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Advances in our understanding of neural systems will go hand
in hand with improvements in the experimental techniques used
to study these systems. This article describes a series of method-
ological developments aimed at enhancing the power of the meth-
ods needed to record simultaneously from populations of neurons
over broad regions of the brain in awake, behaving animals. First,
our laboratory has made many advances in electrode design,
including movable bundle and array electrodes and smaller elec-
trode assemblies. Second, to perform longer and more complex
multielectrode implantation surgeries in primates, we have modi-
fied our surgical procedures by employing comprehensive physio-
logical monitoring akin to human neuroanesthesia. We have also
developed surgical implantation techniques aimed at minimizing
brain tissue damage and facilitating penetration of the cortical
surface. Third, we have integrated new technologies into our neural

ensemble, stimulus and behavioral recording experiments to pro-

gical implantation procedures, multichannel single-
unit, stimulus, and behavioral recordings, and the anal-
vide more detailed measurements of experimental variables. Fi-
nally, new data analytical techniques are being used in the labora-
tory to analyze increasingly large quantities of data. q 2001
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The relatively new paradigm of multichannel electro-
physiology has clearly been having a profound impact
in the neurosciences. The reason for this interest is
probably not due so much to a change in research inter-

ests, since it has been appreciated for some time that
recording from large numbers of neurons simultane-
ously in the primate cortex will help to uncover the
mechanisms underlying such higher brain functions as
learning, planning, and memory (see Lilly (1), for in-
stance). Rather, the excitement seems to stem
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more from the methodological side, in that the technolo-
gies are now becoming available to record extracellu-
larly from potentially hundreds of neurons distributed
broadly over the cortex and other brain regions (2–10).
Advances in the methodology, then, must continue to
improve, to keep up with the exciting research and
medical opportunities that these improvements offer.
Although long-term multichannel single-unit re-
cordings in multiple cortical and subcortical areas have
been successfully obtained in many animal species, in-
cluding birds, rats, and primates, it is clear that chronic
electrode implantation in even more brain areas while
recording from larger populations of neurons is a goal
that could be attained in the near future. Further, these
techniques may someday be applied to human subjects,
to alleviate debilitating impairments (11). Taking these
next steps will require the development of new tech-
niques to address key issues in all areas of neuronal
ensemble electrophysiology: multielectrode design, sur-
yses of the data sets that such work generates. In this
article, we provide a detailed description of critical is-
sues in each of these main areas and the advances we
have made to address them.

1. MULTIELECTRODE DESIGN

Many laboratories, including our own, have had sig-

nificant success in chronically implanting standard
electrode bundles and arrays (NBLabs, Dallas, TX) into
various brain structures in several animal species.
However, to be able to implant areas where the sponta-
neous firing rate is low, especially under anesthesia,
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and to maximize overall neuronal yield, we have fo-
cused on developing bundle and array electrodes that
are not permanently secured in place at the time of
surgery, but rather can be moved to access more neu-
rons while the animal is awake and behaving. In addi-
tion, we have been working on a design to reduce the
overall size of the electrode assembly, to make multi-
channel recordings in smaller species, such as in mice.
This latter development could provide the opportunity,
for example, to conduct experiments that combine mul-
tielectrode physiology with molecular genetics.

1.1. “Mini-microdrive” Drivable Bundles

To facilitate reliable implantation of deeper struc-
tures, we have developed a variation on the classic driv-
able bundle design originally described by Kubie (12)
and used in a number of laboratories (see 4, 13). Adjust-
ments performed in our laboratory make it possible to
place multiple bundles on a single rat’s head, and to
divide the wires of a single assembly into two or more
independently movable cannulas. The construction and
drivability of this assembly greatly increase its yield:
cannulation of the bundle translates into lower variabil-
ity of implant angle, and drivability removes guesswork
in the dorsal–ventral plane.

In this design, 16 microwires (each 25 mm in diame-
ter, with an additional ,10-mm Formvar jacket) are
threaded through a 27-gauge thin-walled stainless-
steel tube (the “electrode cannula”), or are split among
two or more narrower cannulas. The electrode cannula
is soldered to a 21-gauge tube (the “guide cannula”),
which slides into a microdrive. The microdrive, essen-
tially a 3 3 10 3 2-mm tablet of dental acrylic with a
hole running lengthwise through it, is made in a Teflon
mold (Fig. 1): an 0-80 screw projects into the mold from
one end, and is met halfway across by a 21-gauge stain-
less-steel tube; after dental acrylic has been poured into
the mold and allowed to harden, both screw and tube
can be cracked out with gentle torque. An 0-80 set screw
is then screwed into the threaded half of the hole, and
the guide/electrode assembly is slid in from the bottom,
such that it meets the set screw (Fig. 1). When the set
screw is turned further, the guide cannula is slowly
ejected from the other end, until the set screw rests at
the end of the tapped portion of the hole.

The microwires are glued both to the cannula and to
the top end of the microdrive, leaving a short length of

taut wire between the two glued points. The set screw is
then turned back by ,2 mm, and the cannula assembly
pushed into meet it; this causes a small amount of slack
to be introduced into the length of wire between the
two glued points (see Fig. 1). Finally, the microdrive is
glued to the side of a connector plug, and the microwires
ET AL.

are individually glued onto the pins with a dot of silver
print paint. Connection points are covered with a pro-
tective coating. The assembly presents a remarkably
slim surface when looked down on from above, taking
up only the space required by the plug itself (Microtech,
Inc., Boothwyn, PA; in our case, 2 3 10 mm) plus the
2 3 3-mm profile of the mini-microdrive. As many as
four or five such bundles may fit on a single rat’s head.
Figure 2 shows signals culled from simultaneously im-
planted amygdalar and cortical bundles.

The bundle is trimmed such that only 2–3 mm of wire
the tips are gently spread just prior to implantation.
For insertion, the cannula and length of slack wire are
covered with petroleum jelly and lowered into an area
dorsal to the intended recording site; as the cannula is
rigid, deep structures can be targeted with relative

FIG. 1. Drivable microwire bundles with “mini-microdrives.” The
schematic details the mold used to produce the mini-microdrives, and
shows the drive itself ejected from the mold following removal of the
mold screw and tube (see text for details). An 0-80 set screw is then

turned into the tapped hole, and a drive–cannula/electrode–cannula
assembly is slid up to meet it. The inset shows the finished product,
with the microdrive (A) and wires attached to the plug (B). Note that
the assembly process (see text) results in the leaving of slack in the
electrode wires (C) inbetween the cannula (D) and microdrive; this
slack is taken up as the cannula and electrodes are driven deeper
into the brain in the weeks following surgery. Bar (in inset)-3 mm.
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FIG. 2. Recordings from multiple simultaneously implanted movable bundles. A screen capture showing the spikes (725 ms of signals that
have crossed an amplitude threshold) from two wires in the same rat. The top panel is from a wire implanted into insular cortex, the bottom
from the amygdala. In both, the waveforms of particular colors have been identified as similar in form, using the time–amplitude boxes
shown; the green spikes are clearly single units.
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ease. The entire assembly is carefully cemented to the
skull, but the petroleum jelly ensures that the drivable
components are free to move. Later advancement can
be very precise (one entire turn of the set screw ad-
vances the tips by ,300 mm), and can be done while
the animal is awake and plugged into the recording
system (although it may take some time for recordings
to stabilize following tip movement). Thus, proper
placement can proceed while the animal is awake and
performing—a great benefit when movement-related
units are sought, or when regions that respond poorly
under anesthesia are probed.

1.2. Miniature Eight-Channel Multielectrode Implant
Device with Individually Movable Electrodes

In numerous experimental situations, it is desirable
to record simultaneously the activity of individual neu-
rons from many discrete locations within a particular
structure. Several laboratories have reported good suc-
cess by implanting fixed arrays of microwire electrodes
into target structures (see, for instance, Nicolelis et al.
(9)). However, in certain circumstances, it would be
particularly beneficial to be able to move individual
electrodes within a recording array after it has been
implanted. Individually movable electrodes would in-
crease the overall yield of recorded neurons simply be-
cause each electrode can sample different neurons as
it is moved through the target structure. Also, individu-
ally movable electrodes would allow neurons to be sam-
pled simultaneously at different depths within the
structure. For example, one could record simultane-
ously from different layers in cerebral cortex during the
same recording session. Finally, individually movable
electrodes would allow electrodes to be precisely posi-
tioned within regions of a structure that are not uni-
formly distant from the surface. For example, cerebellar
Purkinje cells are arranged in a monolayer in the cere-
bellar cortex. The highly foliated nature of this struc-
ture results in substantial differences in the depth of
neighboring Purkinje cells relative to the pial surface.
Thus, to record from neighboring populations of Pur-
kinje cells, individual electrodes must be positioned at
varying and substantially different depths.

Here, we describe the design of a multielectrode array
that was developed to address these issues regarding
the need for electrode mobility, while maintaining the
spatial arrangement of the electrodes in the array. In

addition to the ability to move individual electrodes
within the array, the entire electrode assembly was
designed to be as compact as possible to facilitate im-
plantation of multiple arrays within an adult rat. Fi-
nally, the entire device is relatively simple in design
and, thereby, easy and inexpensive to construct.
ET AL.

The device consists of eight individual microelec-
trodes. These are fashioned from tungsten rods (100
mm in diameter) that are electrolytically etched in 2 M
KNO2 to have a sharp tip (see, for instance, Freeman
(14) and Hubel (15)). The taper in diameter of the elec-
trodes is such that the diameter 1 mm from the tip is
approximately 25 mm and the diameter 0.5 mm from
the tip is approximately 15 mm. Thus, these electrodes
easily penetrate the dura mater and other overlying
membranes and cause minimal disruption of tissue
near the recording tip. The electrodes are insulated by
being dipped several times in epoxylite and subse-
quently baked at 1108C for several hours (see Snodderly
(16)). The electrode tips are exposed by electrically
“blasting” insulation from the tip with a controlled,
high-voltage spark (17). Exposed tips of approximately
10–15 mm are typically used.

The electrodes are arranged in a linear row with cen-
ters 250 mm apart (Fig. 3A). A small, molded acrylic
block with eight parallel holes (120 mm diameter) run-
ning through the length of the block accurately posi-
tions each electrode in the array (see Fig. 3B). Individ-
ual electrodes can slide within the holes in the block.
Two stainless-steel tubes on either side of the block
accurately position the block relative to the individual
microdrives. Each microdrive is constructed of a 16-
gauge internally threaded (0-80) stainless-steel hypo
tube. Within each of these threaded tubes is a 0-80 set
screw that pushes a short piece of Teflon tubing (24
gauge). Thus, for each full turn of the set screw, the
Teflon tube is extended 318 mm. Each tungsten micro-
electrode is passed through a hole in the acrylic block
and the uninsulated end of each electrode is pushed
about 1–2 mm into the lumen of one of the Teflon tubes
in each microdrive. The end of a short length of Teflon-
insulated silver wire (75 mm diameter) is also inserted
into the Teflon tube (see Fig. 3A). The silver wire is
electrically connected to the tungsten electrode by
allowing a small amount of conductive silver paint to
flow into the Teflon tube. When the paint hardens, it
mechanically holds the tungsten electrode and silver
wire together within the Teflon tube and electrically
connects them with a very low resistance connection.
The other end of the short silver wire is soldered to a
terminal on a connector used to connect the electrode
to an external amplifier. Thus, when the set screw is
rotated, the Teflon tube is extended out of the threaded
hypo tube. As the Teflon tube moves out, the attached

tungsten microelectrode is also extended, resulting in
accurate movement away from the end of small acrylic
block. As seen in Fig. 3B, the odd-numbered electrodes
have been extended about 1 mm from the block while
the even-numbered electrodes have been extended
about 900 mm further. Together, these components form
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a very compact, lightweight eight-channel microdrive
system. Multielectrode arrays have been used for neu-
ronal recordings in somatosensory cortex in rats. The
device is stereotaxically lowered in surgery so that the
tips of the electrodes are positioned 100 mm above the
dura. The device is then cemented to the skull using
dental acrylic. A viscous gel such as silicone grease is
placed into the space between the microdrives and the
by conductive silver paint) to the individual contacts on the connector.
Bar 5 5 mm. (B) Closeup of the eight electrodes passing through the
acrylic block. Odd- and even-numbered electrodes are extended to
different depths. Electrodes are spaced 250 mm apart (center to cen-
ter). Bar 5 2 mm. (C) Example of a recorded signal from primary
somatosensory cortex in an awake rat. Two separate single units are
present. Signal was bandpass filtered between 0.5 and 5 kHz.
NSEMBLE RECORDINGS 125

facilitate penetration into the brain with minimal dim-
pling of dura and subsequent compression of underlying
tissue. After the electrodes have been driven to a de-
sired depth, single-unit neuronal activity can be re-
corded. An example of a recorded signal is shown in
Fig. 3C. There are two discriminable single units. This
activity was recorded in the barrel region of the primary
somatosensory cortex in an awake rat approximately 3
weeks after surgery.

1.3. Reduced-Size Electrode Arrays

Reducing the size of the electrode assemblies is essen-
tial when implanting smaller animals like birds and
mice. For such species, commonly used electrode arrays
are typically larger than the animal’s head, which even
in the best case prevents the animal from maintaining
its normal behavior while in its home cage, as well as
during recording. Reducing the overall size of electrode
arrays is valuable even when implanting larger animals
like rats and monkeys. A smaller electrode assembly
occupies less space on the animal’s skull, providing an
avenue for implanting and thus simultaneously re-
cording from many more neurons and brain structures.

In our laboratory, a significant reduction in electrode
array size was achieved by reducing the size of the
connector on the electrode assembly. This new connec-
tor (Omnetics Connector Corp., Minneapolis, MN) is
about a third of the size of regular connectors (such as
those from Microtech, Inc., Boothwyn, PA). Addition-
ally, we were able to decrease the distance between the
connector and the tip of the wires by about one-half.
The resulting decrease in the overall size of the arrays
achieved with these two changes allows the head stage
to be much smaller, thereby reducing considerably the
total weight of the permanently mounted assembly on
the animal’s head.

The basic procedure of making such smaller electrode
arrays requires several adjustments. A silver-impreg-
nated conductive epoxy is applied on the connector’s
pins. Eight microwires, 1 inch in length, made of 45-
mm-diameter tungsten and coated with 5 mm Isonel
(California Fine Wire company, Grover Beach, CA), are
placed gently on the connector’s pins and are baked to
harden the conductive epoxy. The wires are then passed
through a guide tube arranged in a desired configura-
tion. Once in place, dental acrylic cement is used to fix
the position of the wires. The guide tube is made out
acrylic block to prevent the dental acrylic from interfer-
ing with electrode movement. The rat is allowed to re-
cover for at least 5 to 7 days. At any time after the
surgery (hours to weeks), electrodes can be individually
driven through the dura into underlying target neural
structures. The sharp tips of the tungsten electrodes

FIG. 3. Drivable microwire array. (A) Example of a multielectrode
device. Four stainless-steel microdrives can be seen attached to the
electrode connector (lower portion of figure). The other four drives
are attached to the opposite side of the connector. The electrodes in
the four drives on the front of the connector have been extended
approximately 1 mm. Note the Teflon tubes extending above the
stainless-steel drive tubes and the electrode tips extending 1 mm
above the acrylic block. The microdrives attached to the opposite side
of the connector have been extended about 1.9 mm. Again, note the
Teflon tubes extending above the drives and the tips of the electrodes
above the acrylic block. The silver wires can be seen running from
the Teflon tubes (where they connect with the tungsten electrodes
of several stainless-steel tubes (Small Parts Inc., Miami
Lakes, FL) organized according to the desired electrode
configuration. The diameter of the stainless-steel tubes
determines the interwire distance.

The configuration is chosen based on the number
and geometry of the structures to be implanted. In the
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mouse, the brain structures are rather small and lo-
cated too close to one another to allow the implant of
two independent arrays. In such cases, the guide tubes
are arranged to create two separated 2 3 2 arrays (Fig.

4A) instead of a single array of 1 3 8 (Fig. 4B). The

guide tube arrangement can be tailored to match the
distance between target structures.

Finally, it should be noted that the drivable bundles
described above were successfully adjusted to work with
the smaller connector as well.

2. SURGICAL IMPLANTATION PROCEDURES

Once the multielectrode bundles and arrays are as-
sembled, they must be surgically implanted into the
targeted brain structures. Major components of this
surgery are the induction and maintenance of an ade-

quate level of anesthesia and the surgical implantation
of the electrodes. In this section, we describe ways to

FIG. 4. Two examples of the reduced size electrode arrays made in
our laboratory. (A) Eight wires (45-mm-diameter tungsten coated with
5mm Isonel) arranged in two separated arrays of 2 3 2. The distance
between the two arrays can be adjusted according to need. (B) The
eight wires are arranged as a single array of 1 3 8.
ET AL.

2.1. Neuroanesthesia

We have performed implantation of up to 128 micro-
wires in multiple cortical areas in New World primates
(8, 9). Such surgeries may someday be performed in
humans for therapeutic purposes (11). To be able to
perform longer and more extensive surgical procedures,
we have recently implemented a level of care that is
similar to that used for humans undergoing neurosur-
gery (see Miller et al. (18)). In nonhuman primates,
carefully monitoring the animal’s physiology and per-
forming appropriate interventions intraoperatively and
postoperatively allow us to perform extremely long pro-
cedures, up to 14 h, with excellent rates of survival, even
in older animals. Furthermore, several physiological
manipulations can be made that have a significant im-
pact on the actual implantation of the electrodes, such
as managing the size of the brain.

The central problem faced when placing an animal
under anesthesia is the animal’s inability to monitor
its own homeostasis. In essence, one must assume the
responsibility of monitoring and responding to changes
in physiological parameters that the animal can no
longer control. Using the human operating room as the
standard, we have assembled a variety of monitoring
devices and techniques that allow us to assess continu-
ously the physiological state of the animal throughout
the surgical procedure (see Fig. 5A).

The animal is intubated prior to surgery and mechan-
ical ventilation is provided throughout using a neona-
tal, pressure cycled ventilator. During surgery, heart
rate, oxygen saturation, blood pressure, respiratory
rate, end tidal carbon dioxide, temperature, blood glu-
cose, and urine output are monitored. At least one per-
son is dedicated to recording physiological data
throughout the procedure. Following trends throughout
the surgical procedure is often more useful than know-
ing the absolute values.

Heart rate is one of the most useful parameters,
which we measure in two ways. The electrical activity
is measured using neonatal limb leads connected to a
standard electrocardiogram (ECG) machine (Horizon
2000 Patient Monitor, Mennen Medical, Inc., Clarence,
NY). The pulsatile flow of blood produced by the heart
is measured using a pulse oximeter (CO2SMO1 Respi-
ratory Profile Monitor, Novametrix Medical Systems,
Inc., Wallingford, CT) (Fig. 5B). In combination, these
two methods of measuring heart rate provide a great
address two critical issues here: (1) the maintenance of
homeostasis in New World monkeys over long, invasive
brain surgeries, and (2) the reliable penetration of the
pial layer by the electrodes.
deal of useful information regarding the functioning
of the cardiovascular system. The redundancy in the
values provides a useful way of cross-checking the accu-
racy of one particular value. If the ECG rate suddenly
drops to zero, for example, the important distinction
between device malfunction versus cardiac standstill
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and the need for immediate intervention can be ascer-
tained by a quick glance at the pulse rate registered by
the pulse oximeter.
Heart rate also provides an overall assessment of the

percentage saturation of arterial blood with oxygen. The pulsatile
flow of the blood is depicted in the bottom waveform, providing infor-
mation on the quality of the pulse as well as the pulse rate per minute,
which is depicted numerically as the smaller bottom number. Again,
this information can be downloaded and correlated with neuronal
firing. The unit can operate temporarily on an internal backup
battery.
NSEMBLE RECORDINGS 127

gives an estimation of percentage saturation of arterial
blood with oxygen (oxygen saturation). Oxygen satura-
tion is particularly useful since it gives an overall esti-
mation of the cardiopulmonary function. In essence,
if the pulse oximeter registers values above 90%, the
animal’s lungs and heart are generally functioning well.
Any major perturbation to the cardiopulmonary system
will cause a rapid decline in the oxygen saturation.
Further, because oxygen saturation is measured in the
periphery (tail or distal extremity) it is very sensitive
to any perturbations that occur before they affect the
brain and vital organs. Oxygen saturation is therefore
a very sensitive way of ascertaining overall cardiovas-
cular stability.

It is important to note that with smaller primates
such as owl (Aotus trivirgatus) and squirrel (Saimiri
sciureus) monkeys, it is technically challenging to place
the sensor and emitter in such a way that they provide
accurate, stable values. There is clearly a steep learning
curve to working with such devices. We have found the
proximal tail and lower leg to be the best places to
attach probes on squirrel and owl monkeys. We shave
and remove hair chemically from all extremities, abdo-
men, pelvis, and most of the proximal tail to ascertain
the best possible placement of the probe. We have tried
various methods of attaching the probe to the animal
and noted significant differences between various
methods. It is much easier to place probes on larger
animals such as rhesus monkeys (Macaca mulatta) due
to their larger fingers, toes, and ears, which make ideal
sites for probe attachment. Ambient light severely im-
pedes functioning of pulse oximeters. A piece of tin foil
placed over the probe overcomes this issue.

Blood pressure measurement is a good adjunct to
pulse oximetry and heart rate. Blood pressure can be
measured noninvasively using an appropriately sized
neonatal blood pressure cuff and a noninvasive blood
pressure monitor (Dinamap Vital Signs Monitor
1846SX, Critikon, Inc., Tampa, FL). Measuring blood
pressure using direct cannulation of the arterial system
in owl and squirrel monkeys is difficult due to the small
caliber of their vessels and the risk of limb necrosis
from arterial damage or vasospasm. In larger animals
such as rhesus monkeys, invasive blood pressure moni-
toring may be more feasible.

Baseline blood pressures of squirrel monkeys after
ketamine anesthesia vary significantly among animals.
Average baseline values are in the range of 90 mm Hg
depth of anesthesia (see Miller et al. (18)). We continu-
ously compare preoperative baseline values with intra-
operative values and aim to keep the heart rate within
30% above the baseline value. In addition to measuring
the pulsatile forward flow of blood, the pulse oximeter

FIG. 5. (A) Neuroanesthesia and monitoring setup. In clockwise
order starting at the top left: (1) Vetroson isoflurane vaporizer veteri-
nary anesthesia machine (Summit Hills Laboratories, Navesink, NJ),
(2) Dinamap vital signs monitor 1846SX (noninvasive neonatal blood
pressure monitor; Critikon Inc., Tampa, FL), (3) CO2SMO1 respira-
tory profile monitor (pulse oximeter/ETCO2 monitor; Novametrix
Medical Systems, Inc., Wallingford, CT), (4) Infant Star Neonatal
Ventilator (i.e., the bottom two pieces of equipment at the far right;
theInfrasonics, Inc., San Diego, CA), (5) Horizon 2000 patient monitor
(Mennen Medical, Inc., Clarence, NY). Data collected from these indi-
vidual units can be downloaded to a PC for correlation with neuronal
firing. Most devices are equipped with internal battery packs that
can be used during neuronal recording to minimize noise. In addition,
most of these devices are available as refurbished items from medical
supply corporations. (B) Pulse Oximeter/End-Tidal CO2 Monitor
closeup (CO2SMO1 respiratory profile monitor, Novametrix Medical
Systems, Inc.). The large number top left is the CO2 in mm Hg of
the exhaled breath. The ETCO2 is represented graphically as it varies
with inspiration and expiration seen on the top waveform. As air is
exhaled, ETCO2 rises, causing a peak in the waveform. The number
of peaks generated per minute, the respiratory rate, is depicted as
the smaller top number. The large bottom number represents the
systolic and 50 mm Hg diastolic. The effect of isoflurane
on blood pressure also varies significantly among squir-
rel monkeys. Theoretically, blood pressure measure-
ments are useful in titrating isoflurane since it is known
that the effect of isoflurane is inversely proportional to
blood pressure (19). Due to the high pulse rate and low
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blood pressure in squirrel and owl monkeys, measuring
noninvasive blood pressure is difficult. It is more reli-
able in rhesus monkeys, and therefore more useful.

End-tidal carbon dioxide (ETCO2) can be used to
measure respiratory rate and estimate blood carbon
dioxide levels (Fig. 5B). ETCO2 measurements are use-
ful immediately after intubation since they unequivo-
cally distinguish placement of the endotracheal tube
into the bronchial tree versus the esophagus. The re-
turn of measurable levels of carbon dioxide after intuba-
tion guarantees bronchial intubation (18). ETCO2 is
measured throughout surgery. It registers as a wave-
form and absolute number that correlates with the
amount of carbon dioxide in the exhaled air as it passes
a small window. The waveform provides not only the
respiratory rate, but also the quality of the respirations
(i.e., shallow and short versus deep and long), which
helps assess the depth of anesthesia.

Absolute ETCO2 numbers are useful since they
closely estimate the carbon dioxide level in the blood.
The carbon dioxide level in the blood is inversely related
to respiratory rate. In other words, hyperventilation
causes the animal to “blow off” carbon dioxide. The
blood level of carbon dioxide directly impacts the degree
of vasoconstriction in cerebral vessels. High levels of
carbon dioxide cause vasodilation, while low levels
cause vasoconstriction. The degree of vascular tone of
the cerebral vessels is proportional to cerebral blood
flow and, thus, intracranial pressure. By this mecha-
nism the ETCO2 has significant consequences in regard
to brain physiology, and can conveniently be manipu-
lated by altering the rate of respiration (18). We take
full advantage of these relationships by controlling re-
spiratory rate throughout surgery. This allows us not
only to maintain homeostasis but also to tailor brain
size to suit our particular needs. For example, main-
taining a lower ETCO2 by mild hyperventilation makes
drilling craniotomies and opening the dura easier by
keeping the brain small, while maintaining a higher
than normal ETCO2 causes the brain to swell, theoreti-
cally making brain penetration and electrode place-
ment easier.

Mechanical ventilation provides necessary control
over parameters of the animal’s breathing. To accommo-
date owl and squirrel monkeys, which have very small
tidal volumes, we use a pressure-cycled ventilator in-
tended for human neonates. Rather than delivering a
specific volume of gas, pressure-cycled ventilators de-

liver gas until a preset pressure is reached, which in
practice works better for very small lung volumes.

Depending on our particular needs at various times
throughout the operation, and depending on the ani-
mal’s own drive to breathe, intermittent mandatory
ventilation (IMV), in which the ventilator provides
ET AL.

breaths intermittently to the animal, or continuous pos-
itive airway pressure (CPAP), in which the ventilator
assists the animal’s own breathing, mode is selected.
Using these two modes of ventilation, we are able to
fully control ventilation and oxygenation.

We have noted that owl and squirrel monkeys have
a tendency to hyperventilate after intubation using
isoflurane anesthesia alone. This hyperventilation is
evidenced by a shallow rapid breathing pattern and
results in a rapid decline in the ETCO2 to unacceptably
low levels. Not only does this cause the brain to shrink,
making electrode placement difficult, it can cause isch-
emia of the brain as well. Overcoming this requires a
combination of ventilator settings that match the ani-
mal’s own respiratory pattern and the use of respiratory
depressing agents. We have successfully used fentanyl,
an opioid, to achieve respiratory depression in squirrel
monkeys (18). Much like morphine in adults, fentanyl
causes respiratory depression in neonates. Its use is
limited by its propensity to induce hypotension. Nalox-
one, a competitive inhibitor, can be used to quickly re-
verse its effects. By depressing the respiratory drive
with fentanyl and varying the respiratory rate on the
ventilator, brain size can be quickly increased or de-
creased to accommodate surgical needs.

In addition to fentanyl, several other pharmacologic
agents have become a standard part of our surgical
routine. Preoperatively, we administer ketamine for
light anesthesia, combined with glycopyrolate to lessen
oral secretions for intubation (note that food and water
are removed from the animal’s cage in the evening prior
to the day of surgery). We administer an intramuscular
dose of a broad-spectrum antibiotic with good coverage
of skin flora. Dexamethasone can be given intrave-
nously if there is concern regarding cerebral edema,
especially if a large number of electrodes are implanted.
Intraoperatively, we keep epinephrine, atropine, glu-
cose, naloxone, and midazolam on hand. Intraopera-
tively, we have noted that owl and squirrel monkeys
are particularly susceptible to hypoglycemia and thus
we check blood glucose using a commercially available
kit. We add glucose to the intravenous fluid to maintain
adequate blood glucose levels as necessary. Postopera-
tively, a dose of midazolam remains available through-
out recovery in the event of a seizure. We avoid intraop-
erative use of benzodiazepines such as midazolam due
to the theoretical decrease in spontaneous neuronal fir-

ing that they may promote.

Our aggressive approach toward neuroanesthesia
allows us to perform extremely long surgical procedures
safely. This has opened the door to implanting more
microwire arrays into more cortical and subcortical
areas.
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2.2. Neurosurgery

Two characteristics of the brain continue to provide
particular challenges to reliable multielectrode pene-
tration: the brain “floating” in the cerebrospinal fluid,
and the relative toughness of the pia layer surrounding
the cortex (see, e.g., Carpenter (20)). Here we describe
techniques to minimize the effects of these two factors
on successful multielectrode penetration of the brain.

A unique design feature of the brain is that it is
bathed in cerebrospinal fluid, essentially tethered to
the dura and rigid cranium only at certain key points.
While this provides a built in shock-absorbing mecha-
nism and allows the brain to enlarge and shrink within
physiological limits, it makes the cortex a challenging
target for chronic electrode implantation. Once an elec-
trode array is in place, various factors including natural
movement of the animal and physiological brain swell-
ing and shrinking may cause the brain to move in rela-
tion to the electrodes if they are rigidly attached to
the cranium. This effect is believed to be even more
pronounced in larger animals with a better-developed
subarachnoid space, such as rhesus monkeys as com-
pared with rats.

The pia mater, or “pia,” consists of an inner mem-
braneous layer composed of fine elastic and reticular
fibers that intimately invests the surface of the brain,
draping over cortical sulci and under cortical vessels
and an outer epipial layer composed of fiber bundles
intermeshed with the arachnoid trabeculae (20–23).
The fiber bundles of the pia contain the structural mole-
cule collagen, unlike the brain parenchyma itself, which
does not appear to contain collagen, except in the walls
of the larger blood vessels coursing through it (24; see
Alberts et al. (25)). The internal resistance and struc-
ture of the brain parenchyma appear to be provided
solely by myelinated axons, glia, neurons and the blood
vessels (see Alberts et al. (25) and Carpenter (20)). Al-
though the pia is not very strong in relation to the brain,
it possesses a formidable resistance. We have observed
that it is often easier to deform the brain than it is to
penetrate the pia. The term “dimpling” is commonly
used to describe the situation where the electrodes are
pushing the brain cortex in without penetrating it (see
Nicolelis (2)). Obviously, the more electrodes there are
in an array, the more pronounced this effect becomes.

In addition to potentially injuring the brain tissue, dim-
pling is obviously a source of error in the determination
of depth measurements. Ideally, if dimpling could be
eliminated, the electrodes would move in relation to
the pial surface, allowing effective and accurate elec-
trode placement.
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2.2.1. Cyanoacrylate Adhesives

To minimize the detrimental influences of brain
movement at the electrode implantation site, we have
employed the use of cyanoacrylate adhesives, applied
directly to the pial surface in rats and primates. An
air-powered dental drill is first used to create a craniot-
omy over the area of interest. The craniotomy is made
large enough to allow a perimeter of at least 1 mm
around the electrode array. The dura is carefully re-
moved over the entire craniotomy. Next, petroleum-
based ointment such as bacitracin ointment is applied
to the exact site of electrode implantation, either on a
small piece of Gelfoam (Upjohn, Kalamazoo, MI) or as
a droplet encompassing the wires of the array. This step
is intended to protect the electrode entry site from the
cyanoacrylate adhesive since the cyanoacrylate will not
stick to areas covered with petroleum ointment. It is
vital to limit the application of the petroleum ointment
to the site on the cortex that the electrodes will pene-
trate, so that it does not counteract the intended use of
the cyanoacrylate. The cyanoacrylate adhesive is then
applied judiciously to the zone of the pia surrounding
the electrode array and onto the cranial surface. Care is
taken prior to this step to remove as much cerebrospinal
fluid as possible using rounded fine tip suction cannulas
that can be touched to the surface of the pia without
injury. Once a thin layer of the cyanoacrylate adhesive
is applied, the polymerization can be visually observed
to occur over a period of few minutes. After the petro-
leum ointment at the target site is removed, a small
window of exposed pia with surrounding cyanoacrylate
adhesive adhered to the pia can be seen (Figs. 6A, 6B).
Next, the electrodes are advanced with the microposi-
tioner at approximately 0.05- to 0.1-mm increments
(Fig. 6C). By following the crescendo of neuronal firing,
and using depth measurements, the electrodes are ad-
vanced until maximal neuronal firing is obtained or a
depth of 1.8 to 2.0 mm is reached.

In the frontal cortex of Long–Evans rats, this se-
quence achieved reliable penetration of the cortex with
electrode arrays. In a series of five rats, we observed
that the onset of neural activity began reliably at ap-
proximately 0.6-mm depth from the pia surface (range:
0.2–0.9 mm). In all cases, beyond the point where neu-
ronal activity was first detected, changes in depth re-
sulted in changes in neuronal firing patterns, sug-

gesting that the electrodes were moving in relation to
the brain.

It appears that the cyanoacrylate glue creates a bond
between the rigid skull and the pia. This is suggested
by the fact that the previously pulsating brain, a phe-
nomenon that is enhanced at the frontal pole in the



with a small blood vessel running through it. (B) Under higher power,
the vessel and cortex appear uninjured. Cerebrospinal fluid can be
seen bulging, per normal, from beneath the glued area. (C) A 16-
microwire array (NBLabs, Dallas, TX) is seen penetrating the pia
and cortex through the window in the glue. The cyanoacrylate adhe-
sive glues the pia of the brain to the skull of the craniotomy, creating a
hardened crust that provides a rigid structure that prevents dimpling.
ET AL.

rat, no longer moves in relation to the skull after appli-
cation of the glue. Further, attempting to remove the
glue once it is applied to the pia results in tearing of
the cortical surface with resultant bleeding of cortical
vessels. By adhering to the pia, the glue can be thought
of as enhancing the natural surface structural elements
of the brain by making the pia a more rigid structure
and fixing it in relation to the skull. As a result, the
electrodes penetrate the pia instead of dimpling it, and
thus move into the brain reliably.

Although pathological confirmation is required, we
feel that there is minimal injury to the cortex or cortical
blood vessels with this technique. After application, the
cortical vessels and yellow brain tissue can be seen
unchanged through the translucent cyanoacrylate ad-
hesive. Further, long-term recordings in rats are compa-
rable to techniques not using cyanoacrylate adhesive.

2.2.2. Collagenase
To implant microelectrode arrays and bundles in the

rats, we have found that the glue procedure alone ap-
pears sufficient for penetrating the pia. In other words,
structurally stabilizing the pia allows the electrodes to
penetrate the pia of the rat with very little dimpling.
For array or bundle implantation in owl and squirrel
monkeys, however, using glue alone is only intermit-
tently successful in penetrating the thicker pial layer
of the primate. In our experience thus far, approxi-
mately 25% of the time glue alone is sufficient for pene-
trating the monkey pia with little dimpling. To increase
the success rate, we complement the glue technique by
removing the main structural element at the surface
of the brain posing the most resistance to multielectrode
penetration, namely, the pia (remembering that the
dura has already been removed). In the past we have
physically removed the pia using a sharp hook before
lowering the microwires. We have recently attempted to
remove the pia enzymatically, to limit injury to deeper
layers. Collagen appears to be the major structural ma-
terial of the pia layer, providing this resistance (20–24;
see Alberts et al. (25)); and thus, the application of
collagenase, the enzyme that breaks down collagen,
would remove the main source of resistance, allowing
for easier implantation. We have found that the applica-
tion of collagenase does indeed break down the pial
layer, allowing for easier implantation of electrode
arrays in the primate cortex.

Our procedure for applying collagenase to the pia
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FIG. 6. Cyanoacrylate glue technique. (A) After application of the
cyanoacrylate glue to the pia surrounding the target site, the polymer-
ized glue can be seen surrounding an open area of exposed cortex
layer, in both monkeys and rats, is the following. After
the craniotomy is made, and the dura and arachnoid
layers are surgically removed (see above), a collagenase
solution is applied. First, we make a solution consisting
of 20 mg/ml crude collagenase (Sigma, St. Louis, MO),
0.36 mM calcium chloride, in 50 mM Hepes buffer, pH



from the outset. If we fail to achieve recordings, signal-
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7.4, at 378C (26–28). This buffered solution is then
mixed with an equal amount of KY jelly. We have suc-
cessfully applied the collagenase solution to the cortical
surface in two different ways. First, collagenase is ap-
plied using a rectangular block of Gelfoam (approxi-
mately 2 mm wide 3 3 mm long 3 4 mm tall) that was
soaked in the collagenase mixture. The collagenase-
soaked Gelfoam block is then placed directly on the
surface of the pia, covering a little more than the surface
area equal to the area of the electrode array (approxi-
mately 2 3 3 mm for a 2 3 8 array from NBLabs that
has an overall surface area covered by the electrodes
of approximately 1 3 2 mm). The collagenase mixture
is kept on the surface of the pia for approximately 15
min. During this time, the glue is applied to the re-
maining exposed pia surface and to the surrounding
skull surface, both inside the craniotomy and just onto
the surface of the skull (approximately 2 mm beyond the
diameter of the craniotomy). Afterward, the Gelfoam is
lifted off, and the area is washed with a constant stream
of saline that is removed using suction for approxi-
mately 2 min.

The second procedure that we use for applying colla-
genase to the pia consists of directly soaking the elec-
trode tips in the collagenase mixture. The collagenase-
soaked electrode tips are lowered onto the surface of
the pia, held there for approximately 15 min, and then
lowered into the cortex. The glue is applied to the re-
maining exposed pia surface and to the surrounding
skull surface.

Our overall approach for placing microelectrode wires
into cortical targets involves maximizing those factors
that promote entry and minimizing those factors that
hinder it. We feel that by enhancing the structural in-
tegrity of the pia in areas surrounding the exact site
of implantation we are able to minimize dimpling. By
enzymatically breaking down the pia at exactly the site
of electrode entry, we are able to minimize the resist-
ance that the electrodes meet at the surface of the brain.
In combination, these two techniques have significantly
improved our ability to place electrodes into the cortex
without physically disturbing the cortex with sharp in-
struments.

Since each species and each individual animal is dif-
ferent with respect to the resistance of the brain to
electrode penetration, we have developed an algorithm
of successively more aggressive steps in penetrating
the cortex with multielectrode arrays. We have found

that for rats, using the cyanoacrylate adhesive tech-
nique is sufficient for consistant reliable penetration.
However, with squirrel monkeys, where the brain cov-
erings are clearly thicker, adjuncts are necessary. In
our squirrel monkey surgeries we typically employ both
the cyanoacrylate adhesive technique and collagenase
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ing failure to penetrate the cortex, we remove the elec-
trode, and apply successively higher concentrations of
collagenase. In our experience this technique has com-
pletely eliminated the need for sharp dissection of the
pia, which we feel is more injurious to the cortex.

3. ACQUISITION AND RECORDING OF
NEURONAL ENSEMBLES, SENSORY STIMULI,
AND BEHAVIOR

After the animals have recovered from the multielec-
trode implantation surgery, they are ready to be in-
cluded in experiments in which simultaneous re-
cordings are made of populations of neurons and of
several stimulus and behavioral parameters.

3.1. Data Acquisition and Recording of Populations of
Single Units

Neural signals are recorded using a 128-channel
many-neuron acquisition processor, the MNAP (Plexon
Inc., Dallas, TX), which can theoretically record from
512 single units simultaneously. This system provides
direct computer control over amplification, filtering,
signal selection, spike-waveform discrimination, and
storage for each channel. Single-unit isolation is carried
out both on-line using the software program SortClient
and again off-line using the software program Offline-
Sorter (both from Plexon Inc.). Individual units are dis-
criminated using multiple time–voltage windows, prin-
cipal components analysis of spike waveforms, and
interspike interval histograms. Figure 7A shows a ras-
ter plot of simultaneous recordings from populations of
units in several cortical areas during a segment of a
session from a motor control experiment in the monkey
(8) (also see Fig. 2 for examples of waveforms).

3.2. Acquisition and Recording of Stimuli and Behavior

In this section we describe devices that we have devel-
oped or integrated into our current recording systems
to make increasingly more detailed studies of (1) tactile
discrimination in rats and (2) cortical motor control of
hand and arm movements in rats and monkeys.
3.2.1. Tactile Discrimination Tasks in Rats
To study the mechanisms and processes involved in

the acquisition and recognition of different tactile stim-
uli by the trigeminal somatosensory system in the
awake, behaving rat, we developed a novel behavioral
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paradigm where rats are trained to discriminate be-
tween different tactile stimuli using only their facial
whiskers. With this task, we are able to present stimuli
to the rats’ whisker pad in a highly controlled, yet flexi-
ble manner. Using this task, we are able to record neu-
ronal ensemble activity from multiple locations within
the trigeminal system while rats actively sample these
behaviorally relevant stimuli with their whiskers.
These recordings can also be combined with reversible
inactivation of the barrel region of SI cortex with the
g-aminobutyric acid (GABA) agonist muscimol. By
quantitatively comparing ensemble responses in thala-
mus or brainstem before and after SI inactivation, we
will be able to assess the role of corticofugal projections
in active somatosensory discrimination.

The behavioral whisker discrimination task is de-
signed so that rats use their facial whiskers to discrim-
inate between two different possible stimuli. Rats
(Long–Evans, adult, male, approximately 300 g), are
trained to enter a darkened rectangular chamber and
poke their nose into a small hole located at the end
of the chamber (Fig. 8). Directly in front of this hole
(MI), dorsal premotor (PMd), and ipsilateral primary motor, and dor-
sal premotor cortices in an owl monkey, obtained from a segment of
a session in a motor control experiment. Each horizontal line depicts
the activity of a single unit (i.e., presumed single neuron), and each
dot represents a single firing of the unit. (B) Hand position in X, Y,
and Z dimensions, as measured by the Shape Tape, described in
the text.
ET AL.

they are then trained to signal whether the aperture
is wide or narrow by poking their nose into one of
two reward holes located in a different section of the
training box. Optical infrared sensors are used to de-
termine accurately when the whiskers are in contact
with the aperture. All mechanical and electronic de-
vices are controlled with a PC running MedPC behav-
ioral control software (Med Associates, St. Albans,
VT).
nose poke (detected by interrupting an infrared photobeam), the rat
is a variable-width aperture. The width is set by com-
puter-controlled stepping motors. The aperture is po-
sitioned so that the mystacial whiskers are in contact
with it when the rats’ nose is poked into the hole.
Once the rats have poked their nose into the center
hole and sampled the aperture with their whiskers,

FIG. 7. (A) Example raster plots of neural ensemble spike trains
simultaneously recorded from posterior parietal (PP), primary motor
3.2.2. Electromyogram Recording
To study the subtle and complex relationships of neu-

ronal ensembles in different brain structures with indi-
vidual muscles, it will be necessary to record from mul-
tiple muscles, neurons and brain areas simultaneously

FIG. 8. Schematic diagram of the behavioral training apparatus
for sensory discrimination in the rat. The width of the variable-width
aperture is set by rotating the computer-controlled stepper motors.
Moving each side of the aperture inward, toward the center, results
in a narrower aperture; moving them outward results in a wider
aperture. At the start of each training session, a rat is placed in the
outer reward chamber with the sliding door closed. When the door
is opened, the rat enters the center discrimination chamber and pokes
its nose into the center nose poke and samples the variable-width
aperture with its facial whiskers. After poking its nose into the center
then backs out into the outer reward chamber and pokes its nose
into either the left or right reward nose poke to receive a water
reward: left nose poke if the aperture is narrow, right nose poke if
the aperture is wide. Immediately after the rat pokes its nose into
either the left or right nose poke, the sliding door between the outer
reward chamber and the center discrimination chamber is closed. A
new trial begins when the sliding door is again opened.



sive stages, we can train all of the New World monkeys
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(29). To this end, our laboratory has been able to record
electromyographic (EMG) activity of several muscles
simultaneously with the recording of neural ensembles
(7; see Loeb and Gans (30)). For instance, we have re-
corded from EMG electrodes chronically implanted in
the rat triceps brachii (to study elbow extension), and
trapezius (to study rotation of the forelimb at the shoul-
der), while concurrently recording from an array im-
planted in the rat motor cortex (7). Bipolar patch elec-
trodes (MicroProbe, Potomac, MD) were implanted
subcutaneously; and the EMG signals were amplified
(SA Instrumentation, Encinitas, CA), filtered at 20–500
Hz, sampled at 1000 Hz, and input directly into the
same data file as the neuronal signal recordings. An
EMG recording system is currently being integrated
into our monkey neurophysiological setup.

3.2.3. Motor Control Experiments in Monkeys
To study such topics as how motor cortical areas (dor-

sal premotor, primary motor, and posterior parietal cor-
tices, for instance) encode hand and arm position, or to
study the changes in response properties of neurons
during motor learning, we use the following devices.
Accurate 3D hand and arm position and orientation
measurements are obtained using a new type of technol-
ogy, the Shape Tape (Measurand, Inc., Fredricton, New
Brunswick, Canada), shown in Figs. 9A and 9C. This
recording device consists of a flexible tape attached to
the arm that contains sensors based on optical fibers
that signal the bending and twisting of the tape along
its length. The resulting analog signals are sampled
at 200 Hz, saved in the same data file as the neural
recordings, and later converted to 3D positions (see
Figs. 9B and 9D). The device does not interfere with the
neuronal recordings and it can provide higher temporal
resolution (200 Hz) than comparable optical or mag-
netic systems. Example recordings of hand position in
3D space are shown in Fig. 7B.

Other behavioral experimental apparatus, such as
devices that provide visual cues and juice reinforcement
to the monkeys or record the position of manipulanda
moved by the monkey, are controlled in real time by a
personal computer running the Tempo (Reflective Com-
puting, St. Louis, MO) behavioral data collection sys-
tem. In addition, all experimental sessions are video-
taped, with the video frames being time-stamped with
a 1-ms resolution by a video timer system that receives
a timing signal from the MNAP recording system.
3.2.4. New World Monkey Handling and Chair
Training Procedures
Before experiments can be conducted on monkeys,

they must learn to sit comfortably in a restraining chair.
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We have developed handling and chair training proce-
dures for working with New World monkeys in awake,
behaving experiments, which ensure the successful
training of all monkeys, regardless of disposition, and
which allow several different people to work with the
monkeys, without introducing bias. To remove monkeys
from their home cages, we lure them into transport
boxes (Primate Products, Miami, FL) with small pieces
of fruit. Once in the test room, we have designed a
restraining chair that fastens onto the transport box.
The restraining chair is also designed to be initially in
the form of a box, which then transforms in successive
stages into a restraining chair. The monkeys learn to
step from the transport box directly into the restraining
“box.” We then place the restraining box in the sound
attenuating test chamber. The back of the restraining
box is designed to be moved forward, toward the front,
progressively restraining the monkey. We first move
this back wall forward halfway, leaving the monkey a
little space to move. The monkeys are then trained to
lift their heads up through the neck brace opening at
the top front of the box. When the monkeys lift their
heads through this opening, the neck brace is closed,
holding the monkey in place. The adjustable back wall
is then moved the final distance, to hold the monkey
firmly in place in the restraining chair. If there is any
difficulty training an individual animal to lift its head
through the neck brace opening, we have also designed
small poles that hook the front loop on the monkey’s
harness, helping to coax the monkey to lift its head
through the neck brace opening. Finally, one or both of
the front doors on the chair are removed, to allow free
movement of either arm. The head stages are then
plugged into the monkey’s implanted electrode arrays,
and the experiment is begun. By designing a chair that
transforms from a box into a restraining chair in succes-
gradually to acclimate them to restraining, which en-
sures that every monkey will be readily chair-trained,
and at the same time it standardizes our training proce-
dures so that several people can train the same animals
using exactly the same training sequence.

4. ANALYSIS OF NEURONAL ENSEMBLES,
SENSORY STIMULI, AND BEHAVIOR
The recordings from neuronal ensembles in multiple
brain sites, together with the recordings of numerous
measures of stimuli and behavior, generate unprece-
dented amounts of neurophysiological data, providing
a significant challenge in the attempt to uncover the
underlying structure inherent in these enormous data
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sets. Thus, we continue to investigate ways in which
mathematical models and statistical tools can be used
to conceptualize and analyze these data sets. In this
section we provide a brief description of the main set
of analysis tools that we currently use to understand
the functional response properties of the neurons, as
they relate to other neurons, stimuli, and behavior
(Fig. 10).

4.1. Single Neuron Analysis

Analysis of the neural ensemble recordings begins
with an investigation of the response properties of each
of the recorded neuronal units (commercially available
software packages designed for such analyses include
Neural Explorer a.k.a. Nex, from Plexon, Inc.). In par-
ticular, raster plots and peristimulus time histograms
(PSTHs, or more generally, PETHs, where the ”E”
stands for stimulus or behavioral “events”). (Figs. 11A
and 11C) graph neural firing patterns of individual cells
in relation to individual stimulus or behavioral events
of interest in the experiment, allowing one to identify
the receptive fields of each of the neurons (e.g., Krupa
et al. (31) and Nicolelis et al. (32); see Nicolelis et al.
(9)). Figure 11, for example, shows the activity of a
single unit around the time of the mechanical stimula-
tion of a digit on the hand of an owl monkey. Clearly
the plots reveal a strong potential relationship between
the neural activity of this unit and the stimulation of
the finger, and further statistical tests can then be con-
ducted to verify the relation. Two statistical tests are
commonly used to assess the significance of the firing
pattern: (1) the Kolmogorov–Smirnov test, which tests
whether a sample distribution diverges from a theoreti-
cal distribution by comparing the cumulative frequency
functions of the two distributions, can be used to deter-
mine whether the distribution of counts in the histo-
gram is nonrandom, or (2) Student’s t test, which can be
used to compare the average firing frequency between
control and experimental periods (9, 49, 55).

To obtain precise estimates of the latency of the neu-
ronal response to a stimulus or behavioral event, cumu-
lative frequency histograms (CFHs) can be used (Fig.
11B) (9, 32, 44). Latencies are identified by isolating
the exact time in which the firing frequency distribution
diverges from a random distribution with P , 0.01 (us-

ing the Kolmogorov–Smirnov test).

Then, to begin to characterize the relationships be-
tween neurons, it is often useful to make pairwise com-
parisons between pairs of units, using such standard
analysis techniques as cross-correlation analysis (see
Gerstein (45)).
ET AL.

4.2. Visualizing the Response of the Neural Ensemble

Following the analysis of single neurons and pairs of
neurons, it is useful to visualize the spatiotemporal
patterns of neural ensemble firing, and here we describe
two graphing schemes used extensively in the labora-
tory (31, 32). Population peristimulus time histograms
(PPSTHs, or PPETHs, where the “E” again represents
stimulus or behavioral “events”) allow one to visualize
how an entire population of neurons respond as an en-
semble to an experimental event of interest, such as to
the mechanical stimulation of a primate’s hand and
digit (Fig. 12A). In these 3D graphs, the individual
neurons line the x axis, ordered in some meaningful
way such as rostrally to caudally, the peristimulus time
is depicted on the y axis, and again some measure of
the firing frequency of the neurons is depicted along
the z-axis, such as the instantaneous firing rate (in
spikes per second) or the spike counts per time bin.
Usually the data averaged over 100 to 300 trials are
plotted, being smoothed with a spline algorithm (see
de Boor (46)). Again, such plots provide a useful glimpse
at how the population ensemble responds around the
time of the experimental event (32).

If there is a known spatial arrangement of the neu-
rons, such as when they are recorded with evenly spaced
electrode arrays, spatiotemporal population maps
(SPMs) can be used to visualize how the spatial pattern
of a neural ensemble varies over time in response to a
behavioral or stimulus event (31, 32). As shown in Fig.
12B, an SPM is a series of graphs depicting the spatial
arrangement of the neurons (along the x and y axes),
along with a measure of the instantaneous firing of the
neurons either color-coded or depicted along a z axis in
a 3D plot. This representation helps the experimenter
to detect potential spatial and temporal patterns in the
neuronal ensemble activity in relation to a stimulus or
behavioral event. These observed patterns can then be
analyzed numerically in greater detail, as described in
the sections below.

4.3. Linear Time Series Analysis

After investigating the response of the neural ensem-
bles graphically, we begin a series of quantitative analy-
ses of the data. For continuous stimulus or behavioral
variables, such as hand position during a monkey’s

reach, it is often useful to begin with a linear analysis.
The model we use is an extension of the basic linear
regression equation, y 5 ax 1 b, in which the neuronal
inputs, x, and the behavioral outputs, y, are considered
as a time series (33). The relationship between neural
signals and behavior should not be limited to being
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synchronous in time, since, for instance, the firing of a
neuron at time t can potentially influence behavior at
time t 1 Dt, t 1 2Dt, and so on. As seen in Fig. 13,
X(t) is a matrix of neural signals, with each column
corresponding to a single neuron and each row corres-
ponding to an epoch of time in the trial (for instance, a
100-ms time segment). In the case of three-dimensional
behavioral data, such as are obtained using the Shape

Tape, in which the x, y, and z dimensions of hand posi-
tion are recorded, Y(t) is a matrix of three columns, one

FIG. 9. (A, C) The Shape Tape in two different configurations. The w
New World monkey’s wrist (farthest left strip in (A)) and upper arm. Th
of the Shape Tape configurations.
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that may exist between the firing of a neuron and be-
havior at different time lags in the trial. These weight
functions a(u) are called impulse response functions.
The boundaries of the time lag u, m and n in the equa-
tion are set by evaluating the impulse response func-
tions statistically over data sets, and are chosen such
that statistically significant coupling is captured by the
equation. We calculate impulse response functions and

the Y-intercepts b using a frequency-domain method
that is described elsewhere in more detail (8, 33).
for each dimension. As can be seen in Fig. 13, for each To evaluate the linear relationship between the neu-
ral activity and behavior, such as hand position, coher-neuron, a separate weight a is obtained for each time

lag in a series of time lags u between neuronal firing and ence spectra are calculated (see Wessberg et al. (8)).
Spectra and cross-spectra for signal pairs are calculatedhand position, representing the different associations
hite velcro strips at the end of the blue “tape” attach the tape to the
e pen in (A) provides scale. (B, D) Corresponding 3D reconstructions
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by Fast Fourier transforming segments of neuronal fir-
ing frequency and continuous hand position data, such
as over experimental trials, and averaging over all tri-
als. The coherence spectrum is

.Rxy(l).2 5
. fxy(l).2

fxx(l)fyy(l)
,

where fxy(l) is the cross-spectrum between the neural
and behavioral signals x and y, and fxx(l) and fyy(l) are
the power spectra for the neural and behavioral signals,
respectively. Thus, the coherence spectrum is the
squared absolute cross-spectrum between the neural
and behavioral signals, normalized by their autospec-
tra. On a scale from zero to one, the coherence spectrum
represents the degree of linear coupling between the
neural and behavioral signals as a function of fre-
quency; and the significance of the obtained linear rela-
tion can be evaluated using standard statistical meth-
ods (33, 34). In the case of 3D behavioral data, the

coherence spectrum is calculated separately for each
behavioral dimension. The coherence spectra are also

FIG. 10. The general order of procedures we follow to analyze the ne
we list the preprocessing procedures as a distinct step in the analysis
of analysis will be described in the section describing the particular an
ET AL.

4.4. Categorical and Nonlinear Analysis Using Artificial
Neural Networks

Artificial neural networks (ANNs) are one of the more
powerful tools for investigating how well spatiotempo-
ral patterns of neural ensemble activity relate to sen-
sory stimuli or to behavior (32, 47; see Nicolelis et al.
(9)). ANNs are well suited to use in large multivariate
problems where the significance of each variable is un-
known, because they are efficient at recognizing subtle
or complex patterns in the data; and unlike many other
analytical techniques, they require no a priori assump-
tions about the structure or distribution of the data.
Indeed, ANNs have consistently outperformed other
classification techniques we have used to analyze neu-
ral ensemble firing patterns.

We use ANNs in two main types of analyses that
determine the extent neuronal activity relates to (i)
categorical stimulus or behavioral variables such as the
direction of a monkey’s reach, with, for example, two
directions defined as left and right, or (ii) continuous

stimulus or behavioral variables such as the continuous
hand position of a monkey in 3D space during reach.

Here we provide a brief description of the specific ANNused to calculate the impulse response functions, which
we typically use for each of the two main types of analy-in turn are examined to characterize the relationships
sis (see Nicolelis et al. (9) for a more thorough introduc-between the neurons and stimuli or behavior in even

greater detail (8, 33). tion to the use of ANNs for neuronal ensemble analysis).
uronal ensemble data. Each item is described in the text. Note that
process; however, the specific preprocessing steps used for each type
alysis.
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To assess the relationship of neuronal ensemble activ-
ity with categorical stimulus or behavioral variables,
such as left versus right reach directions, we have used
several types of ANNs (see Refs. 9, 35–37, 48), but here
we describe the optimized learning vector quantization
(OLVQ) ANN, a competitive network that is supervised
during training, which we most commonly use (avail-
able in the Matlab Neural Network Toolbox) (7–9, 32,
47, 48). The OLVQ ANN is a multi-layer, feedforward

network with full connectivity (see Figs. 14A and 14C)

y-axis depicts firing frequency (alternatively, the y-axis may depict
the number of neuronal discharges, i.e., “spike” counts, per time
bin). (From Nicolelis, M. A. L., Stambaugh, C. R.,. Brisben, A., and
Laubach, M., 1999, Methods for Simultaneous multsite neural re-
cordings in behaving primates. In Nicolelis, M. A. L. (Ed.), Methods
for Neural Ensemble Recordings. Boca Raton: CRC Press. pp 121–
156. With permission.)
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ANU has a corresponding weight vector, and each
ANU’s output value from the hidden layer is determined
competitively. The ANU with the weight vector nearest
in Euclidean distance to the input vector is the “win-
ning” ANU, sending a value of 1 to the output layer,
with the “losing” ANUs sending 0. The output layer is
a linear layer with one ANU per response class: one
ANU for left movements and one ANU for right move-
ments. The hidden layer ANUs must learn to assign
neural inputs to the left or right movement direction,
so two hidden units are designed to “choose” the left
direction, and two to “choose” the right direction. This
is achieved by setting the weight between the hidden
unit and its assigned output unit to be 1, with the
weight to the other output 0. The hidden ANUs must
then learn to recognize the input vectors that corre-
spond to the hidden unit’s designated output ANU: if
the neural activity associated with movement to the
left is input to the network, the “left” designated ANUs
must learn to recognize this neural activity pattern.
Because this learning is supervised, the ANUs are re-
warded for recognizing correct patterns, and penalized
for recognizing incorrect ones, using Kohonen’s learning
rule (35; also see Demuth and Beale (48)). The weight
vectors are moved closer to the input training vectors
that are classified correctly and away from input train-
ing vectors that are classified incorrectly. In this way
the ANUs learn to recognize the appropriate input
vectors.

There are three main steps in using the OLVQ ANN:
initialization, training, and testing. During initializa-
tion, the weight vectors for all ANUs are initialized to
the same value, but each ANU is assigned a particular
class that must be recognized, for instance, whether
the monkey should reach left or right. During training,
a set of neural signals are repeatedly input to the net-
work and the ANU must learn to recognize the patterns
in the neural signals that corresponds to the ANU’s
preassigned class, whether it be left or right move-
ments. Finally, the OLVQ network is tested by pre-
senting the network with trials that were not used dur-
ing training to determine how well the network is able
to predict the correct corresponding class, whether the
monkey’s movement was to the left or to the right.

We regularly use the leave-one-out cross-validation
method for training and testing of the network (7, 49).
In this method the network is trained on all trials mak-
ing up the data set, except for one trial that is set aside,
(35, 48). The input layer is defined by the data input
vector. The hidden layer contains two artificial neural
units (ANU) for each stimulus or response class to be
classified. For instance, if a left or right arm movement
is to be predicted, there are four hidden units. Each

FIG. 11. (A) A raster plot of neuronal activity for one neuron in the
ensemble of recordings from somatosensory cortex SII in the owl
monkey after mechanical stimulation of a finger. Starting at the top,
each row displays each discharge of the neuron during one trial. (B)
A cumulative frequency histogram (CFH) showing onset of firing.
Each point is the cumulative frequency (the sum of the previous
frequencies) minus the product of two terms, the overall average
firing frequency multiplied by the number of previous bins. Latency
is shown by the arrow and is identified by isolating the exact time
in which the firing frequency distribution diverges from a random
distribution with P , 0.01 (using the Kolmogorov–Smirnov test). (C)
The peri-stimulus time histogram (PSTH) for the neuron. The
x-axis represents time around the stimulation of the hand, and the
or left out. After training, the network is evaluated on
how well it predicts, for instance, reach direction from
the neuronal activity on the “left-out” trial. This proce-
dure is repeated so that each trial in the data set takes
a turn being left out. This method provides a thorough
evaluation of the performance of the network, and thus
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of the potential relationship between the neuronal
activity and the stimulus or behavioral variable of

stimulus time is depicted on the y axis, and the magnitude of neurona
firing rate is depicted along the z axis. (B) Spatiotemporal population
cortex of a monkey as it varies over time in response to the mechanica
B illustrates how each graph in the map is constructed. The z axis d
standard deviations away from the spontaneous firing rate (A & B fro
1999, Methods for simultaneous multsite neural recordings in behaving
Recordings. Boca Raton: CRC Press. pp 121–156. With permission.)
ET AL.
the actual time of stimulus onset or behavioral re-
sponses. Thus neural activity around the time of the
interest. stimulus or behavior is presented to the neural net-
work. We typically organize the neural signals into sin-Just as in the linear time series model, the ANN can

take into account the possible coupling of neural signals gle-trial peri-event histograms of a particular bin size
(e.g., from 2- to 500-ms bins) and then normalize theseto a stimulus or behavior at times earlier or later than

FIG. 12. (A) Population peri-stimulus time histograms (PPSTHs) of the responses of an ensemble of somatosensory cortex area SII neurons
to the mechanical stimulation of a finger tip (a) and the back of the hand (b) of an owl monkey. Individual neurons line the x axis, the peri-
l firing in number of standard deviations away from the spontaneous
map (SPM) depicting the spatial pattern of a neural ensemble in SII
l stimulation of the tip of a finger. The diagram in the lower half of
epicts the magnitude of neuronal firing in terms of the number of

m Nicolelis, M. A. L., Stambaugh, C. R., Birsben, A., & Laubach, M.,
primates. In: Nicolelis, M. A. L. (Ed.), Methods for Neural Ensemble
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spike counts, so neurons with a relatively high baseline
rate of firing do not dominate the analysis. For evey trial
in the experiment, then, each neuron has a sequence of
bins that represents the sequence of discharges of the
neuron across the trial (see Fig. 14B). And for each
trial, the input vector to the neural network is composed
of the spike counts for every bin in the sequence, for
every neuron in the ensemble. That is, on every trial,
the input vector to the neural network is

I 5 {CN1t1, CN1t2, … CN1tk, CN2t1, … CN2tk, … CNrtk},

where Ni represents each neuron, ti represents each
time bin in the trial, and CNiti represents the spike count
for neuron Ni in time bin ti (with r equal to the total
number of neurons and k the total number of time bins
in each trial).

For continuous stimulus or behavioral variables,
such as hand position during a monkey’s reach, a non-
linear analysis using ANNs is typically conducted after
a linear relationship between the neurons and behavior

has been characterized. Since ANNs can detect linear

FIG. 13. Data matrix configuration and model for the linear time
series analysis. Y(t), the predicted behavioral response, and «(t), the
residual errors, are matrices, with three columns corresponding to
the three dimensions; and b, the Y intercept, consists of three values,
one for each dimension. Finally, there is one impulse response func-
tion, a, for every neuron and dimension combination (e.g., with 50
neurons, there are 150 impulse response functions).
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and outputs (behavior) has been detected by the ANN
(see Ref. 8).

We generally use a two-layer feedforward backpropa-
gation network (Figs. 14A and 14C) (see Refs. 8, 9, 48).
Again, the input layer is defined by the data input
vector. We have had good success with 15–20 ANUs in
the hidden layer, and we use 1 or 3 ANUs in the output
layer for 1D or 3D hand position prediction, respec-
tively. The hidden-layer ANUs have a sigmoidal tan-
gent transfer function to the output layer, while the
output-layer ANUs have a linear transfer function to
enable the output from the network to take on any value
(Figs. 14A and 14C) (48). We have used several different
learning rules to train the weights in the network, but
we have found particularly good success with the
Powell–Beale conjugate gradient algorithm (48, 50).
Additionally, an early stopping rule can be used to mini-
mize overfitting of the data, and thus to provide better
generalization to new neuronal inputs.

4.4.1. Quantifying the Results of the ANN with
Information Theory
To evaluate the performance of the ANN, and thus

to evaluate the extent of the relation of neural activity
with a continuous stimulus or behavioral variable, such
as hand position, we generally assess the size of the
correlation coefficient between the predicted and actual
hand positions (e.g., Ref. 8). For categorical stimulus
or behavioral variables, this success is typically quanti-
fied as the percentage of correct predictions and the
extent to which this percentage is statistically above
chance. But there is another way to quantify the results
obtained from the ANN, providing a more sensitive
measure than percentage correct. The ANN can be
thought of as measuring the amount of information
about a sensory stimulus or behavior, such as reach
direction, that is contained in or conveyed by the neural
activity per trial. The amount of information can be
calculated from the confusion matrix generated from
the ANN (see Laubach et al. (7) and Pierce (54)). For
example, if there are 100 trials in the data set, with 50
trials of the monkey reaching left and 50 trials of the
monkey reaching right, with the ANN making 75% cor-
rect predictions for reaching left (i.e., 45/(45115)) and
88% for reaching right (i.e., 35/(3515)), the confusion
matrix is

Actual reach direction
and nonlinear relationships between inputs and out-
puts, the performance of the ANN can be compared
with that of the linear model, and the extent to which
the ANN outperforms the linear model suggests that a
nonlinear relationship between the inputs (neurons)
Left Right

Predicted reach direction Left 45 15
by the ANN Right 5 35

where the actual directions are those obtained during
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the experiment for the 100 trials, and the predicted
directions are those output by the ANN when presented
with the neural activity recorded during the same 100
trials of the experiment.

Information is calculated by determining how much
uncertainty about which direction the monkey will
reach before the trial will be reduced when the monkey
reaches. More specifically,
the distance between the input and weight vectors and adds the bias
compared, and the ANU with the smallest distance between the inpu
set to 1, while all others are set to 0. For backpropagation networks, th
and weight vector elements wiii (that is w1i1 1 ??? 1 wnin) added to the
to the defined function (such as sigmoidal tangent). (B) Data matrix c
ensemble, ti are the time bins of spike counts for each neuron within ea
the input vector for each trial presented to the ANN. (C) The general
ET AL.

uncertainty of whether the monkey will reach left or
right on any given trial and is calculated from the confu-
sion matrix above as

Ha 5 oa 2 pa log2 pa 5 21∗50/100∗log2(50/100) 1

21∗50/100∗log2(50/100) 5 1 bit,
I 5 Ha 1 Hb 2 Hab, where pa is the probability of the reach direction, and
the sum is taken over the two actual reach directions.
This value defines the amount of total information thatwhere I is the information about reach direction in the

neuronal activity that is extracted by the ANN, and is in the problem. Since each actual reach by the mon-
key totally resolves the uncertainty for that trial, thethe His are “entropy” values that measure the specific

uncertainties that are involved. Ha is a measure of the entire problem (of not knowing what the reach will be

FIG. 14. (A) The general model for an artificial neural unit (ANU). In competitive networks, such as OLVQ, the transfer function obtains

value. The outputs from the transfer functions of all ANUs are then
t and weight vectors “wins.” The final output of the winning ANU is
e transfer function receives as input the sum of the multiplied input
bias value, and the transfer function outputs the value a according

onfiguration for the analyses using ANNs. Ni are the neurons in the
ch trial, and Ti are the trials in the experiment. Each row represents
model for the ANNs. See text for details.
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prior to any given trial) is solved with 1 bit of informa-
tion. It is a 1-bit problem. Note that the total informa-
tion of the problem would be reduced if the monkey
had a bias toward one of the reach directions or if the
numbers of trials for the two directions were not equal,
since these biases slightly reduce the uncertainty of
which direction the monkey may reach.

Hb is the uncertainty of whether the ANN will predict
that the monkey’s reach will be left or right and is
calculated from the confusion matrix as

Hb 5 ob 2 pb log2 pb 5 21∗60/100∗log2(60/100) 1

21∗40/100∗log2(40/100) 5 0.97095,

where pb is the probability of the predicted reach direc-
tion, and the sum is taken over the two predicted reach
directions. Hb can be thought of as measuring the bias
of the ANN, falling less than 1 if the network tends to
predict one of the directions more than the other. Hab

is the joint uncertainty of (a) which direction the mon-
key will reach and (b) which reach will be predicted
by the ANN. Hab measures whether the ANN predicts
correctly, increasing with the errors of the ANN. Hab,
and finally, I are calculated as

Hab 5 oaob 2 pab log2 pab 5 21∗45/100∗log2(45/100)

1 21∗15/100∗log2(15/100) 1 21∗5/100∗log2(5/100)

1 21∗35/100∗log2(35/100) 5 1.6751,

where pab is the probability of the combination of the
actual and the predicted reach directions, the sums are
taken over the actual and the predicted reach direc-
tions, and

I 5 Ha 1 Hb 2 Hab 5 1 1 0.97095 2 1.6751

5 0.2959 bit.

Thus, 0.2959 bit is the amount of information found by
the ANN in the neuronal activity regarding the mon-
key’s reach direction. It is 29.6% (i.e., 0.2959/1∗100) of
the total information in the problem.

Thus, information theory provides another way to
quantify and to conceptualize the structure in the neu-
ronal ensemble firing patterns that relates to the meas-

ured behavior or stimulus. It is especially useful in
comparisons of different potential neuronal coding
schemes. For instance, the amount of information found
in the correlated firing patterns of neurons can be com-
pared to the amount of information found in the average
firing rates of individual neurons to determine how
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much more information may be found in the interac-
tions between neurons (see Laubach et al. (7)). Addition-
ally, using information theory as a means to quantify
the success of the ANN at finding a relationship be-
tween neuronal activity and stimuli or behavior is supe-
rior to percentage correct when the number of trials of
each response or stimulus class is highly unbalanced
or when the animal has a significant response bias (see
Laubach et al. (7) for a detailed discussion).

4.4.2. Other Analyses Using ANNs
Combined with particular manipulations of the data,

ANNs can also be used to investigate the potential en-
coding strategies of neural populations. These manipu-
lations include (a) trial shuffling, (b) spike shifting, (c)
systematic changes in the bin sizes, or bin clumping,
and (d) systematic removals or additions of individual
neurons in the ensemble, known as neuron dropping
or adding (see Nicolelis et al. (9) for a more detailed
discussion; Ghazanfar et al. (47); Nicolelis et al. (32)).
In trial shuffling, the network is first trained on the
original data set, and then the trials for each neuron
from the same stimulus or behavioral response class,
such as all trials for left reaches, are randomly shuffled
so that the network receives an input vector formed
by single neuron firing patterns obtained in different
trials. This manipulation tests whether correlated fir-
ing of neurons is due to an actual interaction between
neurons or simply due to independent but similar firing
patterns in response to the stimulus or behavioral
event. When the trials are shuffled, interactions be-
tween the neurons are disrupted, while the event-
related activity remains unchanged. The difference be-
tween the success of the ANN before and after this
manipulation measures the extent that correlated fir-
ing between neurons reflects a true interaction between
the neurons.

In spike shifting, the ANN is first trained with the
original spike trains obtained in the experiment. Then
the ANN predictions are examined when the ANN is fed
with spike trains on a given trial that are individually
shifted earlier or later in time (see Fig. 15A) (6). This
spike train shifting changes the specific timing of the
spikes relative to the stimulus or behavioral event and
relative to other neurons while keeping the overall fir-
ing pattern and overall firing rate across the trials un-
changed. This manipulation thus tests whether such
specific timing relative to the experimental event is

significant; at the same time, spike shifting tests the
specificity of coupling between neurons, measuring the
potential reduction in the success of the ANN after
the lag between neurons is changed as a result of the
shifting procedure. To determine whether neurons in
the ensemble are actually interacting, the effect on the
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ANN predictions due to neuron decoupling must be
separated from the effects due to changing the relative
timing of the firing to the experimental event. One way
to do this is to compare the results from the random

spike shifting procedure with the results from a proce-

FIG. 15. (A) An example of how spikes are shifted in the spike shifti
shifted left or right a random amount. (B) Hypothetical neuron dropp
from an ensemble of neurons in dorsal premotor (A) and primary mot
obtain the amount of information about hand position in the remainin
ET AL.

whereas the specific timing of firing relative to the ex-
perimental event has been disrupted by the shift (6).

Bin clumping helps to identify temporal attributes of
single neuron responses to the experimental events.

For instance, fine temporal patterns in the neural dis-

charges of cells can be lost if the neural activity isdure in which the spike trains for all neurons are shifted

the same amount—for instance, by the median shift organized into bin sizes that are too large. Indeed, we
continue to find that finer temporal patterns of neuralof the random shift procedure. In this “median shift”

manipulation, the coupling between the neurons is held discharge routinely harbor information about the ex-
perimental events, such as primate arm movements,constant (since all spike trains are shifted identically),
ng procedure. The spike train for each neuron in a trial is randomly
ing curves obtained by randomly removing neurons, one at a time,
or (B) cortex, and presenting the remaining neurons to the ANN to
g neurons.
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and this information is lost when these finer temporal
patterns are not measured, such as when only overall
firing rates are calculated. To be sure, however, there
is a limit to how fine the temporal patterns can be
before information again begins to be lost (7).

Finally, “neuron dropping” or “adding” analysis is a
straightforward and powerful way of studying the rela-
tive contributions of specific neurons to the representa-
tion of the behavior or sensory stimulus (8, 32, 47; see
Nicolelis et al. (9)). In addition, it allows us to assess
the information in neural ensembles as a function of
the number and types of neurons in the ensemble. Thus,
the procedure also provides an elegant way of compar-
ing different brain areas by conducting the analysis on
neurons from specific areas separately and then com-
paring the results generated for each brain area. For
instance, to analyze the relative information about pri-
mate hand position in dorsal premotor and primary
motor cortex, Wessberg et al. (8) began with the entire
ensemble of neurons from dorsal premotor cortex and
then randomly removed the neurons, one at a time,
from the ensemble, presenting the remaining neurons
back into the ANN, which produced a neuron dropping
curve similar to curve A in Fig. 15B. The same proce-
dure was conducted with primary motor neurons, yield-
ing a curve similar to curve B in Fig. 15. With such
results revealed by the neuron dropping analysis, at
least two important observations can be made: (i) that
both brain areas contain information about hand posi-
tion, suggesting that this information is widely distrib-
uted; and (ii) that the areas nevertheless differ in how
much information they contain about hand position,
suggesting that some specialization does exist in these
brain areas. Finally, the neuron dropping curves can
be fit by equations that can then be used to estimate
the number of neurons one would need to record from
to obtain and arbitrary amount of information about
hand position, for instance, to obtain 0.9 bit of informa-
tion (see Ref. 8). These predicted numbers of neurons
for each brain area provide another means of comparing
different brain areas; they also provide intriguing esti-
mates of the number of neurons necessary for useful
applications, such as for prosthetic devices (11).

4.5. Wavelet Packet Analysis and Temporal Patterns
of Firing

Wavelet analysis is a relatively new and promising

signal processing technique that decomposes a neural
signal into components. The analysis can remove irrele-
vant neural activity, significantly reducing the size of
large neuronal data sets. But perhaps more impor-
tantly, the analysis helps one to determine what specific
aspects of the neural signal are related to a stimulus
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or behavior, such as to the deflection of a set of whiskers
of a rat or the direction of reach of a primate. For in-
stance, if a particular frequency component of the signal
at a particular time during the trial is related to a
behavioral response, such as reach direction, wavelet
analysis can help to find this relationship by capturing
this part of the neuronal signal as a wavelet feature.

To conduct a wavelet packet analysis on a neuronal
data set, single-trial peri-event histograms of 1-ms bins
are first smoothed over intervals of 5, 10, or 20 ms (i.e.,
low-pass filtered and resampled using Matlab routines,
fir1, decimate, and filtfilt) and then normalized, again
to curb the influence of neurons with a relatively high
baseline rate of firing. The resulting processed spike
trains are then decomposed using a wavelet method
(available as public domain code for Matlab) (7).

The wavelet algorithm we use was developed by
Buckheit and Donoho (39) and works in the following
way. First, for each neuron, the normalized firing fre-
quencies are averaged across all trials for the left direc-
tion, and again for the right direction (Fig. 16A). The
average activity from right-direction trials is then sub-
tracted from the averaged activity from left-direction
trials, producing a “difference vector” (Fig. 16B). Wave-
let features are then extracted from this difference vec-
tor, to obtain features from the neuronal signal that
are potentially relevant to the discrimination between
reach directions. To do this, a wavelet packet table is
generated from the difference vector. The table is ob-
tained by passing the difference vector through a low-
pass filter and a high-pass filter, and downsampling
(i.e., obtaining half the original number of signal val-
ues), generating two resulting signals such as in Row
2 of Fig. 16D (for descriptions of the filtering process,
see Refs. 39, 40, 51). The filters are based on the Daube-
chies 4-point wavelet, which is a waveform of a particu-
lar shape and limited duration, depicted in Fig. 16C.
In the filtering process, the limited-duration filters are
passed successively across the “difference vector” sig-
nal, obtaining an amplitude value, or coefficient, at each
time point in the table (in Row 2 of Fig. 16D) that
represents the degree to which the shape of the filter
matches the difference vector at that point in time in
the trial.

These resulting signals (i.e., in Row 2 of Fig. 16D)
are themselves passed through the filters, generating
the signals in Row 3 of Fig. 16D. This procedure is
repeated a number of times based on the number of

bins per trial. Because the filters are essentially
“stretched” at each iteration in the wavelet analysis
procedure, each row in the resulting table represents
the original signal at a progressively lower resolution,
or coarser grain, representing progressively lower fre-
quency attributes of the original neural signal.
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The entire set of discrete points making up all of
the signals in Fig. 16D constitute the complete wavelet

packet table, providing a rich and detailed set of poten-

neuron. (B) A schematic of the “difference” vector that is produced fro
(C) The shape of the Daubechies 4-point wavelet. (D) A schematic of h
vector through a low-pass filter and a high-pass filter, downsampling
process back through the filters (Rows 2, 3, etc.). All of the generated v
of D. The position in the column vector with the largest amplitude val
location of the first wavelet feature; and the wavelet feature itself can
of D.
ET AL.

of the first wavelet feature: for instance, position 128
in the column vector in Fig. 16D. The largest amplitude

value signifies that the difference vector was best

matched by the shape of the filter waveform at thattial features of which to represent the original neural

signal. To begin selecting the wavelet features, these point in the trial, which in turn means that the feature
best accounts for the difference between the left andpoints from the table are arranged into a column vector

as shown in Fig. 16D. Next, the location in the vector right reach trials. Note that using this amplitude value,
or coefficient, the wavelet feature that it represents canwith the largest amplitude value is taken as the location

FIG. 16. (A) The firing frequencies are averaged across all trials for the left direction, and again for the right direction for an example

m subtracting the right-direction trials from the left-direction trials.

ow the wavelet packet table is generated by passing the difference
(Row 1), and then iteratively passing the products of the filtering

alues can be rearranged into a column vector as shown in the middle
ue, in this case, position 128, with amplitude 0.436, is chosen as the
be reconstructed from the amplitude value as depicted at the right
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be reconstructed from the coefficient and a filter based
on the “mother” wavelet (the Daubechies 4-point wave-
let); an example reconstructed wavelet feature is shown
in Fig. 16D.

Since all of the chosen wavelet features must be or-
thogonal, once a feature is chosen, it must be completely
removed from the wavelet packet table before the next
feature is selected. Once this procedure is completed,
the second wavelet feature is chosen in the same way
as the first: the location in the vector with the largest
amplitude value, again meaning that the filter shape
at that point in the trial is the next best at matching
the difference vector, is taken as the location of the next
wavelet feature. This procedure of selecting wavelet
features is repeated a number of times based on the
number of bins per trial. Only the most significant
of these selected features are used in subsequent
analyses.

This entire wavelet analysis is conducted for each
neuron in the ensemble, generating a set of wavelet
features that now represent the neuronal signal of each
of the neurons. Once the wavelet features are obtained
for each neuron, we need to determine how much reach
direction information is contained in these features.
First, for each trial of the experiment, that is, for each
arm reach, the value for each wavelet feature is ob-
tained. To do this, each neural signal over the trial is
processed to obtain a wavelet packet table, as described
above. Then the amplitude at each selected feature loca-
tion (i.e., at each location that was previously chosen
as the location of a wavelet feature for that neuron) is
used as the value for the feature on that trial. For
example, once the wavelet packet table is obtained for
Neuron 1 on Trial 1, and the table is rearranged into
a column vector, the value for the first feature would
be the amplitude at position 128 in the column vector
of Fig. 16D. Thus, one value is obtained per feature per
trial; if there are, for instance, 100 trials and 80 neurons
that are represented by a total of 175 wavelet features,
the resulting data matrix will be a 100 trials by 175
features matrix of feature values on all of the trials
(compared to the original data matrix of 100 trials by
3200 columns, assuming 80 neurons with 40 bins per
trial).

This 100 trials by 175 features data matrix is then
fed to the OLVQ ANN, trial by trial, to determine the
amount of reach direction information that is contained
in the features. Thus, on each ANN learning trial, 175

wavelet feature values from a given trial in the experi-
ment (i.e., one row of the data matrix) are fed to the
network, and the ANN must learn to predict the reach
direction based on the wavelet feature values. We have
consistently found that the wavelet features tend to
harbor a great deal of information regarding stimuli or
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behavior, providing evidence that stimuli and behavior
may be encoded in specific firing patterns of the neu-
ronal activity at specific times during the trial (7).

4.6. Multivariate Statistical Techniques

Multivariate techniques have proven exceptionally
useful in analyzing large neuronal ensemble data sets.
Not only have these techniques helped in managing
the large data sets, by, for instance, reducing the high
dimensionality, they have helped to reveal the nature
of the relationships of the neurons to each other and
to sensory stimuli and behavior.

4.6.1. Principal Component Analysis (PCA)
PCA reduces the large numbers of original neural

signals to a smaller number of derived “components”
that account for most of the variance observed in the
original data set (e.g., Ref. 41). These components repre-
sent dimensions of information embedded in the firing
pattern of the neural population, and they may reflect
functional associations between the neurons in the en-
semble. In our experience, neurons with similar func-
tional characteristics, such as those related to the de-
flection of a specific whisker of a rat, or neurons located
in the same area of the brain do tend to have high
coefficients on the same principal components, whereas
neurons with dissimilar functional associations or from
different areas of the brain tend to be clearly separated
onto different principal components (e.g., Refs. 9, 32).

Each recorded neuron is treated as a separate vari-
able in the PCA. Time series of the firing rates of each
neuron (e.g., rates obtained in 10- to 25-ms bins over
10- to 30-min periods) are correlated with those of all
other neurons in the population, generating a correla-
tion matrix of all neurons. From this correlation matrix,
a series of principal components is extracted. Each of
these components is formed by the weighted linear sum
of the firing patterns of individual neurons, with neu-
rons contributing differentially to the different compo-
nents, as reflected in the component weights. Note that
neither the response properties of the neurons nor their
anatomical location are made available to the PCA
algorithm; nonetheless, as described above, these fea-
tures are often pulled out by PCA.

4.6.2. Independent Component Analysis (ICA) and

Correlated Neuronal Firing
One of the most important analyses to be conducted

on neural ensemble data is a study of the potential
correlations or interactions between neurons. Recently,
ICA has been successfully applied to neural ensemble
data, and it is currently an important statistical tool
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that we use to evaluate the degree and type of correlated

firing patterns between single units (6, 7). ICA is a

coefficient for each neuron on each IC. The size of each rectangle corre
represents a positive value; white is negative. Neurons with large coe
The data matrix that was used to train the ANN is multiplied by the
matrix in which each row represents each bin on every trial, each col
number of spikes due to each independent source that occurred dur
conducted on the data matrix, and the resulting wavelet features are
the ANN can extract from the wavelet features, derived from the inde
ET AL.

data may be appropriate for ICA analysis. For example,

one subset of neurons in the primary motor cortex of
statistical technique that decomposes a large data set primates may be influenced by activity from one source
of neurons in the thalamus, while another subset ofof mixed signals into separate, independent signals (42,

43) (See Fig. 17A), and because the activity of individual neurons may be influenced by activity from neurons in
other cortical areas, such as from the dorsal premotorneurons or groups of neurons could in some cases be

linear mixtures of independent signals, the neuronal cortex, while third subset of neurons may receive inputs

FIG. 17. (A) A schematic illustrating the basic concepts underlying our use of ICA. In this conceptualization, one subset of neurons in the
primary motor cortex of primates may be influenced by activity from one source of neurons in the dorsal premotor cortex, another subset
of neurons may be influenced by activity from neurons in the thalamus, and a subset of these primary motor neurons may receive inputs
from neurons in both the dorsal premotor cortex and thalamus. The highly schematized graphs to the right illustrate that the influence of
the two sources on the firing pattern of a neuron may be separable. (B) For the ICA algorithm, the original data matrix of spike counts for
each neuron in each time bin on every trial is multiplied by the matrix of principal component (PC) coefficients of each neuron on each PC,
resulting in a matrix of PC scores for each bin on each trial (see Ref. 41). Blocks of rows of this data matrix are then fed to a single-layer
feedforward ANN that will result in output ANUs that correspond to the independent components (see text for details). (C) To obtain the
coefficients for each neuron on each independent component (IC), a matrix of the IC coefficients (the weights from the ANN) for each PC
is multiplied by the matrix of PC coefficients for each neuron. This result is displayed in a Hinton diagram that depicts the size of the
sponds to the size of the IC weight (i.e., coefficient). The black color
fficients on the same ICs have strong correlated firing patterns. (D)
matrix of IC weights obtained from the ANN to produce a new data
umn represents an IC, and each value in the matrix represents the
ing each time bin on each trial. A wavelet packet analysis is then
then fed to an OLVQ ANN to assess the amount of information that
pendent components.
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from neurons in both the thalamus and dorsal premotor
cortex (Fig. 17A).

Like PCA, ICA decomposes the original neural sig-
nals into a set of components that may better character-
ize the overall neuronal activity. The principal compo-
nents from PCA decorrelate the neural signals, but they
do not necessarily separate independent sources. If the
probability distributions of the signal sources (i.e., of
the source firing rates) are gaussian, the principal com-
ponents will be independent (see Lee (52) and Johnson
and Wichern (41)). However, if the probability distribu-
tions of the sources are not gaussian, the principal com-
ponents of PCA will not be independent. This is because
PCA decorrelates the second-order statistical property
(i.e., variance), but not higher-order statistical proper-

ties (such as kurtosis, which describes the size of the

FIG. 17—C
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properties as well, providing a truly independent sepa-
ration of signals. Thus, with ICA, neurons with corre-
lated firing patterns will be identified because they will
have significant coefficients on the same independent
component.

The main steps we use to conduct ICA on our neu-
ronal data sets are the following. First, single-trial peri-
event histograms of 1-ms bins are smoothed over inter-
vals of 5, 10, or 20 ms and then normalized. Next, PCA
is conducted on the data set, reducing the dimensional-
ity of the data and separating the signals with respect
to the second-order statistical property (i.e., variance).
To take the most significant principal components, only
those with variance greater than one are retained (7,
41). One of the methods for ICA is then applied to the

data (ICA algorithms are available as public domain
tails and peakedness of the distribution). Thus, signals code for Matlab; see Laubach et al. (6)). Here, we de-
scribe the extended ICA algorithm that we commonlyseparated by PCA may still be dependent; PCA, there-

fore, may not be the most accurate method for assessing use (6, 42, 43, 52). For the ICA algorithm, the data are
arranged in a matrix in which each row represents eachthe degree of correlated firing between neurons. ICA, on

the other hand, decorrelates the higher-order statistical bin on every trial (with the total number of rows equal
ontinued
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to the number of trials times the number of bins per
trial), and each column represents a principal compo-
nent (PC), with each entry in the matrix being the
particular PC value or score for the bin on a given trial
(see Fig. 17B). As described in the previous section, the
PC score is the weighted sum of the firing patterns of
individual neurons during each time bin on each trial,
with neurons contributing differentially to the different
components, as reflected in the component coefficients.
Blocks of rows of this data matrix are then fed to a
single-layer feedforward ANN with a hyperbolic tan-
gent transfer function, which transforms the outputs
according to the specified function (Fig. 17B) (48, 52).
The number of inputs to the ANN, as well as the number
of ANUs in the single output layer, which will become
the independent components, is equal to the number
of principal components. The weights of the output
layer are adjusted according to the extended ICA infor-
mation maximization (infomax) learning rule, resulting
in output ANUs corresponding to each independent
component. Bell and Sejnowski (42) showed that max-
imizing the joint entropy (i.e., uncertainty) of the out-
puts of the ANN results in a minimization of the mutual
information between the outputs, producing indepen-
dent output ANUs. The infomax learning rule used to
change the ANU weights, therefore, was derived by
maximizing the joint entropy of the outputs with re-
spect to the weights.

After the training of the ANN, with each output ANU
now corresponding to an independent component, three
subsequent analyses are conducted. First, the weights
from the ANN are the coefficients that characterize the
extent to which each neuron reflects the independent
component (IC)—that is, characterizing the extent the
neurons are firing due to a common external source
(Fig. 17C). These coefficients are examined using Hin-
ton diagrams to characterize the patterns of correlated
firing in the neuronal ensembles: neurons with nonzero
coefficients on the same independent component have
correlated firing patterns (Fig. 17C). Second, the
weights from the ANN are used to determine the
amount of information content regarding stimuli or be-
havior, such as reach direction, that can be found in
the correlated firing patterns of the neurons. To do this,
the data matrix that was used to train the ANN is
multiplied by the matrix of IC weights obtained from
the ANN to produce a new data matrix in which each
row represents each bin on every trial, each column

represents an IC, and each value in the matrix repre-
sents the number of neuronal discharges (i.e., spikes)
due to each independent source that occurred during
each time bin on each trial (Fig. 17D). To extract as
much information about reach direction as possible
from the correlated firing patterns and also to reduce
ET AL.

the dimensionality of the data, a wavelet packet analy-
sis is then conducted on the data matrix (see Section
4.5). The resulting wavelet feature values are then fed
to an OLVQ ANN to assess the amount of information
that the ANN can extract from the wavelet features,
derived from the independent components (Fig. 17D).
The result quantifies the amount of information regard-
ing a stimulus or behavior that is extracted by the ANN
from the correlated firing of neurons in the ensemble.

Finally, a spike shifting analysis is conducted to ex-
amine whether the correlated firing patterns obtained
from ICA reflect an actual interaction between neurons
as opposed to simply reflecting similar response proper-
ties of the neurons to the stimulus or behavioral event
(see Section 4.4.2).

4.7. Real-Time Analysis of Neuronal Ensembles

In this final section on neural ensemble analysis,
we describe algorithms and procedures that are being
developed in our laboratory to conduct such analyses
in real time to, for instance, predict the hand move-
ments of monkeys from their neural activity immedi-
ately before the monkeys make the movements (8). Suc-
cessful real-time predictions of behavior from cortical
activity are critical for the development of such devices
as prosthetic limbs, which may aid people with debili-
tating motor impairments (11).

Here we briefly describe how a linear analysis of neu-
ral signals and hand position can be conducted in real
time (see Wessberg et al. (8)). First, recorded neuronal
spike trains are sorted into 100-ms bins (10 Hz). To
account for the influence of neural signals that occur
earlier than the actual hand position signals, ten 100-
ms bins are obtained for each neuron, corresponding to
lags up to 1 s. The linear model for real-time neural
signals and hand position then is

Y(t) 5 b 1 o
9

u50
a(u)X(t 2 u) 1 «(t),

where t and u are in units of 10 per second. Thus 10
values are obtained for each neuron, corresponding to
the 10 time lag steps. In this case, the weights a and
Y intercepts b are calculated using standard linear re-
gression techniques (e.g., Ref. 41). We have found that
the real-time predictions of hand position using this

simplified model tend to be only slightly inferior to off-
line predictions using the linear model described above
(see Section 4.3).

Because our real-time system was designed to be
adaptive, the weights of the linear model can be contin-
ually updated throughout the experimental session. A
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separate computer is used to fit the model continually,
using the previous 10 min of recordings, and the re-
sulting updated weights are sent back to the data acqui-
sition computer to predict the hand position “instanta-
neously” using the currently recorded neural firing

patterns. Finally, the predictions from both this linear

We thank Mark Laubach, Johan Wessberg, Pamela D. Beck, Chris
model and ANN models (such as the backpropagation
ANN described in Section 4.4) can be broadcast in real
time over the internet (using TCP/IP protocol) to a com-
puter that can use the signal to control devices, such
as a robot arm, in real time (8).

5. CONCLUSION

The growing excitement generated from the ability to
record from populations of neurons across many brain
areas in awake, behaving animals has increased the
demand for improved methods for sampling, monitor-
ing, and analyzing the electrophysiological data from
these neural ensembles. In this article, we attempted
to describe in sufficient detail many of the latest issues
and the specific solutions we have been achieving. But
this is only the beginning. It is clear that in the near
future, movable multielectrode bundles and arrays will
be used in primates, and the technology will need to be
extended so that these movable systems can remain
in place for long periods, perhaps up to years, before
being moved again to record from a new set of neurons.
Surgical techniques must continue to be developed to
minimize damage during multielectrode implantation,
as well as to reach targeted brain structures more accu-
rately.

Technologies must also be developed to continue to
miniaturize all components of the multichannel re-
cording system; and work toward wireless recording
systems should continue (53). And finally, there are
many avenues to be explored in the challenging task
of analyzing larger and larger amounts of data. One
promising area, for instance, is the extension of time
series analysis to such techniques as PCA. Time series
analysis allows one to take time dependencies into ac-
count, such as when cortical activity at time t affects
muscle (EMG) activity at time t 1 xDt, due to the inher-
ent conductance delays between cortical neuronal re-
sponses and those of the muscles. And then beyond
all this, there is the hope that in the future, chronic

multielectrode recording techniques could be used in
human applications, particularly when severe impair-
ments could be alleviated such as in the case where the
brain could control a prosthetic arm (8, 11).

To reach these goals, we need to make advances like
those presented in this article. As the basic methods in
SEMBLE RECORDINGS 149
multielectrode physiology continue to improve, it prom-
ises to continue to vitalize the neurosciences, provid-
ing the ability to study the underlying nature of such
higher brain processes as learning, problem solving,
and emotion.
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