Molecular determinants of common gating of a ClC chloride channel

Brett Bennetts & Michael W. Parker

Uniquely, the ClC family harbours dissipative channels and anion/H⁺ transporters that share unprecedented functional characteristics. ClC-1 channels are homodimers in which each monomer supports an identical pore carrying three anion-binding sites. Transient occupancy of the extracellular binding site by a conserved glutamate residue, E232, independently gates each pore. A common gate, the molecular basis of which is unknown, closes both pores simultaneously. Mutations affecting common gating underlie myotonia congenita in humans. Here we show that the common gate likely occludes the channel pore via interaction of E232 with a highly conserved tyrosine, Y578, at the central anion-binding site. We also identify structural linkages important for coordination of common gating between subunits and modulation by intracellular molecules. Our data reveal important molecular determinants of common gating of ClC channels and suggest that the molecular mechanism is an evolutionary vestige of coupled anion/H⁺ transport.
Results

Mutations of Y578 affect CIC-1 common gating. Molecular modelling, based on the crystallographic coordinates of CmCIC, predicted that the phenolic hydroxyl group of Ycen (Y578) directly coordinates Cl\(^-\) at the central binding site in CIC-1 channels (Fig. 1). \(Y_{cen}\) mutations have little effect on Cl\(^-\) selectivity or conductance of CIC-0 and CIC-1 channels, suggesting a minor role in ion-conduction\(^{10,34,35}\). Instead we hypothesized that Y578 may be an important determinant of CIC-1 common gating. For this reason we refer to our CmCIC based model (Fig. 1c) as the ‘inactivated’ model in the following text. One observation offered tentative support for our hypothesis. In prokaryotic CIC anion/H\(^+\) exchange proteins a glutamate residue, corresponding to E203 in CIC-ec1, forms an essential part of the H\(^+\) transport pathway\(^{36}\). This residue is present on helix H, which forms the pseudo-symmetrical dimer interface (Supplementary Fig. S1). Residue E203 is not conserved in CIC-1 (Supplementary Fig. S1); however, mutation of the corresponding valine (V292L) greatly reduces CIC-1 common gating\(^{27}\). Comparison of our homology models suggested that interaction with the side chain of V292 might force Y578 to occupy \(S_{cen}\) where it would be available to hydrogen bond with E232 (Fig. 1c).

We tested a panel of Y578 mutant channels to examine the role of this residue in CIC-1 gating. To dissect open probabilities of the protopore (\(P_{protopore}\)) and common (\(P_{common}\)) gates we used the method determined by Accardi and Pusch\(^{17}\), which exploits the different kinetics of the gating processes at very positive voltages (Fig. 2). Protopore gating of Y578A, Y578F, Y578H and Y578K mutants was marginally affected, with the exception of a substantial increase in the minimum value of \(P_{protopore}(V)\) for Y578F mutant channels (Fig. 2b and Supplementary Table S1). In contrast the mutations affected CIC-1 common gating by increasing the minimum value of \(P_{common}(V)\) and decreasing the apparent gating charge (Fig. 2c and Supplementary Table S1).
Mutation Y578E had severe effects on ClC-1 gating and we were unable to fit equation (1) to tail currents recorded from this mutant; as such, data for this mutant are not included in Fig. 2b,c or Supplementary Table S1. Our results were reminiscent of the effect of Ycen mutations in ClC-ec1, where ability of mutations to uncouple H\(^+\) transport correlated with the effect on occupancy of S\(_{cen}\)37. Specifically, Y578A, Y578H and Y578E mutations had the most prominent effects on ClC-1 common gating (Fig. 2c and Supplementary Table S1), just as the corresponding mutations in ClC-ec1 led to strong uncoupling of Cl\(^-/H^+\) transport and reduced anion occupancy of S\(_{cen}\).

Owing to opposite voltage dependence and vastly different kinetics, protopore and common gating can be more readily dissected in ClC-0. ClC-0 common gating can be monitored in whole-cell records by increased current amplitude at a tail voltage after prolonged hyperpolarization of test voltages (Fig. 2d). We therefore examined the effects of Y\(_{cen}\) (Y512) mutations on ClC-0 common gating. Mutations Y512F, Y512A and Y512H had little effect on ClC-0 protopore gating (Fig. 2e); however, none of the mutants showed hyperpolarisation-activated channel gating (Fig. 2f). Tail currents measured at positive voltages suggested that channel open probability decreased after long hyperpolarizing pulses (Fig. 2f). However, due to the extremely long voltage pulses in these experiments, and their effect on the distribution of chloride ion, we are unable to draw any firm conclusions from this curious observation. In contrast to the equivalent ClC-1 mutations, both ClC-0 Y512K and Y512E mutants were non-functional, suggesting defective trafficking or protein folding. Our results confirm that Ycen is an important determinant of common gating of ClC channels.

Zn\(^{2+}\) inhibition of ClC-1 Y578 mutants. Extracellular Zn\(^{2+}\) inhibits ClC-0 and ClC-1 channels by binding to and stabilising a closed state of the common gating mechanism38,39. Previous studies suggest that the binding site for Zn\(^{2+}\) is at the extracellular surface of helix G, where it intersects helix F in the region of E23232,39. Mutations C277S and C278S, at the carboxy-terminal of helix G, greatly reduce Zn\(^{2+}\) inhibition of ClC-1 (ref. 39). Mutations of residue C277 have drastic effects on common gating40,41. However, the role of C277 in Zn\(^{2+}\) binding is complicated by the fact that common gating is essentially eliminated in C277S mutant channels39,40, and therefore reduced Zn\(^{2+}\) inhibition may reflect the absence of common gating rather than diminished Zn\(^{2+}\) binding. The role of residue C277 in Zn\(^{2+}\) binding is more clearly defined, as mutation C277S has
little effect on ClC-1 common gating, but essentially abrogates Zn\(^{2+}\) inhibition\(^{39}\). Our modelling studies suggested that the slow time course of ClC-1 inhibition by Zn\(^{2+}\) may arise due to ‘masking’ of Zn\(^{2+}\) binding residues on helix G, largely by way of residue F235 on helix F (Fig. 3a). In support of this argument removal of the aromatic moiety of F235 had little effect on ClC-1 common gating (Supplementary Fig. S2) but greatly accelerated inhibition of F235L mutant channels by 1 mM extracellular Zn\(^{2+}\) (Supplementary Table S1). Please refer to Supplementary Table S1 for parameters of fits of equation (1). (d) Voltage protocol used to examine ClC-0 common gating and representative whole-cell current traces for WT ClC-0 and mutants. Dashed lines represent zero-current level, and scale bars are 1 nA (vertical) and 100 ms (horizontal). Tail currents recorded using this protocol therefore reflect the open probability of the common gate (\(P_{\text{com}}\)). Open probability of the protopore gate (\(P_{\text{protopore}}\)) was calculated by \(P_{\text{protopore}} = P_{\text{channel}} / P_{\text{com}}\). Data points are means ± s.e.m. Solid lines represent the fit of equation (1) to the experimental data points. (e) Voltage protocol for recording ClC-1 channel activity and representative whole-cell current traces for WT ClC-1 and mutants. Dashed lines represent zero-current level and scale bars are 2 nA (vertical) and 100 ms (horizontal). (b) Protopore and (c) common gating curves for WT ClC-1 and Y578 mutants. Open probability of protopore and common gates was dissected using the method described by Accardi and Pusch\(^{17}\). Briefly, apparent open probability (\(P_{\text{channel}}\)) was determined from the tail current amplitude, measured at −100 mV, following application of test voltages (shown in (a)). As the time course of protopore and common gating relaxations are separated by approximately two orders of magnitude at positive voltages it is possible to fully activate the protopore gates, without significantly affecting the common gate, by inserting a brief voltage pulse to +170 mV preceding the tail voltage\(^{17}\). Tail currents recorded using this protocol therefore reflect the open probability of the common gate (\(P_{\text{com}}\)). Open probability of the protopore gate (\(P_{\text{protopore}}\)) was calculated by \(P_{\text{protopore}} = P_{\text{channel}} / P_{\text{com}}\). Data points are means ± s.e.m. Solid lines represent the fit of equation (1) to the experimental data points. (f) Common gating of ClC-0 and mutants. Data are current amplitudes at the end of the 0.8 s tail voltage, as shown in (d), normalized to peak current amplitude. Data for (e) and (f) are means ± s.e.m. from \(n = 3\) (WT ClC-0), 3 (YS12A), 4 (YS12F) and 4 (YS12H) separate experiments.

A bifurcated salt bridge is important for ClC-1 gating. Coordination of ClC-1 common gating between subunits occurs across the subunit interface, in no small part by intersubunit interactions between helices H and I\(^{24,27}\). Our results suggested...
that closure of the common gate coincides with a conformational rearrangement at the extracellular junction of helices G and F, creating a Zn$^{2+}$-binding site, and simultaneously promoting a conformation of E232 where it is able to hydrogen bond with Y578. Helix G forms contacts with helix F (carrying E232 at its amino-terminal end), helix H and helix I, in addition to CBS2 of the opposing subunit (Fig. 4 and Supplementary Fig. S1). Further, mutation of several residues in the region of the extracellular junction between helices F and G has profound effects on CIC-1 gating$^{28,40–42}$. It therefore appeared likely that helix G may act as an intermediary for the coordination of common gating between the channel pore and the subunit interface. Our inactivated CIC-1 model revealed a potential bifurcated salt bridge linking residues R300 and R304 of helix I to residue D265 of helix G (Fig. 4). Apart from acting as a molecular ‘scaffold’ between helix G and the subunit interface, we speculated that translation of helix G with respect to the subunit interface during common gating could alter the geometry of this network.

To investigate this possibility we first examined the functional consequences of charge-reversal and charge-swap mutations of the participant residues (Table 1 and Supplementary Fig. S4). For the purpose of comparison we focused on the voltage dependence of gating curves, as the half-saturation values could be compared between mutants to disclose interactions between the fixed charges on the respective side chains. The basis of this analysis is that in the event that two mutations affect gating independently, the $V_{1/2}$ of double mutant gating curves should be calculable from the excursions from WT $V_{1/2}$ introduced by the single mutations. Alternatively, unpredictable $V_{1/2}$ of the double mutant would reflect interaction between the residues. Analysis of charge-reversal and charge-swap mutations showed unpredictable voltage dependence, indicating interactions between D265 and both R300 and R304; however additive effects on voltage dependence suggested no significant interaction between R300...
and R304 during protopore gating (Table 1). In contrast, for common gating there were significant and promiscuous interactions between all three charged residues in the network (Table 1). Mutation Y261C, which is in the vicinity of these residues but is not predicted by our model to be involved in helix G-I interactions (Fig. 4), has no effect on CIC-1 gating. Nearby myotonic mutations F307S (helix I) and T268M (helix G) affect CIC-1 gating, however, our modelling studies suggested that the effect of these mutations is independent from the salt–bridge interaction (Fig. 4). To confirm the specificity of our analysis we applied the same approach to examine inter-helical interactions between D265 and F307, and T268 and residues R300 and R304. Despite robust expression of both parental mutants, D265R/F307S mutants were non-functional, suggesting defective protein folding or trafficking. However, in keeping with our observations the voltage dependence of T268M/R300D/R304D mutant channels was predictable from the voltage dependence of the parental mutants, confirming that the residues do not interact (Supplementary Table S2). Our results therefore indicate that a bifurcated salt–bridge linking helices G and I is important for gating.

We further examined these interactions by quantifying the interaction energy between charged species using a thermodynamic mutant-cycle approach. The results of this analysis supported our previous experiments (Table 2 and Supplementary Fig. S5). During protopore gating the interaction energy calculated for the R300 and D265 ion-pair was relatively small (approximately 1kJ mol^{-1}), and in the absence of the fixed charge on R304 there was no discernable interaction between residues R300 and D265 (Table 2). Moreover, there was no interaction between R300 and R304. In contrast, common gating transitions coincided with significant, and roughly equivalent interactions between all three species (approximately 2kJ mol^{-1}) and convincingly coincided with repulsion between R300 and R304 (approximately $+2 \text{kJ mol}^{-1}$) (Table 2).

Table 1 | A bifurcated salt bridge linking helices G-I is important for gating.

<table>
<thead>
<tr>
<th>Common gating</th>
<th>n</th>
<th>$V_{1/2}$ (mV)</th>
<th>z (e0)</th>
<th>P_{min}</th>
<th>$V_{1/2A}$ + ($V_{1/2B}$/$V_{1/2WT}$) (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT CIC-1</td>
<td>4</td>
<td>-51.6 ± 1.7</td>
<td>1.05 ± 0.04</td>
<td>0.21 ± 0.02</td>
<td>29.1 ± 3.0</td>
</tr>
<tr>
<td>R300D</td>
<td>3</td>
<td>-57.6 ± 1.8</td>
<td>0.83 ± 0.02</td>
<td>0.20 ± 0.02</td>
<td>29.1 ± 3.0</td>
</tr>
<tr>
<td>R304D</td>
<td>4</td>
<td>-61.7 ± 2.2</td>
<td>1.22 ± 0.05</td>
<td>0.38 ± 0.01</td>
<td>29.1 ± 3.0</td>
</tr>
<tr>
<td>D265R</td>
<td>3</td>
<td>$+30.0 \pm 1.1$</td>
<td>0.82 ± 0.02</td>
<td>0.17 ± 0.01</td>
<td>29.1 ± 3.0</td>
</tr>
<tr>
<td>D265R R300D</td>
<td>3</td>
<td>-39.9 ± 1.2</td>
<td>1.17 ± 0.01</td>
<td>0.25 ± 0.01</td>
<td>24.9 ± 2.7</td>
</tr>
<tr>
<td>D265R R304D</td>
<td>5</td>
<td>-44.9 ± 1.1</td>
<td>1.15 ± 0.03</td>
<td>0.20 ± 0.01</td>
<td>19.9 ± 2.1</td>
</tr>
<tr>
<td>R300D R304D</td>
<td>3</td>
<td>-14.3 ± 2.1</td>
<td>0.59 ± 0.02</td>
<td>0.14 ± 0.02</td>
<td>-67.7 ± 3.3</td>
</tr>
<tr>
<td>D265R R300D R304D</td>
<td>4</td>
<td>-48.1 ± 1.2</td>
<td>1.08 ± 0.02</td>
<td>0.24 ± 0.01</td>
<td>$+67.3 \pm 3.0$</td>
</tr>
</tbody>
</table>

Protopore gating

WT CIC-1	4	-81.6 ± 1.2	1.26 ± 0.04	0.17 ± 0.02	29.1 ± 3.0
R300D	3	-94.4 ± 2.6	1.22 ± 0.21	0.23 ± 0.03	29.1 ± 3.0
R304D	4	-81.5 ± 1.7	1.00 ± 0.08	0.10 ± 0.02	29.1 ± 3.0
D265R	3	-30.1 ± 3.7	0.77 ± 0.14	0.36 ± 0.02	29.1 ± 3.0
D265R R300D	3	-72.4 ± 1.2	1.32 ± 0.01	0.15 ± 0.01	42.9 ± 4.7
R300D R304D	3	-80.6 ± 3.3	0.93 ± 0.07	0.06 ± 0.04	-93.4 ± 3.3
D265R R304D	5	-81.7 ± 3.3	1.01 ± 0.08	0.15 ± 0.04	-30.0 ± 4.4
D265R R300D R304D	4	-72.0 ± 1.2	1.26 ± 0.05	0.17 ± 0.01	-29.1 ± 3.7

Data are the parameters of fits of equation (1) to experimental data for each mutant. Representative current traces and open probability curves are shown in Supplementary Fig. S4. Expected values of $V_{1/2}$ for double and triple charge-swap mutants, calculated from the relative shift of $V_{1/2}$ for the parental single or double mutant channels are shown in the far right column, with linearly propagated values of s.e.m. P-values derived from unpaired t-tests are shown in superscript.

A molecular pathway linking NAD$^+$ binding to Y578.

Identification of residue Y578 as a critical determinant of NAD$^+$ inhibition gave us scope to investigate the pathway linking intracellular binding events to common gating. Our inactivated model suggested that, apart from the direct interaction with Y578, V292 makes contact with helix D by way of an apparent hydrogen bond between K195 and the backbone oxygen of V292 (Fig. 5a). Significantly, at its carboxy terminus, helix D also appears to make direct contact with CBS2 (refs 13,50). Moreover, K195 also appears to form a salt bridge with the residue neighbouring Y578, residue D579 (Fig. 5a). We speculated that this network could modulate common gating by affecting the conformation of Y578. Confirming this suspicion, common gating of Y578 mutant channels was largely unaffected by 3 mM intracellular NAD$^+$ (Fig. 5b,c).
Table 2 | Mutant-cycle analysis reveals conformational changes during common gating.

<table>
<thead>
<tr>
<th>n</th>
<th>$V_{1/2}$ (mV)</th>
<th>z (e0)</th>
<th>$\Delta G_{0} (kJ \text{ mol}^{-1})$</th>
<th>$\Delta \Delta G_{\text{interact}} (kJ \text{ mol}^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT CIC-1</td>
<td>4</td>
<td>−51.6 ± 1.7</td>
<td>1.05 ± 0.04</td>
<td>−5.22 ± 0.31</td>
</tr>
<tr>
<td>R300Q</td>
<td>3</td>
<td>−72.7 ± 2.2</td>
<td>0.81 ± 0.03</td>
<td>−5.89 ± 0.22</td>
</tr>
<tr>
<td>R304Q</td>
<td>4</td>
<td>−64.6 ± 1.2</td>
<td>1.28 ± 0.03</td>
<td>−7.97 ± 0.37</td>
</tr>
<tr>
<td>R300Q R304Q</td>
<td>4</td>
<td>−71.6 ± 1.4</td>
<td>0.95 ± 0.04</td>
<td>−6.60 ± 0.23</td>
</tr>
<tr>
<td>D265N</td>
<td>3</td>
<td>−22.2 ± 0.8</td>
<td>1.03 ± 0.04</td>
<td>−2.19 ± 0.10</td>
</tr>
<tr>
<td>D265N R300Q</td>
<td>4</td>
<td>−49.0 ± 0.8</td>
<td>1.15 ± 0.02</td>
<td>−5.42 ± 0.23</td>
</tr>
<tr>
<td>D265N R304Q</td>
<td>4</td>
<td>−66.9 ± 0.9</td>
<td>1.08 ± 0.04</td>
<td>−6.99 ± 0.25</td>
</tr>
<tr>
<td>D265N R300Q R304Q</td>
<td>4</td>
<td>−80.2 ± 1.2</td>
<td>1.08 ± 0.02</td>
<td>−8.33 ± 0.19</td>
</tr>
</tbody>
</table>

Data show the parameters for fits of equation (1) to the experimental data points derived from n separate experiments. Apparent gating valence (z) was calculated using equation (2), the zero-voltage free energy of gating (ΔG_{0}) was calculated using equation (1). The mean and s.e.m. Values for the apparent interaction energy between charged residues ($\Delta \Delta G_{\text{interact}}$) were calculated using equation (4), and are means and linearly propagated values of s.e.m. Bracketed values for ΔG_{0} were calculated (−) for the R300–D265 interaction on the R300Q background. P-values comparing the calculated interaction energies against zero, using single value t-tests, are shown in superscript in the far right column. Graphical representations of P_0 data and fits of equation (1) are available in Supplementary Fig. S5.

Figure 5 | Residue Y578 is a critical mediator of NAD$^+$ inhibition. (a) Depicts the relationship between helices D (light blue), F (blue), H (magenta), R (yellow) and CBS2 (red) in the inactivated CIC-1 model. The side chains of residues K195, E232 (E$^{\text{ext}}$), V292, Y578 (Y$^{\text{cen}}$) and D579, in addition to the backbone atoms of V292, are depicted as sticks coloured by atom type. Anion-binding sites S$_{\text{ext}}$ (e) and S$_{\text{cen}}$ (i) are depicted as green spheres. Dashed lines represent possible polar interactions between residues. (b) Common gating curves for WT CIC-1 and Y578 mutants in the absence (open symbols) and presence (filled symbols) of 3 mM intracellular NAD$^+$. All data are means and s.e.m. and solid lines are fits of equation (1) to the experimental data points. Dashed and dotted lines represent WT CIC-1 curves, as shown in the first figure of this panel, and are included for the purpose of comparison. (c) The mean shift of the voltage dependence of common gating curves ($\Delta V_{1/2}^{\text{common}}$) by 3 mM intracellular NAD$^+$. Data are means and linearly propagated values of s.e.m. For measurements with 3 mM NAD$^+ n = 5$ (WT CIC-1), 5 (Y578A), 5 (Y578F), 3 (Y578H) and 4 (Y578K) (separate experiments). Statistical significance (P<0.0001) was determined by one-way ANOVA.
common gating curves that were shifted to more positive voltages, and had minimum values that were lower than WT ClC-1 (Fig. 6b). D579K mutant channels retained sensitivity to intracellular NAD$^+$; however, they were less potently inhibited than WT ClC-1 (Fig. 6b,c). Common gating of double mutant K195D/D579K channels showed sensitivity to 3 mM NAD$^+$ that was essentially the same as the D579K mutant (Fig. 6b,c). In the instance that the mutations affected NAD$^+$ sensitivity independently, we would expect that double-mutant channels would be less sensitive to NAD$^+$ than either of the parental single-mutants. Supporting this hypothesis, mutation G200R on helix D also reduces sensitivity to intracellular NAD29,30, and G200R/D579K mutant channels were less sensitive to 3 mM NAD that either of the parental mutants (Supplementary Fig. S6). Our results therefore indicate that the K195–D579 interaction is important for the inhibition of ClC-1 common gating by intracellular NAD$^+$.

Discussion

Our experiments strongly suggest that hydrogen bonding between the carboxylate group of E$_{ext}$ and the phenolic hydroxyl group of Y$_{cen}$ has a pivotal role in common gating of ClC channels. The importance of residue E232 for ClC-1 common gating has been established elsewhere27,28,52. The data presented here expound a novel role for Y578 in ClC-1 common gating. Mutation of Y$_{cen}$ affected common gating of ClC-1 and ClC-0 (Fig. 2), predictably modulated Zn$^{2+}$ inhibition of ClC-1 common gating depending on the species replacing Y578 (Fig. 3) and abrogated NAD$^+$ modulation of ClC-1 common gating (Fig. 5). We therefore propose that the final effector of ClC common gating is a ‘pincer’ occlusion of S_{on} where the carboxylate group of E232 forms a hydrogen bond with the phenolic hydroxyl group of Y578 (Fig. 1c and Supplementary Figs S7 and S8). From comparison with the mechanism proposed by Feng et al.13 for proton transport in ClC antiporters, it is possible that protonation of E232 in this conformation leads to opening of the common gate and H$^+$ transport from the intracellular to the extracellular solution2,30. The H$^+$ transport pathway of ClC-1 is unknown, as the intracellular glutamate residue proposed to form the intracellular H$^+$ transport pathway in Cl$^-$/H$^+$ antiporters36 is not conserved in ClC channels (Supplementary Fig. S1). Intriguingly this glutamate residue is not conserved in CmClC antiporters either, suggesting the existence of an alternate H$^+$ transport pathway13. Lisal and Maduke53 have suggested that another highly conserved glutamate residue on helix H, E291 (Supplementary Fig. S1), may be part of the H$^+$ transport pathway. However, our inactivated model suggests that the carboxylate groups of E232 and E291 are separated by ~ 14 Å (Supplementary Fig. S7). An alternative H$^+$ transport mechanism that has been proposed for ClC-0 channels is direct protonation of E$_{on}$ by a ‘water-wire’ pathway34.

The current study does not address conformational changes across the subunit interface; however, a schematic overview of the rearrangements we propose to link the channel pore to the subunit interface is shown in Supplementary Fig. S8. Our results suggest that the interaction between residues D265 and R300 arises due to ‘positioning’ of D265 via interaction with R304 during protopore gating, as there was no significant interaction in the absence of the fixed charge at position 304 and no significant interaction between residues R300 and R304 (Table 1). With common gating transitions, however, interactions between all three charged species were roughly symmetrical, indicating reconfiguration of the geometry of the salt bridge (Table 1). Our experiments therefore suggest translation of helix G with respect to helix I during common gating transitions.

Figure 6 | An ion-pair interaction between K195 and D579 is important for NAD$^+$ signalling. (a) Protopore and (b) common gating curves for K195 and D579 mutant channels (open symbols). Also shown in panel (b) are common gating curves in the presence of 3 mM intracellular NAD$^+$ (filled symbols). Data are means and s.e.m., and solid lines represent fits of equation (1) to experimental data points. (c) Mean $\Delta V_{2\text{m,common}}$ of K195 and D579 mutant channels by 3 mM intracellular NAD$^+$. Data are means and linearly propagated values of s.e.m. For measurements with 3 mM NAD$^+$, $n=5$ (WT ClC-1), 5 (K195D), 3 (D579K) and 3 (K195D/D579K) separate experiments. Asterisks denote statistical significance determined by one-way ANOVA ($P<0.0001$). $n=3$ (K195D, K195D/D579K, D579K (3NAD$^+$), K195D/D579K (3NAD$^+$), $n=4$ (WT ClC-1, D579K) or $n=5$ (WT (3NAD$^+$), K195D (3NAD$^+$)). Parameters of the fits of equation (1) to experimental data points for this figure are listed in Supplementary Table S3.
Concurrently, translation of helix G creates a binding site for Zn$^{2+}$ at the extracellular end of helix G, where Zn$^{2+}$ binding traps E232 in occupancy of S$_{an}$ (Supplementary Fig. S8). All mammalian ClC proteins have an acidic residue at the position corresponding to D265, and a basic residue at the position equivalent to R300 in ClC-1 (Supplementary Fig. 1). Residue R300 is conserved in ClC-0, ClC-1 and ClC-2, in which a common gating mechanism has been unambiguously demonstrated$^{14–18,55}$. Curiously, some ClC proteins that are unequivocally (ClC-4 gating mechanism has been unambiguously demonstrated$^{14–18,55}$, and CmClC (PDB id: 3ORG)13. Thus, the corresponding region of ClC-1, from H664–S818, was excluded from the model. Sequence similarity of the relevant protein regions were generated using TCOFFEE and the ClC-1 models were threaded on to the appropriate structural coordinates using Swiss-Model, followed by energy minimization in Swiss/PDB viewer55. The quality of models was assessed using Verify3D57 andfound to be satisfactory. The final model was examined and figures were prepared using MacPyMol 1.4.1. The CmClC and ClC-ec1-based ClC-1 models are available on request to the authors.

Electrophysiology and data analysis. Human ClC-1 and Torpedo marmorata ClC-0 were expressed from pCDNA3.1 expression vector in tsA201 cells (a modified HEK293 cell line) by transient transfection using Fugene 6 transfection reagent (Promega) according to the manufacturer’s specifications. For some experiments in HEK293 cells due to excessive whole-cell currents in tsA201 cells. Patch–clamp experiments were conducted in whole-cell configuration at room temperature (23 ± 1 °C), 24–48 h after transfection, using an Axopatch 200b patch-clamp amplifier and Digidata 1322A A/D board controlled by AxographX (http://www.axograph.com) software. Currents obtained at a sampling frequency of 10 kHz were filtered at 5kHz, and recorded using AxographX. Offline analysis was conducted using AxographX, Microsoft Excel 11.6.5 and GraphPad Prism 6.0 software.

During experiments, cells were continuously superfused with bath solution containing (mM): NaCl, 140; CsCl, 4; CaCl$_2$, 2; MgCl$_2$, 2; HEPES, 10; adjusted to pH 7.2 with NaOH. For experiments with 5 mM ZnCl$_2$, 1 mM ZnSO$_4$ was added to the bath solution, and during experiments rapid solution exchange was achieved using a SF-77 fast-solution exchanger (Warner instruments). The standard pipette solution contained (mM): CsCl, 40; Cs glutamate, 80; EGTA-Na, 10; HEPES, 10; adjusted to pH 6.8 with NaOH. For experiments with ClC-0, intracellular pH was adjusted to pH 7.2. Nicotinamide adenine dinucleotide (NAD$^{+}$) was purchased from Sigma-Aldrich, and a stock solution was made at a concentration of 100 mM in distilled water and stored at −20 °C. Working solutions containing NAD$^{+}$ were made fresh on the day of the experiment and used immediately. Patch pipettes had resistance of 1–3 MΩ when filled with the above pipette solution. Series resistance did not exceed 5 MΩ and was 85–90% compensated. After rupturing the cell membrane and achieving the whole-cell configuration, no less than 5 min was allowed for the pipette solution to equilibrate with the intracellular solution before current recordings were made.

ClC-1 channel activity was assessed using the same methods as detailed elsewhere$^{40–47}$. Briefly, channel open probability (P$_{\text{channel}}$) and open probability of the common gate (P$_{\text{common}}$) were determined from tail-current amplitudes, measured at −100 mV, following a 300-ms test pulse. To isolate P$_{\text{common}}$, a 400 μs pulse to +170 mV was inserted between test and tail pulses to fully activate the protopore gates40. The cell membrane was held at −30 mV for 4 s in between applications of the voltage protocol. Open probability of the protopore gates (P$_{\text{protopor}}$) was calculated by dividing P$_{\text{channel}}$ by P$_{\text{common}}$. For ClC-0 experiments, open probability of the protopore gates was calculated from tail current amplitudes, measured at −100 mV, following a 100 ms test pulse. Activation of the ClC-0 common gate was determined from tail current amplitudes measured at −30 mV, following a 3.5 s test pulse. The cell membrane was held at −30 mV for 30 ms in between successive iterations of the voltage protocol. Gating curves (P$_{\text{o}}$(V)) were constructed by fitting experimental data points with a modified Boltzmann distribution40,42.

\[
P_{\text{o}}(V) = \left(1 + \exp \left(\frac{V_{1/2} - V}{k}\right)\right)^{-1}
\]

where P_{min} is the minimum open probability, V is membrane voltage, $V_{1/2}$ is the half-saturation voltage and k is the slope factor. For double- and triple-charge-swap mutations measured values of $V_{1/2}$ were analysed for significant statistical difference with respect to expected values, calculated assuming independent effects of single mutations, using unpaired t tests. For experiments comparing NAD$^{+}$ sensitivities between mutants, statistical significance was assessed using one-way ANOVA. The time course of Zn$^{2+}$ inhibition was examined by measuring the instantaneous current amplitude following a 10 ms pulse to −100 mV, from a holding potential of −30 mV, which was applied at 4-s intervals. Zn$^{2+}$ inhibition data were normalized to the current amplitude immediately preceding the application of Zn$^{2+}$ and data were discarded if series resistance changed by >10% during the course of the experiment.

To quantitatively assess the interaction energy between the charged side chains, a double or triple mutant-cycle strategy was adopted40. Both protopore and common gating of ClC-1 were independently examined. Gating curves, constructed using equation (1), were used to calculate ΔG_{mut}, the free energy of channel gating at zero voltage, according to:

\[
\Delta G_{\text{mut}} = zF(V_{1/2})
\]

where F is Faraday’s constant, $V_{1/2}$ is the half-maximal activation voltage derived from equation (1), and z is the elementary gating charge, calculated from the slope factor, k, derived from equation (1), according to:

\[
z = \left(\frac{RT}{F}\right)k
\]

where R is the universal gas constant, T is temperature and F is Faraday’s constant.

Methods

Homology modelling. Homology models of ClC-1 were built using the published crystal structure of the homologous regions of ClC-ec1 (PDB id: 1OTU) and its E148Q mutant (PDB id: 1OTU)5, and CmClC (PDB id: 3ORG)13. In the region modelled ClC-1 and ClC-ec1 share 21% identical residues and 34% sequence similarity, and ClC-1 and CmClC share 30% identical residues and 51% sequence similarity. For ClC-1 based models residues K98–W595 of ClC-1, corresponding to ClC-1 residues (PDB id: 1Q40), were modelled on ClC-ec1 coordinates. The extensive intracellular C terminus of ClC-1 was omitted from these models because ClC-ec1 does not have this domain. For the ClC ec1 based ‘inactivated’ ClC-1 model residues V110–G872, corresponding to residues S88–N710 of CmClC, were modelled on the CmClC coordinates. ClC-1 contains a large insertion in the intracellular region of the protein linking CBS 1 and CBS 2 (R669–C820), with interaction between K195 and the backbone oxygen atom of V292 that was suggested by our modelling studies (Fig. 5a). Another possibility is that mutations measured values of $V_{1/2}$ were analysed for significant statistical difference with respect to expected values, calculated assuming independent effects of single mutations, using unpaired t tests. For experiments comparing NAD$^{+}$ sensitivities between mutants, statistical significance was assessed using one-way ANOVA. The time course of Zn$^{2+}$ inhibition was examined by measuring the instantaneous current amplitude following a 10 ms pulse to −100 mV, from a holding potential of −30 mV, which was applied at 4-s intervals. Zn$^{2+}$ inhibition data were normalized to the current amplitude immediately preceding the application of Zn$^{2+}$ and data were discarded if series resistance changed by >10% during the course of the experiment.

To quantitatively assess the interaction energy between the charged side chains, a double or triple mutant-cycle strategy was adopted40. Both protopore and common gating of ClC-1 were independently examined. Gating curves, constructed using equation (1), were used to calculate ΔG_{mut}, the free energy of channel gating at zero voltage, according to:

\[
\Delta G_{\text{mut}} = zF(V_{1/2})
\]

where F is Faraday’s constant, $V_{1/2}$ is the half-maximal activation voltage derived from equation (1), and z is the elementary gating charge, calculated from the slope factor, k, derived from equation (1), according to:

\[
z = \left(\frac{RT}{F}\right)k
\]

where R is the universal gas constant, T is temperature and F is Faraday’s constant.
The interaction energy, $\Delta G_{\text{intermut}}$, between ion-pairs was calculated as:
\[
\Delta G_{\text{intermut}} = (\Delta G_{\text{intermut}}(\text{WT}) + \Delta G_{\text{intermut}}(\text{AB})) - (\Delta G_{\text{intermut}}(\text{A}) + \Delta G_{\text{intermut}}(\text{B}))
\] (4)

where $\Delta G_{\text{intermut}}(\text{WT})$ is the free energy of activation of the wild-type channel, $\Delta G_{\text{intermut}}(\text{AB})$ is the free energy of activation of the double mutant channel, and $\Delta G_{\text{intermut}}(\text{A})$ and $\Delta G_{\text{intermut}}(\text{B})$ are the free energies of activation of the respective single mutations. Linearly propagated errors were reported as s.e.m., and values of $\Delta G_{\text{intermut}}$ s.e.m. were examined for statistical significance with respect to zero energy using a single-sample t test, with degrees of freedom $= n_{\text{test}} + n_{\text{mutant}} - 4$, where n is the number of separate experiments for WT, single-, double- or triple-mutant channels.

References

Acknowledgements

We thank Associate Professor Grigori Rychkov for the generous gift of the ClC-0 cDNA. Acknowledgement is due to Professor Francisco Bezanilla who remarked to the PhD supervisor of B.B., the late Associate Professor Michael Roberts, that Zn$^{2+}$ inhibition would be the key to unlocking the mechanism of ClC-1 common gating. Infrastructure support from the National Health and Medical Research Council Independent Research Institutes Infrastructure Support Scheme and the Victorian State Government Operational Infrastructure Support Program are gratefully acknowledged. MWP is a National Health and Medical Research Council of Australia Senior Principal Research Fellow.

Author contributions

B.B. constructed homology models, constructed mutant channels, designed and conducted electrophysiological experiments, analysed the data and prepared the manuscript. MWP advised on homology modelling and experimental design, and edited the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Bennetts, B. and Parker, M.W. Molecular determinants of common gating of a ClC chloride channel. Nat. Commun. 4:2507 doi: 10.1038/ncomms3507 (2013).