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Control of Ion Conduction in L-type Ca21 Channels by the Concerted
Action of S5–6 Regions

Susan M. Cibulsky and William A. Sather
Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado

ABSTRACT Voltage-gated L-type Ca21 channels from cardiac (a1C) and skeletal (a1S) muscle differ from one another in
ion selectivity and permeation properties, including unitary conductance. In 110 mM Ba21, unitary conductance of a1S is
approximately half that of a1C. As a step toward understanding the mechanism of rapid ion flux through these highly selective
ion channels, we used chimeras constructed between a1C and a1S to identify structural features responsible for the difference in
conductance. Combined replacement of the four pore-lining P-loops in a1C with P-loops from a1S reduced unitary conductance
to a value intermediate between those of the two parent channels. Combined replacement of four larger regions that include
sequences flanking the P-loops (S5 and S6 segments along with the P-loop-containing linker between these segments (S5–6))
conferred a1S-like conductance on a1C. Likewise, substitution of the four S5–6 regions of a1C into a1S conferred a1C-like
conductance on a1S. These results indicate that, comparing a1C with a1S, the differences in structure that are responsible for the
difference in ion conduction are housed within the S5–6 regions. Moreover, the pattern of unitary conductance values obtained
for chimeras in which a single P-loop or single S5–6 region was replaced suggest a concerted action of pore-lining regions in
the control of ion conduction.

INTRODUCTION

The voltage-gated L-type Ca21 channels from cardiac

muscle (a1C) and skeletal muscle (a1S), though closely

related in structure, differ from one another in a number of

important functional ways. The high degree of sequence

conservation between a1C and a1S has facilitated structure-

function analysis for these channels. For example, structural

elements regulating channel activation (Nakai et al., 1994)

and mediating excitation-contraction coupling (Tanabe et al.,

1990) have been identified using strategies that rely on this

sequence similarity.

A substantial body of work has also been directed toward

understanding the structural basis of ion selectivity in Ca21

channels. Earlier work had led to the conclusion that se-

lectivity in ion transport was mediated by preferential

binding of Ca21 over Na1, the two principal competitors

for transport through Ca21 channels under physiological

conditions (Almers and McCleskey, 1984; Hess and Tsien,

1984). More recent work using site-directed mutagenesis has

identified amino acid residues that form the selectivity filter

that binds Ca21 in the pore (Tang et al., 1993; Yang et al.,

1993; Ellinor et al., 1995; Cibulsky and Sather, 2000; Koch

et al., 2000; Wu et al., 2000).

Despite the fact that tight binding of Ca21 is essential for

selection against nonpreferred permeants such as Na1, the

observed rate of Ca21 conduction through the pore nonethe-

less requires fast Ca21 unbinding and transit. For highly

selective ion channels generally, no simple relationship be-

tween selectivity and conduction exists. Thus, for example,

all voltage-gated K1 channels are highly selective for K1,

yet their unitary conductance values range over two orders of

magnitude (Hille, 2001). Likewise, voltage-gated Ca21

channels are all highly selective for Ca21, and though less

extreme than in the case of K1 channels, different kinds of

Ca21 channels differ among themselves in unitary conduc-

tance. In particular, the unitary conductance of a1C Ca21

channels is roughly double that of a1S channels.

Regions of Ca21 channels that may be involved in

specifying ion conduction include the P-loops, four pore-

lining structures in each channel molecule that together

contribute to formation of the selectivity filter. The P-loops

are thought to line the extracellular portion of the pore in

members of the voltage-gated ion channel family, which

includes Ca21 and K1 channels (MacKinnon, 1995). Evi-

dence provided by the crystal structure of a bacterial K1

channel, an ancestor of both voltage-gated K1 channels and

Ca21 channels, has strengthened this view (Doyle et al.,

1998). This bacterial K1 channel structure also shows that

transmembrane segments homologous to S6 contribute to

the intracellular portion of the pore, the portion that opens

into the cytosol; the S6 segment appears to help form the

intracellular portion of the pore in voltage-gated K1 chan-

nels of higher organisms as well (del Camino et al., 2000).

Consonant with this basic structural model, P-loops have

been implicated in the control of unitary conductance in

many members of the family of voltage-gated ion channels.

In some cases, the P-loop or the entire S5–S6 linker that

encompasses the P-loop has been suggested as the sole

determinant of unitary conductance (Hartmann et al., 1991;

Goulding et al., 1993; Yatani et al., 1994; Repunte et al.,

1999). In other cases, flanking S5 and S6 segments were
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additionally shown to influence conduction (Aiyar et al.,

1994; Shieh and Kirsch, 1994; Immke et al., 1998). Sequ-

ences even farther from the P-loop, including the cytosoli-

cally-disposed S4–S5 linker and C-terminal tail, have been

implicated as determinants of unitary conductance (Isacoff

et al., 1991; Slesinger et al., 1993; Choe et al., 2000). In the

present work, we have used a systematic set of chimeras

constructed between the a1C and a1S Ca
21 channel isoforms

to identify domains that determine these channel’s charac-

teristic ion transport rates. The aim of work such as this is to

understand how ion channels that are very similar in ion

selectivity can differ significantly in rate of ion transport.

MATERIALS AND METHODS

Ca21 channel chimeras

Three kinds of chimeras were constructed between cDNAs encoding the a1C

(Mikami et al., 1989; EMBL/GenBank accession number X15539) and a1S

(Tanabe et al., 1987; Kim et al., 1990; accession number X05921) L-type

Ca21 channel subunits. In the first kind of chimera, P-loop sequence was

substituted from a1S into a1C. Based on the better-known structure of

P-loops in voltage-gated K1 channels (Yellen et al., 1991), P-loops of Ca21

channels were, in this work, considered to be 18-residue sequences within

the linker between the S5 and S6 transmembrane segments. However,

in motif IV, 20-residue P-loop sequences were substituted to include

one additional difference in sequence between the two parent channels.

Numbering the EEEE locus glutamates as position 0 in each motif, the

substituted P-loop regions comprised residue positions�13 to14, amino to

carboxy, or in the case of motif IV, positions �13 to 16. In a1S, the P-loop

segments for motifs I–IV were bounded by residues G279/D296, P601/

S618, L1001/Q1018, and P1310/L1329; for a1C, the P-loops were bounded

by A380/D397, P723/S740, L1132/E1149, and P1433/M1452. In the other

two kinds of chimeras, the entire sequence from the beginning of the S5

transmembrane segment through the end of the S6 segment (S5–6) was

transferred from a1C to a1S, and vice versa. Hydropathy plot analysis has

identified the S5 (20 residues) and S6 (25 residues) transmembrane segments

in L-type Ca21 channels (Tanabe et al., 1987), and the S5–6 regions of the

four motifs range 100–136 residues in length. In a1S, the S5–6 segments for

motifs I–IV were bounded by residues I199/S334, L561/V661, I931/I1065,

and V1270/M1384; for a1C, the S5–6 segments were bounded by I301/

S435, L684/V783, I1062/I1196, and V1393/M1506. The quadruple chim-

eras and the parent a1C and a1S subunits are diagrammed in Fig. 1. The

single-motif chimeras for P-loop and S5–6 regions are not illustrated.

Chimeras were constructed using polymerase chain reaction (PCR)

strategies. All PCR reactions were carried out using the Expand High

Fidelity PCR kit (Boehringer-Mannheim, Indianapolis, IN). For construc-

tion of a1C-based chimeras bearing P-loop sequence from a1S, a four-primer

strategy was used. Sense and antisense oligonucleotide fusion primers

(primers 1 and 2; 51-mers) consisted of 32 bases of a1S P-loop sequence

flanked on one side by;19 bases that were complementary to a1C sequence.

Single fusion primers did not span the entire P-loop sequence for a given

motif, but their lengths were such that the 59 ends (a1S sequence) of sense

and antisense fusion primers overlapped by 10 complementary bases. In two

separate steps of PCR, either sense or antisense fusion primers were used in

combination with a downstream or upstream flanking primer that was

complementary to a1C sequence (primers 3 and 4; 18mers). These reactions

yielded a 59 and a 39 fusion fragment, which were then combined and

allowed to anneal to one another by virtue of the 10-base complementary

sequence. In a final PCR step, the annealed fragments were extended for

five thermocycles, then the two flanking primers from the first rounds of

PCR (primers 3 and 4) were added to the reaction mix, and the product was

amplified in 15 additional thermocycles. The final PCR product and the

vector bearing a1C (pCARDHE) were subsequently digested with a pair of

motif-specific restriction enzymes and gel-purified. Each P-loop chimera

was completed by ligating the PCR cassette (396–659 bp, depending upon

motif) into pCARDHE. a1C-based chimeras bearing single P-loops from a1S

are referred to as CIPS, CIIPS, CIIIPS, and CIVPS; the subscripted Roman

numeral indicates the motif within which the P-loop exchange was made.

These individual P-loop chimeras were combined to produce an a1C-based

chimera in which all four P-loops were replaced by their counterparts in a1S,

and this construct is denoted CQuadPS.

Chimeras in which S5–6 sequence from a1S was substituted into a1C are,

for each of the four single-motif chimeras, denoted as CIS5–6S, CIIS5–6S,

CIIIS5–6S, and CIVS5–6S. A four-motif chimera produced by combining the

four S5–6 single-motif chimeras is referred to as CQuadS5–6S. The S5–6

single-motif chimeras were constructed using a 5-primer strategy. In the first

round of PCR, a1S S5–6 sequence fused at either end to a short stretch of a1C

sequence was produced using an a1S template and a pair of fusion primers

(typically 39-mers; primers 1 and 2) that included 59 overhangs (24 bases in
length) corresponding to a1C sequence located either immediately upstream

of S5 or downstream of S6. In a second round of PCR, the gel-puri-

fied product of the first round, a primer complementary to upstream a1C

sequence (primer 3; 30-mer), primer 1, and an a1C template were used to

amplify the a1C sequence upstream of S5. To avoid amplifying nonchimeric,

WT a1C in the final round of PCR, primer 3 included a 15-base, 59-terminal,

non-sense sequence that was complementary to neither a1C nor a1S. Primer

1 was added to this second-round reaction only after completing five

thermocycles. In the third and final round of PCR, the gel-purified second-

round product, a downstream primer complementary to a1C sequence

(primer 4; 18-mer), an upstream primer complementary to the nonsense

sequence of primer 3 (primer 5; 15-mer), and a1C template were used to

amplify a1C sequence downstream of S6. Primer 5 was added to the reaction

FIGURE 1 Schematic representation of the pore-forming subunits of

wild-type a1C and a1S Ca21 channels and some chimeric constructs. a1S

sequence is indicated by bold lines and by filled segments representing

transmembrane regions, whereas a1C sequence is indicated by thin lines and

unfilled transmembrane segments. Only chimeras in which sequence was

substituted in all four motifs are illustrated (Quad chimeras).
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mix after completing five thermocycles. The final PCR product and the

pCARDHE vector were digested with a pair of motif-specific restriction

enzymes and gel purified. Each S5–6 chimera was completed by ligating the

PCR cassette (600–1260 bp) into pCARDHE.

A chimera in which the S5–6 sequences of the four motifs of a1S were

replaced by the corresponding sequences in a1C is referred to as SQuadS5–6C.

To make this chimera, the Sac II–Bgl II fragment of a1S, corresponding to

most of the coding region, was first subcloned into pGEMHE (Liman et al.,

1992) to make use of advantageous restriction sites in this construct. The

strategy used to construct the SQuadS5–6C chimera was conceptually similar

to that described for the CQuadS5–6S chimera.

DNA sequences for all chimeras were confirmed by restriction digests

and dideoxy chain termination sequencing of both strands of all PCR-

amplified regions.

Ca21 channel expression in Xenopus oocytes

cRNAs encoding a1 subunits were synthesized using vectors for a1C- and

a1S-based constructs that yielded high functional expression in Xenopus

oocytes. Before construction of a1C-based chimeras, the a1C insert was

subcloned into a modified version of pGEMHE, a vector that incorporates

the 59 and 39 untranslated regions of the Xenopus b-globin gene (Liman

et al., 1992). In the subcloning process, several in-frame start- and stop-

codons in the 59 untranslated region of the original a1C clone were deleted,

and a Kozak consensus sequence for initiation of translation was inserted

immediately upstream of the true a1C start codon. The resulting high-

expression construct, termed pCARDHE, was used in the fabrication of all

a1C-based chimeras.

To enhance expression of a1S in Xenopus oocytes, the 39 coding region

was truncated (Ren and Hall, 1997; Morrill and Cannon, 2000). One a1S

construct was truncated after the codon specifying amino acid 1662 (Beam

et al., 1992) and another construct was truncated after codon 1698 (DeJongh

et al., 1991; Ren and Hall, 1997). However, when subcloned into pGEMHE,

neither the full-length a1S cDNA nor the two 39-truncated forms of a1S

yielded highly-expressed cRNAs (;100–500 nA whole-oocyte Ba21

currents when coexpressed with a2d1a and b1b). When subcloned into

pAGA2 (Ren and Hall, 1997), the version of a1S truncated after codon 1698

produced significantly larger currents. Therefore, after the SQuadS5–6C

chimera was constructed in pGEMHE, the Sac II–Bgl II fragment of the

chimera was subcloned into the pAGA2 vector to enhance chimera

expression.

To further enhance functional expression of Ca21 channels, cDNAs for

the ancillary subunits a2d1a (rabbit; Mikami et al., 1989; the 39 noncoding
region was truncated), b2b (rabbit; Hullin et al., 1992; EMBL/GenBank

accession number X64298), and b1b (rat; Pragnell et al., 1991; accession

number X61394) were subcloned into the modified version of pGEMHE that

was used for a1C. Ca
21 channel subunit cRNAs were transcribed in vitro

using the mMESSAGE mMACHINE T7 RNA synthesis kit (Ambion,

Austin, TX). Equimolar concentrations of a1-, a2d- and b-subunit cRNAs

were injected into Xenopus laevis oocytes. a1C- and a1C-based chimeras

were coexpressed with a2d1a and b2b, whereas a1S- and a1S-based chimeras

were coexpressed with a2d1a and b1b, except where noted. According to the

most recently proposed systematic nomenclature, the subunit makeup

of these channels is written Cav1.2a/b2b/a2d1a for a1C-based channels,

and Cav1.1a/b1b/a2d1a for a1S-based channels (Ertel et al., 2000). Oocytes

were dissociated from ovarian tissue by shaking in a Ca21-free OR-2 solu-

tion (in mM: 82.5 NaCl, 2 KCl, 1 MgCl2, 5 n-(2-hydroxyethyl)piperazine-

n9-(2-ethanesulfonic acid) (HEPES), pH 7.5 with NaOH) containing 2

mg/ml collagenase B (Boehringer-Mannheim) for 60–90 min. Injected

oocytes were incubated in ND-96 solution (in mM: 96 NaCl, 2 KCl, 1.8

CaCl2, 1 MgCl2, 5 HEPES, pH 7.6 with NaOH) supplemented with 2.5 mM

sodium pyruvate (Sigma, St. Louis, MO), 100 U/ml penicillin (Sigma) and

0.1 mg/ml streptomycin (Sigma). Injected oocytes were maintained at 188C,
and were studied 3–14 days postinjection.

Two-electrode voltage clamp recording

Whole-oocyte currents were recorded as described previously (Sather et al.,

1993). The bath was continuously perfused with a Cl�-free, nominally 40

mM Ba21 solution (in mM: 40 Ba(OH)2, 52 TEA-OH, 5 HEPES, pH 7.4

with methanesulfonic acid). Owing to precipitation, Ba21 concentration was

substantially lower than the nominal value, and was measured as ;10 mM

(Williamson and Sather, 1999). To test the Mg21 permeability of a1S

channels, 40 mM or 100 mM Mg(OH)2 solutions were used (in mM: 40

Mg(OH)2, 52 TEA-OH, 5 HEPES, pH 7.4 with methanesulfonic acid, or

100 mM Mg(OH)2, 5 HEPES, pH 7.4 with methanesulfonic acid). Currents

were measured with a model OC-725C amplifier (Warner Instruments),

filtered at 500 Hz (4-pole Bessel filter, Warner Instruments) and sampled at

1 kHz. Data were acquired and analyzed using software custom-written

in AxoBASIC (Axon Instruments, Foster City, CA). For voltage pulses of

sizeP, peak currents were subtracted using the average of 10 pulses to�P/4.

For the Cd21 block experiments, a 1 mMCdCl2 stock solution was diluted to

a final concentration of 1 mM in the Ba21 solution.

Single-channel recording

The vitelline membrane was manually stripped from an oocyte after soaking

in a hyperosmotic solution (Sather et al., 1993). Single-channel currents

were recorded in cell-attached patches while the stripped oocyte was

bathed in a high K1 solution that zeroed the membrane potential (in mM:

100 KCl, 10 HEPES, 10 ethylene glycol-bis(beta-aminoethyl ether)-

n,n,n9,n9-tetraacetic acid) (EGTA), pH 7.4 with KOH). The L-type Ca21

channel agonist FPL 64176 (RBI, Natick, MA) was included in the bath

solution at a concentration of 2 mM to prolong channel openings. Pipettes

were pulled from borosilicate glass (Warner Instruments, Hamden, CT),

coated with Sylgard (Dow Corning, Midland, MI) and heat-polished.

Pipettes typically had resistances of 25–40 MV when filled with the

recording solution of (in mM) 110 BaCl2, 10 HEPES (pH 7.4 with TEA-

OH). Single-channel records were obtained using an Axopatch 200A

amplifier (Axon Instruments, Foster City, CA). The amplifier’s internal filter

was set to 10 kHz and an external filter (8-pole Bessel filter, Frequency

Devices, Haverhill, MA) was set to 2 kHz, yielding a �3 dB frequency for

the cascaded filters of 1.96 kHz. The data were sampled at 10 kHz using

a Digidata 1200A (Axon Instruments) A/D converter and Pulse software

(HEKA, distributed by Instrutech Corp., Great Neck, NY). Single-channel

current amplitudes were determined by cursor analysis of long-duration

openings (Pulse, HEKA).

RESULTS

In two-electrode voltage-clamp recordings, channels con-

taining a1 subunits of predominantly a1S-based or a1C-based

origin carried currents of roughly similar size, with peak

inward currents of typically ;1–3 mA in the 40 mM Ba21

solution. The resulting similarity of voltage clamp quality

and of single-channel event frequency facilitated compar-

isons among channel constructs.

The chimeric constructs were designed to study ion

permeation. However, as an indicator of the specificity in

effect of the structural manipulations, we examined whether

channel gating might have been altered in the chimeras. We

found that wild-type and chimeric channels containing a1C-

based subunits exhibited the fast activation kinetics expected

for a1C channels, whereas channels containing a1S-based

subunits exhibited the slow activation kinetics characteristic

of the skeletal muscle Ca21 channel (Fig. 2A) (Tanabe et al.,
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1991). During a test pulse to 120 mV, tact for WT a1C

channels was 3.26 0.1 ms (mean6 SE; n¼ 6), whereas tact
for a1S channels was 21.8 6 1.0 ms (n ¼ 6). The a1C-based

chimeras CQuadPS (tact ¼ 2.4 6 0.3 ms, n ¼ 6) and CQuadS5–

6S (tact ¼ 1.3 6 0.1 ms, n ¼ 6) activated with time courses

like that of wild-type a1C, and the a1S-based chimera

SQuadS5–6C activated with a time course like that of a1S (21.6

6 3.7 ms, n¼ 6). Thus as judged by the general similarity of

chimeras to their parents in regard to activation gating, these

manipulations of pore structure appear to have had restricted

effects on the behavior of the channels.

Selective permeability properties of wild-type
and chimeric channels

In contrast to the lack of effect of altered pore structure

on activation gating, indices of ion permeability were sig-

nificantly affected by the structural alterations. Reversal

potentials for whole-oocyte currents in 40 mM Ba21 (Fig. 2

B) were modestly different between wild-type a1C (Erev ¼
73.26 0.9 mV, n¼ 12) and a1S (Erev¼ 67.76 1.0 mV, n¼
15). Each of the three quadruple chimeras exhibited reversal

potentials that were less positive than for either of the wild-

type channels, with SQuadS5–6C being the least selective for

Ba21 (Erev ¼ 46.36 1.7 mV, n ¼ 9, for SQuadS5–6C; 61.16
2.1 mV, n ¼ 6, for CQuadPS; 63.9 6 1.5 mV, n ¼ 8, for

CQuadS5–6S). The fact that preference for Ba
21 over K1 was

reduced in all three chimeras relative to either parent channel

suggests that interactions between the transferred sequences

and the bulk of the channel protein were different from the

corresponding interactions within the parent channels, with

the implication that these specific interactions are important

in the normal high selectivity of calcium channels. In addi-

tion, the observation that Erev was reduced to a greater extent

in the a1S-based chimera than in the a1C-based chimeras

suggests that structural features specifying this measure of

ion selectivity are different between a1C and a1S.

Percent block of Ba21 current by 1 mM Cd21 (Fig. 2 C)
was also different between wild-type a1C (56.96 3.2%, n ¼
4) and a1S (68.9 6 6.7%, n ¼ 3). Block of CQuadPS (62.4 6
2.2%, n ¼ 10) was intermediate between that of the two

wild-type channels and block of CQuadS5–6S (78.4 6 0.7%,

n ¼ 6) was somewhat greater than that of a1S. SQuadS5–6C,

however, was significantly more sensitive to Cd21 block

than was either parent (96.0 6 2.5%, n ¼ 6). Based on the

1:1 binding that describes Cd21 block of Ca21 channels,

these percent block values correspond to calculated half-

block (IC50) values of 757 nM and 451 nM for a1C and a1S;

to 603 nM and 276 nM for the CQuadPS and CQuadS5–6S

chimeras; and to 42 nM for the SQuadS5–6C chimera. Thus in

all three cases, chimeric substitution increased the channel’s

affinity for Cd21 relative to the parents. This systematic

enhancement of Cd21 affinity in chimeras relative to the

parent channels suggests that, as for the reversal potential

measurements, interactions between the transferred amino

FIGURE 2 Whole-oocyte currents for a1C, a1S, and the three Quad

chimeras (CQuadPS, CQuadS5–6S, and SQuadS5–6C) with 40 mM Ba21 solution

in the bath. a1C and a1C-based chimeras were coexpressed with a2d1a- and

b2b-subunits. a1S and the a1S-based chimera were coexpressed with a2d1a-

and b1b-subunits. (A) Normalized currents elicited by test pulses to 120

mV. (B) Representative current-voltage relationships. Peak current is plotted

versus test pulse voltage. Holding potential was �80 mV. (C) Percent block

by 1 mM Cd21 of inward Ba21 current at 120 mV (mean 6 SE; n ¼ 3–10

oocytes).
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acid sequence and the bulk of the channel protein are likely

to be important in determining the structure and selectivity

behavior of the pore.

Although Cd21 block of Ba21 current clearly differed

between a1C and a1S, the differences were not so large that

chimeras could be readily used to identify pore features

responsible for differences in this property of the parent

channels. And because Cd21 sensitivity of the chimeras did

not fall between that of the parents, Cd21 block of Ba21

current was not used for comparative structure-function

analysis of a1C and a1S channels.

Previous work on native Ca21 channels in skeletal muscle

indicated that monovalent cation current carried by a1S

would be orders-of-magnitude less sensitive to block by

Cd21 than monovalent current carried by a1C (compare

Almers et al., 1984 with Yang et al., 1993), but we found no

large difference between a1S and a1C in potency of Cd21

block of monovalent current: Cd21 blocked current carried

by 100 mM Li1 through these two channels with roughly

similar potency when the channels were expressed in oocytes

(data not shown). It has also been reported that native

skeletal muscle L-type Ca21 channels can carry Mg21 cur-

rent (Almers and Palade, 1981; McCleskey and Almers,

1985), in contrast to the case for cardiac L-type channels

(Hess et al., 1986; Lansman et al., 1986). For wild-type a1S

channels expressed in oocytes, however, we were unable to

detect inward Mg21 (40 mM or 100 mM) current. Thus

because a1C and a1S differed only modestly or not at all in

reversal potential, Cd21 block, and Mg21 permeability, we

have focused our investigation of structural determinants of

Ca21 channel permeation upon the robust difference in unit-

ary conductance between a1C and a1S channels, as described

below.

Unitary conductance: P-loop transfer from
a1S to a1C

Unitary current-voltage relationships in 110 mM Ba21 for

a1C and a1S are plotted in Fig. 3. The relationships for both

wild-type channels as well as all of the chimeras are slightly

curvilinear. They were, however, reasonably well fit with

linear regressions. We used such fits to estimate unitary

conductance (slope of the fit to data over the range �100 to

120 mV), which allows comparisons to be made with work

by others. a1C had a unitary conductance of 28.9 pS, which is

in close agreement with the value of 29.1 pS measured from

ventricular myocytes by Yue and Marban (1990). Conduc-

tance for a1S was 16.3 pS, which is also similar to that

measured from native channels, in this case, in skeletal

myotubes (14.3 pS; Dirksen et al., 1997). The small

difference between the two values for a1S may be due to

the difference in voltage range over which unitary current

amplitude was measured: Dirksen et al. (1997) used �20 to

120 mV, whereas we used �100 to120 mV, and curvature

in the current-voltage relationship results in steepening of the

FIGURE 3 Unitary current-voltage relationships for a1C, a1S, and

mutants in which P-loop sequence from a1S was substituted into a1C. a1C

and chimeras were coexpressed in oocytes with a2d1a- and b2b-subunits,

whereas a1S was coexpressed with a2d1a- and b1b-subunits. Currents in cell-

attached patches were measured with 110 mM Ba21 in the pipette. From the

holding potential of �80 mV, a 25 or 50 ms prepulse of 120 to 180 mV

was usually applied immediately before the 300 ms test pulse, with no

interval between the prepulse and test pulse. The prepulse facilitated channel

activation, and a1S generally required stronger facilitation (180 mV for 50

ms). Mean unitary current amplitude 6 SE (n ¼ 3–7 patches at each

potential) is plotted versus test pulse voltage for a1S (d), a1C (n), CIPS (�),

CIIPS(n), CIIIPS (,), CIVPS (u), and CQuadPS (}). Solid lines represent

linear regression fits to the data. Representative single-channel currents

recorded during a test pulse to�40 mV are displayed in the lower part of the

figure.
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slope at more negative voltages. The transfers of P-loop

sequences from a1S to a1C, one motif at a time, each had

a small effect on unitary conductance (Fig. 3). P-loop re-

placement in motif II reduced a1C conductance to 27.2 pS

(CIIPS), in motif III to 27.4 pS (CIIIPS), in motif IV to 27.8 pS

(CIVPS), and in motif I to 28.6 pS (CIPS). When all four P-

loops were transferred together, conductance was reduced to

a level intermediate between those for a1C and a1S (CQuadPS;

22.9 pS). This observation, that replacement of all four a1C

P-loops with the corresponding a1S P-loops did not fully

transfer an a1S-like conductance to a1C, suggests that

additional parts of the channel influence unitary conduc-

tance.

Unitary conductance: S5–6 transfer from
a1S to a1C

For voltage-gated K1 channels, evolutionary relatives of

voltage-gated Ca21 channels, structure-function studies have

suggested that the cytoplasmic portion of the S6, and perhaps

S5, transmembrane segments may line part of the inner pore

(Choi et al., 1993; Aiyar et al., 1994; Lopez et al., 1994;

Shieh and Kirsch, 1994; Taglialatela et al., 1994; Liu et al.,

1997; del Camino et al., 2000). Structure-function studies

have also implicated the intracellular loop between S4 and

S5 in formation of the innermost part of the K1 channel pore

(Isacoff et al., 1991; Slesinger et al., 1993). In voltage-gated

Ca21 channels, evidence that S6 amino acids are critical for

binding of pore-blocking phenylalkylamines indicates that

S6 may form part of the inner pore in these channels as well

(Streissnig et al., 1990; Hockerman et al., 1997). We there-

fore examined the role in ion conduction of the S5–6 region,

which is composed of S5 and S6 segments and the entire

sequence connecting S5 and S6, including the P-loop.

The size of the effect of transfer of S5–6 from a1S to a1C

was motif-specific (Fig. 4). Replacement of S5–6 in motif

I or in motif II had larger effects, lowering unitary con-

ductance from the wild-type a1C value of 28.9 pS to 24.4 pS

in the CIS5–6S chimera or to 24.9 pS in the CIIS5–6S chimera.

Transfer of S5–6 in either motif III or IV had almost

negligible effect on unitary conductance (28.3 pS in CIIIS5–6S

and 30.0 pS in CIVS5–6S). The effect of single motif S5–6

transfers was in no case as large as the combined transfer of

all four P-loops (CQuadPS). However, replacement of all four

S5–6 regions in a1C produced a channel with an a1S-like

conductance: in fact, the conductance of CQuadS5–6S (14.1

pS) was slightly smaller than that of wild-type a1S (16.3 pS).

The similarity in conductance between wild-type a1S and the

CQuadS5–6S chimera suggests that, for wild-type a1C versus

wild-type a1S, the differences in pore structure that are re-

sponsible for differences in unitary conductance are con-

tained within the S5–6 regions.

Based on the results of previous work (Dirksen et al.,

1997), our finding that the CIS5–6S chimera did not exhibit

an a1S-like conductance was unexpected. Dirksen and

colleagues (1997) had found that the makeup of the region

linking S5 with S6 in motif I, a sequence that formed part

of the swapped region in our CIS5–6S chimera, was largely

responsible for the difference in unitary conductance be-

FIGURE 4 Unitary current-voltage relationships for chimeras in which S5

through S6 sequence from a1S was substituted into a1C. Chimeras were

coexpressed in oocytes with a2d1a- and b2b-subunits. Currents in cell-

attached patches were recorded with 110 mM Ba21 in the pipette. Holding

potential was �80 mV, and a 25 or 50 ms prepulse to 120 or 140 mV was

usually applied to facilitate channel activation (no interval between prepulse

in test pulse). Unitary current amplitude (mean 6 SE, n ¼ 3–7 patches at

each potential) is plotted versus test potential for CIS5–6S (�), CIIS5–6S (n),

CIIIS5–6S (,), CIVS5–6S (u) and CQuadS5–6S (}). Solid lines are linear

regression fits to the data. For comparison, the linear regression fits to the i-V

relationships for a1S and a1C from Fig. 3 are shown as dotted lines.

Representative single-channel records at a test potential of �40 mV are

illustrated in the lower part of the figure.
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tween a1C and a1S. Among potential explanations for the

contrasting findings, evidence that channel a2d- and b-sub-
units may influence unitary conductance (Meir and Dolphin,

1998) raised the possibility that our result with CIS5–6S might

be attributable to its ancillary subunits. In the work reported

here, we used a skeletal muscle a2d isoform, similar to the

experimental situation in the work by Dirksen and colleagues

(1997). However, we used a b2b-subunit in the work de-

scribed above, in contrast to Dirksen and colleagues’ reliance

on the skeletal muscle b1a- and b1b-subunits (Ren and Hall,

1997). We therefore re-examined the unitary conductance of

a1C and a1C-based chimeras, but with a skeletal muscle

b-subunit coexpressed in place of b2b. When coexpressed

with b1b, CIS5–6S had a unitary conductance (24.9 pS) that

was little changed from its conductance when coexpressed

with b2b (24.4 pS). Nor was unitary current at �80 mV

different when CIS5–6S was expressed with b1b (�3.16 6
0.03 pA, n ¼ 4) versus b2b (�3.04 6 0.04 pA, n ¼ 5).

Unitary current amplitudes for CQuadS5–6S and wild-type a1C

were also unchanged by coexpression with b1b. Thus under

these conditions, b-subunit isoform does not appear to

modulate the effects of transferred S5–6 sequences on

unitary conductance.

Reciprocality of chimeric effects on unitary
conductance: S5–6 transfer from a1C to a1S

The diminishment of unitary conductance produced by

chimeric manipulation of the a1C pore can be interpreted in

competing ways. It might reflect the straightforward transfer

of a1S-like ion transport behavior along with a1S pore

sequence, or it might arise from incompatibility of the trans-

ferred a1S sequence with the host a1C sequence, resulting

in misfolding in the pore region and retarded ion flux. To

discriminate between these alternatives, we examined the

unitary conductance of an a1S-based chimera in which the

four S5–6 regions were replaced with the corresponding

sequences from a1C. For this SQuadS5–6C chimera, comple-

mentary to CQuadS5–6S, we specifically tested whether

transfer of a1C sequence into the a1S host would yield

a chimera with a1C-like unitary conductance. Indeed, as

illustrated in Fig. 5, the unitary conductance of the SQuadS5–

6C (30.0 pS) chimera closely approximated that of the wild-

type a1C channel.

DISCUSSION

Our results provide evidence that the S5–6 regions,

composed of transmembrane segment S5, the entire S5–S6

linker and transmembrane segment S6, contain the struc-

tural features that are responsible for the difference in unitary

conductance between a1C and a1S L-type Ca21 channels.

The combination of the four P-loops, which represents

a subset of the S5–6 regions, does not fully determine ion

transport rate. Rather, the S5–6 regions from at least two

motifs, and possibly all four, are required to specify the rate

of ion transport through these channels. The reciprocal

nature of the effects on ion conduction of the quadruple S5–6

swaps in a1C and a1S strengthens the conclusion that no

other regions account for the characteristic ion transport rates

of these L-channels.

FIGURE 5 Unitary current-voltage relationship for the chimera in which

S5 through S6 sequence from a1C was substituted into a1S, SQuadS5–6C (}),

(mean 6 SE, n ¼ 3–5 patches at each potential). The chimera was

coexpressed in oocytes with a2d1a- and b1b-subunits. Currents were

recorded in cell-attached patches with 110 mM Ba21 in the pipette and

with a holding potential of�80 mV. A 25- or 50-ms prepulse to120 or140

mV was given immediately before the test pulse to facilitate channel

activation. The solid line is a linear regression fit to the data. For comparison,

the linear regression fits to the i-V data for a1S and a1C are represented as

dotted lines. Representative unitary currents recorded during a test pulse to

�50 mV are illustrated below the i-V plot.
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S5–6 regions control ion flux through a1C and
a1S Ca21 channels

Unitary conductance and unitary current results for all the

chimeras studied are compared in Fig. 6. The results are

scaled relative to the normalized difference between a1C and

a1S in either conductance (Fig. 6 A) or current (Fig. 6 B).
Dotted lines mark values for a1C (upper level in both panels)
and a1S (lower level in both panels). In general, the pattern

of results is similar for unitary conductance and unitary

current. Thus whether comparing conductance or current

results for the quadruple chimeras (black or white bars),
the quadruple P-loop substitution shifted the ion transport

rate only about halfway toward the donor rate whereas

quadruple S5–6 substitution more or less completely trans-

ferred the ion transport rate of the donor. Roles for non-

P-loop regions in controlling ion conduction have previously

been suggested for voltage-gated K1 channels (Lopez et al.,

1994; Aiyar et al., 1994; Shieh and Kirsch, 1994; Taglia-

latela et al., 1994; Immke et al., 1998) and for inward rectifier

K1 channels (Choe et al., 2000), and the full S5–6 region

has been specifically implicated in cyclic nucleotide-gated

channels (Siefert et al., 1999).

In comparing the results for individual motifs, three points

emerge. First, different motifs are differentially important in

determining ion transport rate. Although P-loop transfers

produce roughly similar, small changes in ion transport rate,

S5–6 transfers clearly are distinct from one another in the

size of their effects. Thus among the S5–6 chimeras, transfer

in motifs I and II produced the largest changes whereas

transfer in motifs III and IV had lesser effects. Regarding the

magnitude of effects produced by S5–6 substitution, the

ordering of motifs is different for ion transport rate than it is

for ion selectivity: for ion conduction, motifs I and II are

most influential, whereas for ion selectivity, selectivity filter

glutamate residues in motifs III and then II are most

consequential (Yang et al., 1993; Ellinor et al., 1995). This

contrast reiterates the point that ion conduction and selec-

tivity are divergent phenomena in Ca21 channels.

Second, the effects on conductance produced by single-

motif sequence transfers are not in every instance additive:

the magnitude of the change in ion transport rate produced

by a quadruple transfer is not necessarily predicted by

summing the magnitudes of the four corresponding single-

motif transfers. In the most striking case, substituting all four

a1S S5–6 regions into a1C (CQuadS5–6S) reduced unitary

conductance by about twice that of the summed reductions

produced by the four individual S5–6 transfers. When con-

sidering instead unitary currents or the results for P-loops,

the evidence for non-additivity was much weaker. None-

theless, the absence of additivity of conductance for the S5–6

transfers raises the possibility of cooperative or synergistic

interaction among the four motifs.

Third, interactions between P-loop sequence and other

parts of the S5–6 region seem to be complex. The data

summarized in Fig. 6 show that although individual S5–6

substitutions caused distinctive decrements in ion conduc-

tion, individual P-loop substitutions produced approximately

similar, small decrements in ion conduction. Regarding

motif IV, for example, P-loop substitution produced bigger

changes in ion conduction than did S5–6 substitution, as

though the effects of P-loop transfer could be reversed by

transfer of structural features contained in the non-P-loop

components of the S5–6 region. Alternatively, this finding

might indicate that ‘‘improper’’ interactions of transplanted

P-loop residues with host channel residues led to local

protein misfolding and diminished ion conduction. This

view may also account for our finding that Na1 channel

P-loops not only fail to confer Na1 selectivity on Ca21

FIGURE 6 Summary of relative differences in unitary conductance (g)

and in unitary current (i) at �80 mV among a1C, a1S, and chimeras. (A)

Differences in conductance between chimeras and a1S (gchim – gS) are

plotted relative to the difference in unitary conductance between a1C and a1S

(gC – gS). Dotted lines represent the relative difference values for a1C (1.0;

g ¼ 28.9 pS) and a1S (0; g ¼ 16.3 pS). For a1C-based chimeras, bars

representing single-motif substitutions (I, II, III, IV) are shaded in gray and

bars representing Quad chimeras (Q; CQuadPS or CQuadS5–6S) are filled in

black. The a1S-based Quad chimera (Q; SQuadS5–6C) is represented by

a white bar. Unitary conductance was determined from linear regression fits

to unitary current amplitudes measured over the range �100 to 120 mV

(n¼ 3–7 patches; 110 mMBa21), as illustrated in Figs. 3–5. (B) Differences

in unitary current at�80 mV between chimeras and a1S, denoted (ichim – iS),

are plotted relative to the difference in unitary current at �80 mV between

a1C and a1S, denoted (iC – iS). Dotted lines represent the relative difference

values for a1C (1.0; i ¼ 3.836 0.03 pA, n ¼ 4) and a1S (0; i ¼ 1.916 0.11

pA, n ¼ 4). For a1C-based chimeras, bars representing single-motif

substitutions (I, II, III, IV) are shaded in gray and bars representing Quad

chimeras (Q; CQuadPS or CQuadS5–6S) are filled in black. The a1S-based Quad

chimera (Q; SQuadS5–6C) is represented by a white bar.
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channels, but the resulting Na1 channel/Ca21 channel

chimera also failed to carry Ca21 or Ba21 current (unpub-

lished data).

Our findings generally agree with previous work by

Dirksen et al. (1997) in that the motif I P-loop and S5–6

region house the key determinants of ion conduction, but our

results using systematic sets of P-loop and S5–6 region

chimeric constructs reveal significant participation of other

motifs as well. In the study by Dirksen and colleagues

(1997), substitution of a1S sequence into the motif I S5–S6

linker of a1C, which left the flanking S5 and S6 segments of

a1C in place, displaced unitary conductance ;75% of the

way toward the a1S value. In contrast, we have found that

substitution of a larger region in motif I, encompassing the

S5–S6 linker but also including the flanking S5 and S6

segments, displaced unitary conductance only ;35% (CIS5–

6S, Fig. 6 A) of the way toward the a1S value. In our work,

we found that full transfer of a1S-like conductance required

substitution of all four S5–6 regions. Various explanations

for the apparent discrepancy between the two studies can be

proposed, but a likely one stems from the fact that different

chimeras were studied. As discussed above, interactions

between the S5–S6 linker and surrounding parts of the S5–6

region may be important in determining conductance, and in

the absence of appropriate interactions between these parts of

the conductance-determining S5–6 regions, unitary conduc-

tance might consequently be reduced. The fact that swapping

the four S5–6 regions reciprocally transferred unitary con-

ductance between a1C and a1S confirms the idea that the

S5–6 regions contain the structural features responsible for

the difference in ion conduction between a1C and a1S.

Comparison of results with our chimeras and those of

Dirksen and colleagues (1997) also supports the idea, dis-

cussed above, that structural features contained within the

S5–6 regions but outside the S5–S6 linker specify unitary

conductance in these two L-type Ca21 channels.

Reversal potential, Cd21 block and
unitary conductance

Whereas the unitary conductance results are interpretable in

a straightforward manner, the effects of chimeric substitution

on two other measures of ion permeability, reversal potential,

and Cd21 block, are not as readily rationalized. The parent

a1C and a1S channels differed little from one another in Erev

and in estimated IC50 for Cd
21 block, but as a general trend,

the three quadruple chimeras (CQuadPS, CQuadS5–6S, SQuadS5–

6C) differed from their parents: in the quadruple chimeras,

Erev was as much as 20 mV less positive (SQuadS5–6C) and

Cd21 IC50 was as much as 10-fold lower (SQuadS5–6C)

relative to the parent channels. Thus quadruple chimera-

genesis seemingly reduced ion selectivity if judged from

bi-ionic reversal potential, but increased ion selectivity if

judged from Cd21 binding affinity. The SQuadS5–6C chimera

represents the most striking case, with the lowest preference

for Ba21 over K1 (Erev) but the highest preference for Cd
21

over Ba21 (IC50). Part of the explanation for this situation

may be that these two measures of ion selectivity differ in the

ions compared and in the direction of ion flow, so that inward

Ba21 competes with outward K1 in one case but inward

Cd21 competes with inward Ba21 in the other.

It is noteworthy that Erev and IC50 were altered in the

quadruple chimeras despite the fact that all four selectivity

filter glutamates (EEEE locus) were present in these

chimeras. One explanation is that the EEEE locus is very

sensitive to structural context, so that incompatibility be-

tween a1C and a1S sequence in the chimeras results in altered

EEEE locus configuration and altered selectivity. Alterna-

tively, non-EEEE locus mutations have previously been

found to affect Ca21 channel selectivity, suggesting the

possibility that altered pore structure elsewhere in the

transplanted region might account for the changes in

selectivity (Williamson and Sather, 1999; Feng et al., 2001).

Differences between a1C and a1S in
S5–6 sequence and ion conduction

Sequence comparison suggests ways that the S5–6 regions

might potentially control ion conduction in Ca21 channels.

In motif III, previous work comparing a1C with a1A (P/Q-

type Ca21 channel) sequence led to the finding that the side-

chain volume of a residue neighboring the EEEE locus

influenced unitary conductance (Williamson and Sather,

1999). The residue at this neighbor position is conserved

between a1C and a1S, however, and in general, there are few

remarkable differences in P-loop sequence between a1C and

a1S, which may account for the inability of quadruple P-loop

substitution to fully transfer conduction behavior. In the

regions flanking the P-loops, the S5–S6 linkers differ be-

tween a1C and a1S at several positions. Examining these

differences in motif I, a1C has a net charge of �5 relative to

a1S, which has previously been suggested to attract permeant

cations into the extracellular pore entrance and thereby

impart higher conductance on a1C channels (Dirksen et al.,

1997). Considering this idea in light of the evidence that

surrounding parts of S5–6 are important in specifying

conduction rate, electrostatic enhancement of permeant ion

entry rate may not be a dominant factor in conduction.

Indeed, evidence against electrostatic focusing of permeant

divalent metal cations at the mouth of L-type Ca21 channels

under the experimental conditions used here has been

obtained (Kuo and Hess, 1992).

Regarding our evidence that the S5–6 region is crucial in

controlling flux through Ca21 channels, in the homologous

K1 channels the cytosolically-disposed part of S6 and

possibly S5 is thought to contribute to the pore lining (Aiyar

et al., 1994; Lopez et al., 1994; Shieh and Kirsch, 1994; Liu

et al., 1997; Doyle et al., 1998; del Camino et al., 2000). The

cytosolic halves of S5 and S6 in a1C and a1S are highly

hydrophobic, which is consistent with the hydrophobicity of
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homologous sequences lining the central pool and inner pore

of the KcsA K1 channel (Doyle et al., 1998). In Ca21

channels, differences in these hydrophobic sequences may

therefore help to determine conduction rate through the

cytoplasmic part of the pore, as has been proposed for

the KcsA channel. Additionally, the more extracellularly-

disposed parts of the S5 and S6 segments may be involved,

based on the fact that the number of differences in sequence

between a1C and a1S is greater in the extracellular halves of

S5 and S6 than in the intracellular halves. Whether amino

acid residues in S5 or S6 contribute directly to pore for-

mation in Ca21 channels, for example at the extracellular

entrance, is unknown. However, S5 and S6 may act by

exerting indirect effects that influence the conformation of

the more external portion of the pore, particularly the P-loop.
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