like motion in response to voltage-dependent conformational changes
in the voltage sensor (25, 26, 49) (Figure 3a). Structures of the sodium channel in open states
reveal a substantial movement of the intracellular ends of the S6 segments, from a closed confor-
mation with an orifice of less than 1 Å to an open conformation with an orifice of up to 10.5 Å
(50) (Figure 3a). This large opening is just sufficient to allow passage of hydrated sodium ions
without a significant energy barrier (50). The open activation gate just fills the space between
the surrounding S4-S5 segments, suggesting that this open conformation is as large as possible
without major additional structural rearrangements.

In work completed after this review was submitted for publication,we determined the structure
ofNaVAb in the resting state, giving the first insight into the structural basis for voltage-dependent
activation of the voltage sensor and its coupling to opening the pore (51). The resting state is
characterized by the inward movement of the S4 gating charges through the voltage sensor by
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Figure 3

Open and closed states and lidocaine binding in the pore of the ancestral bacterial sodium channel (NaVAb).
(a) Closed, open, and inactivated states of the activation gate of NaVAb in a space-filling model. The orifice
in the activation gate is 10.5 Å. Panel a adapted with permission from Reference 50. (b, left) The open state of
NaVAb is shown in a space-filling model in wheat. Lidocaine entry through the open activation gate is
shown in a side view, with lidocaine manually placed in the model for illustrative purposes. The inset shows a
stick model of lidocaine (left) and a close-up of lidocaine’s entry pathway (right). (b, right) Lidocaine moving
through the open activation gate as viewed from the intracellular side of the membrane. The inset shows a
close-up of lidocaine’s entry pathway.

11.5 Å, the unwinding of the extracellular S3-S4 loop and the outer end of the S4 helical segment,
and the formation of a characteristic elbow of the S4-S5 linker projecting into the cytoplasmic
compartment (51). In this inward position, the voltage sensor in the resting state is poised to shoot
outward upon depolarization and drive the opening of the pore. The voltage-dependent gating
mechanism derived from this high-resolution structure agrees closely with the sliding helix model
of voltage-dependent gating, as illustrated in the previous Rosetta model of gating based on the
structure of the activated state of NaVAb (25) (Figure 1f ) and disulfide-locking studies (44–48).
The complete voltage-dependent gatingmechanism, from voltage sensing to pore opening, is now
defined at the atomic level.
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Because they are derived from a common ancestor, it is likely that CaV channels have similar
voltage-dependent activation, conformational coupling, and pore-opening mechanisms to NaV
channels.

2.5. Sodium Conductance and Selectivity

As for voltage-gated potassium channels, sodium conductance and selectivity are mediated by the
P loops in the four pore-forming modules of sodium channels (Figure 1e), which interact with
Na+ as it approaches and enters the ion selectivity filter (25, 52–55).However, in sharp contrast to
potassium channels, the outward-facing edge of the ion selectivity filter is composed of a square
array of four glutamate (Glu) residues in bacterial NaV channels (25) or an array of four different
amino acid residues, Asp-Glu-Lys-Ala, in metazoan NaV channels (32). This high field-strength
site partially dehydrates the approaching Na+ ion and allows only Na+ to pass efficiently (52–54).
Unexpectedly, the side chains of the Glu residues at the high field-strength site move inward with
each Na+ by rotating at a single torsion angle in a dunking motion that takes place at the rate of
Na+ permeation, >107 per second (52, 56). This dunking motion allows Na+ to be conducted in
a degenerate set of partially dehydrated complexes with the Glu side chains and increases the rate
of Na+ conductance.

2.6. Calcium Selectivity

Vertebrate CaV channels have an ion selectivity filter with a high field-strength site containing four
Glu residues, similar to NaVAb and the other bacterial sodium channels (24, 55). These residues
are crucial for calcium selectivity and conductance in eukaryotic calcium channels (55). The ad-
dition of negatively charged residues in the outer vestibule of NaVAb, following the pattern in
eukaryotic calcium channels (57), converts NaVAb to a form with high calcium selectivity, desig-
nated CaVAb (58). Determination of the structure of CaVAb by X-ray crystallography revealed
a series of closely spaced Ca2+ binding sites at approximately 4-Å intersite intervals that lead
through the ion selectivity filter (58) (Figure 2c). These sites are occupied sequentially by Ca2+ as
it moves inward through the pore. Like Na+, Ca2+ is conducted as a hydrated cation, and waters
of hydration can be resolved in favorable crystal structures (58) (Figure 2c). As originally pro-
posed in biophysical models of Ca2+ permeation (59–61), these sites bind Ca2+ with high affinity
in order to prevent monovalent cation permeation, and yet they give high conductance of Ca2+ by
the knock-off effect of electrostatic repulsion of one entering Ca2+ on the preceding Ca2+ ions in
the pore (58). Consistent with the requirement for a series of Ca2+-binding sites for conductance,
Cd2+ binds to a single site and blocks the pore but is not conducted (58) (Figure 2c).

2.7. Slow Voltage-Dependent Inactivation

In response to prolonged single depolarizations or trains of repetitive depolarizations, NaV chan-
nels enter a distinct slow-inactivated state that is very stable (3, 4, 30, 62), and this process is mod-
ulated by neurotransmitter receptors and second messenger signaling pathways through protein
phosphorylation (31). Recovery from slow inactivation requires prolonged repolarization. Slow
voltage-dependent inactivation is characteristic of all sodium channels, from bacteria to human
(30, 63–65). Slow inactivation of the bacterial sodium channels is caused by an asymmetric col-
lapse of the pore, involving amino acid residues in the ion selectivity filter and the pore-lining S6
segments (26, 66–69). In eukaryotic sodium channels, this mechanism closes the pore on a longer
time scale through conformational changes in the selectivity filter and the pore-lining S6 segment,
and this form of inactivation is very slowly reversed upon repolarization (30, 70, 71).
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Slow, voltage-dependent inactivation is also observed for CaV channels (72–74). This form of
inactivation is observed most easily in experiments in which Ba2+ is substituted for Ca2+ as the
permeant ion in order to prevent the more rapid Ca2+/calmodulin-dependent inactivation that
is characteristic of many calcium channels (75, 76). Disease mutations in amino acid residues at
the intracellular ends of the S6 segments of CaV1.2 and CaV1.3 channels prevent slow, voltage-
dependent inactivation (77–81). These results are consistent with an asymmetric collapse of the
S6 segments during this form of CaV channel inactivation, as observed for bacterial NaV channels
(66, 67). Slow, voltage-dependent inactivation of sodium and calcium channels is also an important
allosteric modulator of drug binding and block, as described below (82–84).

2.8. Fast Voltage-Dependent Inactivation

Fast inactivation is a crucial evolutionary addition to basic sodium channel function, as it is
observed in eukaryotic sodium channels but not in prokaryotic sodium channels (63, 85). The
fast inactivation gate of the eukaryotic sodium channels is formed by the intracellular linker
between domains III and IV (86–89), which is not present in the structure of bacterial sodium
channels (Figure 1b,d). A series of key amino acid residues in the intracellular linker connecting
domains III and IV, Ile-Phe-Met-Thr, serve as the classically defined inactivation particle, which
folds into the inner mouth of the pore and blocks sodium conductance (89) (Figure 1c). The
structure of the fast inactivation gate peptide analyzed as a separate protein in solution by nuclear
magnetic resonance contains an alpha-helical motif preceded by two turns containing the key
interacting residues in the Ile-Phe-Met-Thr motif (90) (Figure 1c). During fast inactivation,
these key amino acid residues are projected into the intracellular mouth of the pore, where they
are bound and block ion permeation (32, 90). Remarkably, the structure of the fast inactivation
gate peptide determined in solution is very similar to its conformation in the full-length NaV1.4
channel (32, 90) (Figure 1g,h). The receptor that binds the inactivation gate to the intracellular
end of the pore is formed by amino acid residues in the S4-S5 linkers in domains III and IV
and in the intracellular end of the S6 segment in domain IV (32, 33, 91–95) (Figure 1b,h).
Structure-function studies showed that scorpion toxins block fast inactivation by binding to the
S3-S4 linker and preventing the outward movement of the gating charges in domain IV (96,
97). Similarly, studies using fluorescent labeling of S4 segments and voltage-clamp fluorometry
revealed that the outward movement of the gating charges in the S4 segment of the voltage
sensor in domain IV plays a key role in coupling activation to fast inactivation (98, 99).

3. SODIUM AND CALCIUM CHANNEL PHARMACOLOGY
AT THE ATOMIC LEVEL

3.1. State-Dependent Drug Block

Voltage-gated sodium channels are the molecular targets for drugs used in local anesthesia and in
the treatment of epilepsy, chronic pain, and cardiac arrhythmia (1, 82, 100, 101). All of these drugs
block NaV channels in a state-dependent manner, depending on the resting membrane potential
and the frequency of action potential generation (1, 82, 100, 101). Voltage-dependent block
increases the inhibition of sodium currents in depolarized cells that are damaged and driving
inappropriate action potential generation. Frequency-dependent block increases inhibition of
sodium currents in rapidly firing cells that transmit pain information and drive hyperexcitability
in epilepsy and cardiac arrhythmia. This state-dependent action is essential to allow the drugs to
preferentially block sodium channels in depolarized, rapidly firing cells that cause pain, epilepsy,
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and cardiac arrhythmia without blocking normal action potential generation in sensory nerves,
brain, or heart.

Classical calcium channel blockers are primarily used in the treatment of cardiovascular dis-
orders (12, 13). They are grouped in three chemical classes, which have distinct functional effects
and clinical uses (12, 13). Phenylalkylamines and benzothiazepines are primarily used for cardiac
arrhythmia (102). They have strongly frequency-dependent block, which enhances their action
on calcium channels in rapidly firing injured cardiac myocytes that are responsible for arrhythmia
relative to uninjured myocytes contracting at a normal rate (82). Dihydropyridines are primar-
ily used for hypertension and angina pectoris (12). They have strongly voltage-dependent block,
which is driven by high-affinity binding to voltage-dependent calcium channels in the inactivated
state (103). They preferentially inhibit calcium channels in continuously depolarized cells, such
as the vascular smooth muscle cells that sustain contraction of blood vessels in hypertension and
angina pectoris (12). As for sodium channel blockers, state-dependent binding and action are es-
sential for the clinical use of these calcium antagonist drugs.

State-dependent block of sodium channels by local anesthetic and antiarrhythmic drugs is well
described by the classical Modulated Receptor Hypothesis (1, 100, 104, 105). In this model, drug
block is frequency-dependent because the receptor site is located in the pore and is more rapidly
accessible for drug binding when the pore is open; therefore, the generation of action potentials at
high frequency increases drug block (100). Drug block is voltage-dependent because these drugs
bind to the inactivated state of sodium channels with high affinity; therefore, sodium channels in
damaged, depolarized cells are preferentially blocked (100). Together, these mechanisms allow lo-
cal anesthetics, antiepileptics, antiarrhythmics, and analgesics to have beneficial therapeutic effects
without unwanted toxicity from complete block of electrical excitability (101).

Drug size, shape, and chemistry strongly influence modulated drug block (106, 107). Small, hy-
drophobic drug molecules can block sodium channels in the resting state, and it was hypothesized
that these drugs can reach their receptor site in the pore by direct entry from the lipid phase of
the membrane without pore opening (100, 107). These drugs are all secondary or tertiary amines
with protonatable amino groups. The protonated, positively charged forms are the pharmacolog-
ically active molecular species of these drugs, as judged from experiments with variations in pH
and with permanently charged local anesthetic derivatives (106, 108–110). Uncharged forms of
these drugs diffuse across the cell membrane, are reprotonated in the cytosol, and block sodium
channels from the inside of the cell. Damaged cells and tissues are often acidic; therefore, the pH
of cells and tissues and the pKa values of the drugs modulate drug block in a complex way (106,
108, 109, 111).

Calcium antagonist drugs also conform to the general paradigm introduced in the Modulated
Receptor Hypothesis (82, 83, 103). Frequency-dependent block by phenylalkylamines and ben-
zothiazepines was proposed to result from binding in the pore, which is opened during each action
potential and provides rapid drug access to their receptor site(s) (83). Voltage-dependent block by
dihydropyridines was proposed to result from preferential binding to the inactivated conforma-
tion of calcium channels (103). Together, the frequency dependence and voltage dependence of
drug action determine the clinical uses of these calcium antagonist drugs for cardiac arrhythmia
versus hypertension and angina pectoris (82).

3.2. Drug Receptor Sites and the Structural Basis for State-Dependent
Block of Sodium Channels

The initial molecular mapping studies of the receptor site for local anesthetic, antiepileptic,
and antiarrhythmic drugs by site-directed mutagenesis revealed key amino acid residues in the
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pore-lining S6 segment in domain IV, consistent with the model that these drugs enter and block
the pore (112, 113). More detailed molecular mapping studies showed that amino acid residues
in the IS6, IIIS6, and IVS6 segments converge to form the drug receptor site (114–118). Recent
structural studies of NaVAb with the drugs lidocaine and flecainide bound have further elucidated
the three-dimensional structure of this important drug receptor site (119) (Figure 4a,b). The
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Figure 4

Drug receptor site and entry through the fenestrations of NaVAb. (a) Intracellular view of lidocaine bound in its receptor site in the
pore. (b) Intracellular view of flecainide bound in the pore. (c) A fenestration in NaVAb viewed from the side in a section through the
center of NaVAb.Water-accessible space is indicated by the algorithm HOLE (tan), and the direction of drug entry is indicated
(red arrow). (d ) Lidocaine entry via the fenestrations. The water-accessible space in a fenestration indicated by the HOLE algorithm is
illustrated in tan. The capping residue Phe203 and lidocaine are indicated in yellow sticks. (Left) Drug entry is viewed from the central
cavity. (Right) Drug entry is viewed from the neighboring NaVAb subunit as the drug moves from left to right into the central cavity of
the pore. The sizes of the fenestrations and drug molecules are illustrated in accurate molecular scale. (e) Potency for flecainide block of
NaVAb (black), NaVAb/F203A (cyan), and NaVAb/F203W (red ). ( f ) Potency for lidocaine block of NaVAb (black), NaVAb/F203A (cyan),
and NaVAb/F203W (red). Panels e,f adapted with permission from Reference 119. Abbreviations: AG, activation gate; NaVAb, ancestral
bacterial sodium channel; SF, selectivity filter.
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electron density for bound lidocaine is located in the central cavity, just at the intracellular outlet
of the narrow ion selectivity filter (119) (Figure 4a,b). A drug molecule bound in this position
would completely block the ion permeation pathway. The essential protonated amino groups of
lidocaine and flecainide point upward into the ion selectivity filter, where they interact with the
backbone carbonyl groups of Thr175 that form the final coordination site for entering sodium
ions in the selectivity filter of NaVAb (119). Although flecainide binds in a similar position to
lidocaine, it is larger and stretches further toward the walls of the central cavity (119) (Figure 4b).

What is the structural basis for modulated drug entry to the receptor site in the pore of sodium
channels? Crystal structures of the open state of bacterial NaV channels reveal an orifice at the
activation gate of up to 10.5 Å in diameter (50) (Figure 3a). As illustrated in Figure 3b, an ori-
fice of 10.5 Å is just sufficient to allow entry of lidocaine (50). Therefore, it is likely that the
open activation gate provides the entry pathway for frequency-dependent block by these drugs.
Although frequency-dependent block of NaV channels can be measured directly by repetitively
opening the pore, the proposed model of resting-state block by direct entry into the pore from
the lipid phase of the membrane (100) has lacked experimental support. Remarkably, the crys-
tal structure of NaVAb revealed fenestrations in the side of the pore that lead from the lipid
phase of the membrane into the central cavity at the position of the drug receptor site (25, 119)
(Figure 4c). These fenestrations are conserved in eukaryotic NaV channels (32–34), and they are
large enough to allow passage of local anesthetic and antiarrhythmic drugs (119) (Figure 4d). Re-
cent studies show that these fenestrations do indeed control block of NaV channels in the resting
state (119). Mutations of a key Phe residue (F203) that caps the fenestrations in NaVAb change
the size of the fenestrations without having an effect on the backbone conformation of the pore
module (119). These mutations have large graded effects (up to 50-fold) on resting-state block by
local anesthetics and antiarrhythmics that depend, predictably, on drug size (119). For example,
these mutations shift the IC50 of flecainide, a large drug molecule, up to 50-fold (Figure 4e). In
contrast, the IC50 for the smaller drug lidocaine is increased by the mutation F203W, which re-
duces the size of the fenestration, but is not affected by the mutation F203A, which increases the
size of the fenestration, because lidocaine can already fit easily through the wild-type fenestration
with F203 (Figure 4f ). Thus, penetration through the fenestrations is a crucial determinant of
the potency of state-dependent drug block. In the future, structure-based drug design should take
account of the effects of fenestrations on drug access as well as the direct binding interactions of
these pore-blocking drugs with their receptor site in the central cavity.

3.3. Drug Receptor Sites on Calcium Channels

Classical ligand-binding studies showed that the three chemical classes of calcium antagonist
drugs interact with three partially overlapping, allosterically coupled receptor sites (120–122).
Photoaffinity labeling identified the S6 segments in domains III and IV as the primary sites of
drug interactions (123–128). These studies led to a model in which phenylalkylamines bind on
the pore-facing side of the S6 segments and dihydropyridines bind to the lipid-facing side of the
S6 segments (126).This general model has been confirmed by structural studies (discussed below).

More detailed molecular mapping by mutagenesis identified nine key amino acid residues in
the IIIS5, IIIS6, and IVS6 segments that form the dihydropyridine receptor site (129–133), and
the transfer of these amino acid residues into dihydropyridine-insensitive calcium channels was
sufficient to reconstitute dihydropyridine inhibition with nearly normal affinity and specificity
(134–136). Similar molecular mapping studies identified an overlapping set of amino acid residues
in the IIIS6 and IVS6 plus amino acid residues in the ion selectivity filter that are important for
binding of phenylalkylamines and benzothiazepines (137–142).
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Figure 5

Receptor sites and pore entry for calcium antagonist drugs. (a) Calcium antagonist drugs at work. (Top view)
CaVAb with the DHP amlodipine bound, calcium (red), the pore module (gray), and voltage sensors (blue).
The inset shows the DHP amlodipine bound in its receptor site (DHP). Electron density is shown as a blue
mesh, amlodipine as yellow sticks. (Side view) Cross section through CaVAb with the phenylalkylamine
verapamil (yellow sticks) bound (PAA). The inset shows Ca2+ (green) and verapamil (yellow sticks). Panel a
insets adapted with permission from Reference 143. (b) Verapamil entering the pore. Open-state structure of
CaVAb with space-filling model of verapamil drawn to scale. Abbreviations: CaVAb, ancestral bacterial
calcium channel; DHP, dihydropyridine; PAA, phenylalkylamine.

Surprisingly, NaVAb and the calcium-selective derivative, CaVAb, have substantial binding
affinity for calcium antagonist drugs, which leads to frequency- and voltage-dependent block at
concentrations approximately tenfold higher than in mammalian cardiac calcium channels (15,
143). X-ray crystallography revealed two distinct receptor sites for phenylalkylamines and dihy-
dropyridines in the model bacterial channel CaVAb (143) (Figure 5a). As expected, verapamil
binds in the pore, just at the intracellular exit from the ion selectivity filter into the central cavity
(143) (see PAA in Figure 5a). Its charged amino group projects upward into the pore, forming
a complex with the backbone carbonyls of Thr175 at the intracellular end of the ion selectiv-
ity filter. Its two flanking aromatic moieties make hydrophobic interactions on either side of the
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ion-conducting pathway through the ion selectivity filter, like the sticky ends of a Band-Aid (143)
(Figure 5a). This binding pose for verapamil overlaps that of the sodium channel–blocking lo-
cal anesthetic and antiarrhythmic drugs (50, 143) (Figure 4a,b), consistent with the model that
frequency-dependent block by both sodium- and calcium-channel drugs results in a similar drug-
receptor complex.

From electrophysiological studies, phenylalkylamines such as verapamil are thought to enter
the pore and block it during single depolarizations (83, 144). These results are consistent with
molecular mapping studies placing the receptor site on the pore-lining S6 segments in domains III
and IV (137, 138). Like sodium channel–blocking drugs, verapamil is small enough in its extended
conformation to enter the open activation gate (Figure 5b); however, larger drugmolecules would
be unable to enter. Thus, the size of the orifice formed by the open activation gate is an important
determinant of open-channel, frequency-dependent block by calcium antagonist drugs.

In contrast to the phenylalkylamine receptor site, dihydropyridines such as amlodipine and
nimopidine bind to a site on the external lipid-facing surface of the pore module between two
voltage sensors (143) (see DHP in Figure 5a). Surprisingly, only a single dihydropyridine binds to
the CaVAb homotetramer and induces a quaternary conformational change that prevents binding
to the other three analogous positions in the tetrameric structure (143). This quaternary confor-
mational change disrupts the fourfold symmetry of CaVAb and causes one Ca2+ to bind directly
to a carboxyl side chain of an Asp residue in one of the coordination sites in the outer selectivity
filter, effectively blocking the pore by tightly binding this Ca2+ ion. Thus, these structural find-
ings indicate that the binding of dihydropyridines to a site on the lipid-facing surface of the pore
module can effectively block Ca2+ conductance by inducing high-affinity binding of Ca2+ in the
pore, as previously suggested from ligand-binding studies showing that binding of Ca2+ in the
ion selectivity filter is required for high-affinity binding of dihydropyridines (129, 132). Recent
X-ray crystallography studies indicate that the benzothiazepine diltiazem also binds in the pore
of CaVAb in a position that partially overlaps the phenylalkylamine binding site (145). There-
fore, frequency-dependent pore block by diltiazem and the allosteric interactions of diltiazem
with dihydropyridines may involve the same molecular mechanisms as for verapamil and other
phenylalkylamines.

After this review was submitted for publication, a new cryoEM structure of the skeletal
muscle CaV1.1 channel appeared with calcium antagonist drugs bound (146). This work is a
major addition to our understanding of the structural basis for calcium antagonist drug action.
As previously described for the model calcium channel CaVAb, verapamil and diltiazem bound
to overlapping receptor sites located in the central cavity of the pore on the intracellular side
of the ion selectivity filter (146). In contrast, the receptor site for dihydropyridines was located
on the lipid-facing surface of the pore module between the voltage sensors in domains III and
IV (146), as expected from earlier structure-function studies of mammalian CaV1.2 channels
(124–136) and from X-ray crystallography of CaVAb (143). These results add further crucial
support for an indirect allosteric mechanism for pore block by dihydropyridines. As noted in
previous studies of CaVAb, the dihydropyridine receptor site observed by X-ray crystallography
was located about one to two helical turns toward the extracellular side of the channel from
the amino acid residues expected to form that receptor site based on structure-function studies
of mammalian CaV1.2 channels (145). The new structure of CaV1.1 with dihydropyridines
bound resolves this apparent discrepancy by showing that dihydropyridines do indeed bind to
the mammalian calcium channel in the position expected from the structure-function studies
of mammalian CaV1.2 (146). Evidently, the dihydropyridines have their characteristic allosteric
blocking effects on CaVAb by binding to a site that is adjacent to, but not exactly overlapping
with, the dihydropyridine receptor site in mammalian calcium channels.

146 Catterall • Lenaeus • Gamal El-Din

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
02

0.
60

:1
33

-1
54

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Fl

or
id

a 
St

at
e 

U
ni

ve
rs

ity
 o

n 
09

/1
5/

21
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PA60CH08_Catterall ARjats.cls December 12, 2019 11:4

3.4. Drugs Acting on the Auxiliary Subunits of Sodium and Calcium Channels

Both sodium and calcium channels have auxiliary subunits that are required to fine-tune their
functional properties and to support maturation and cell-surface expression of the channel com-
plex (19, 20, 147, 148) (Figures 1a,b and 2a,b). Only a single class of drugs, the gabapentinoid
calcium channel antagonists gabapentin and pregabalin, act on the auxiliary subunits (147, 149).
These drugs are used in therapy of epilepsy and chronic pain. They bind adjacent to a von Wille-
brand factor homology domain on the extracellular surface of the α2 subunit and modulate the cell
surface expression of CaV2.2 channels, which conduct N-type Ca2+ currents that are required for
the release of neurotransmitters in the brain and in nociceptive pathways in the spinal cord (149).
Drug binding disrupts normal recycling of these CaV2.2 channels to the cell surface and thereby
reduces nociceptive signaling from the periphery to the central nervous system (150). Although
the structure of the von Willebrand factor homology domain has been modeled based on its se-
quence homology, there are no direct structural studies of the binding and action of gabapentinoid
drugs.

4. A FUTURE PERSPECTIVE ON SODIUM AND CALCIUM CHANNELS,
DISEASE, AND THERAPEUTICS

Over the last few decades, many diseases have been attributed to mutations and other dys-
functions of NaV and CaV channels. These channelopathies may result from a mutation in the
encoding genes, or they may be acquired in the setting of tissue injury or autoimmune disease.
To date, genetic variations in more than 60 ion channel genes have been correlated to human
diseases (151, 152). In sodium channels alone, more than 1,000 disease-related mutations have
already been identified (151). As a result, ion channels are considered one of the main targets
of therapeutic medications, and 10–15% of drugs currently in the market target ion channels.
Our understanding of how NaV and CaV channels work has been elucidated in detail by the
unprecedented advances in X-ray crystallography and cryoEM. We look forward to two impor-
tant research thrusts resulting from this work. First, as illustrated by a recent study from our
laboratory defining the structural basis for periodic paralysis (153), high-resolution structural
studies will increasingly provide atomic-level views of disease processes and open new avenues for
developing novel therapeutic approaches. This study revealed the binding pose of guanidinium in
the mutant gating pore, which led to the idea that substituted guanidinium derivatives may block
gating pore current without affecting the functionality of the voltage sensor in the skeletal muscle
sodium channel (153, 154). Second, as illustrated here, we look forward to much more frequent
use of high-resolution structural information in the development of medicines that target sodium
and calcium channels with greater efficacy and safety. This experimental thrust is exemplified by
the high-resolution structure analysis of the binding site of a new voltage-dependent inhibitor of
NaV1.7 channels that is under development for neuropathic pain (155). Structure-based design
of more efficacious and safer treatments for chronic pain would be a huge benefit for patients
and physicians and would provide an avenue leading out of the worldwide epidemic of opiate
abuse.
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