lonotropic Receptors
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lon Channels that are also Neurotransmitter
Receptors

* Metabotropic neurotransmitter receptors
 Ligand-gated (neurotransmitter) ion channels

* Binding triggers intracellular signaling cascades to regulate conductance and
and modulate membrane potential indirectly

* Extra-synaptic
* lonotropic neurotransmitter receptors

 Ligand-gated (neurotransmitter) ion channel
* Fast-acting for rapid communication across synapse (~few milliseconds)

e Within synapse



Types of lonotropic Receptors

* Three subfamilies of ionotropic receptors
1. AChR/GABA/Glycine/Serotonin-gated (5 subunits, 4 transmembrane segments)
2. Glutamate-gated (4 subunits, 3 transmemb.)
3. ATP-gated (3 subunits, 2 transmemb.) p »
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* Three subfamilies of ionotropic receptors
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Sub-types of lonotropic Receptors

e Glutamate receptors (excitatory)
* NMDA
 AMPA (non-NMDA)
e Kainate (hon-NMDA)

* GABA receptors (inhibitory)
* GABA, (ligand-gated ion channels = ionotropic receptors)



Sub-types of lonotropic Receptors and Genes

Table 3-3: lonotropic and metabotropic neurotransmitter receptors encoded |

lonotropic

Neurotransmitter
Number of genes

Multiple genes encode
different subunits within
each receptor




Properties of AMPA and NMDA glutamate
receptors

Activation of AMPA and
NMDA receptors causes
excitation

AMPA—glutamate binds, channel
opens, Na+ flows into cell

NMDA—glutamate (or glycine) binds, [
but nothing happens until neuron
depolarizes via AMPA channels,

Then Mg2+ block is released,
NMDA channel opens, and Ca2+ and
Na+ flow inward thus contributing to
stronger excitation




Properties of GABA-A Receptors

GABA-A—GABA binds to receptor, GABAergic synapse Activation of GABA-A

Cl- ions flow inward, causing receptors causes inhibition
hyperpolarization and thus b @&_r
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Baker et al. (2019) Ann. Rev. Neurosci.

* Review of song pattern recognition in crickets, grasshoppers, Drosophila
* Males produce songs with time varying spectrotemporal features
* Females use this information in mate choice



Insect calling and
courtship songs

Integrate different elements of
information contained in song:
* frequency (pitch)

* timing

* intensity

during mate choice

Baker et al. (2019) Ann. Rev. Neurosci.
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Insect auditory
pathways

In crickets, neurons in prothoracic ganglion
mapped, but not higher-order neurons

involved in temporal pattern analysis

In grasshoppers, higher-order auditory
neurons are beginning to be identified

Drosophila auditory system remains
incompletely mapped

Baker et al. (2019) Ann. Rev. Neurosci.
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Insect auditory CRICKET SRASSHOPRER e el

Tympanal ear Tympanal ear

p a t h W a yS Auditory afferents Auditory afferents Johnston’s organ

Need to precisely characterize each
neuron’s tuning, then map connectivity
among auditory neurons and between ON1
auditory and motor pathways

Baker et al. (2019) Ann. Rev. Neurosci. pattern analysis
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Mechanisms for

Data from crickets
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Mechanisms for Data from crickets
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Gary Rose et al. (various papers)

 Discovered interval-counting neurons in auditory midbrain of frogs

* Long-interval neurons (LIN) = sensitive to interval length
* Inhibition evoked by successive short intervals coincides with excitation evoked by
previous pulses, thereby preventing spikes to later pulses
* Interval-counting neurons (ICN) = count intervals (if presented at required length)

 Optimal intervals elicit rate-dependent =~ = /T o T e
excitation that eventually overcomes
the inhibition to produce spikes

NMDA AMPA
Receptor Receptor

* This information is key to +

species recognition! @4

Disinhibition computational model
showing excitation and inhibition of ICN

GABA-A ICN

Receptor




Speciation in chorus frogs (Pseudacris)
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Al | U ri et d | . (2016) — Phasic, suprathreshold excitation and sustained

inhibition underlie neuronal selectivity for short-duration sounds

* Goal: identify the mechanism of duration-selective neurons of the
anuran inferior colliculus (IC,,) —

» Target neurons are selective for short sounds only

e Methods

* Current patch-clamp recording (whole cell), in vivo of frog
* Extracted excitatory and inhibitory conductances

* Employed pharmaceutical manipulations to block
GABA, receptors of target neurons




Alluri et al. (2016)—Models of duration selectivity

Orange = excitatory A-B. Coincidence models C. Anti-coincidence model
Blue = inhibitory

Relies on postinhibitory rebound Does not require postinhibitory rebound
A B Sub-threshold excitation C Short-latency inhibition
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Alluri et al. (2016)—neurons selective for
short sounds
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Alluri et al. (2016)

Short-pass duration-selective neuron

The longer the sound, the longer the
inhibition lasts (blue line)

Inhibition brief; does not
fully overlap excitation

The more negative the current

injected, the stronger the response
to short sounds only

Time course of inhibition, but not
excitation tracks stimulus duration

Figure 3.
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Alluri et al. (2016)

Figure 4.

Strongly selective short-pass
duration-selective neuron

Weakly selective short-pass
duration-selective neuron
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Alluri et al. (2016)

Attenuating GABA, inhibition
(blocking the channels that inhibit excitation)

reveals suprathreshold excitation

When GABA receptors blocked, excitation takes
over and neurons fire in response to any sound

When GABA receptors unblocked, the behavior
of the neurons goes back to normal (baseline)

Figure 5.
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Alluri et al. (2016)

Baseline

Attenuating GABA, inhibition

(blocking the channels that inhibit excitation)
reveals suprathreshold excitation

When GABA receptors blocked, excitation takes
over and neurons fire in response to any sound

When GABA receptors unblocked, the behavior
of the neurons goes back to normal (baseline)

Figure 6.
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Alluri et al. (2016)

Number of depolarizations increases for
long sounds when GABA, receptors
blocked (solid line) vs. prior to blocking
(dashed line)

Figure 7.
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Alluri et al. (2016)
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Alluri et al. (2016)--Summary

» Short-latency, sustained inhibition and delayed, phasic excitation are
integrated to generate short-pass duration selectivity

* When inhibitory and excitatory conductances do not coincide => spike
* Anti-coincidence model is supported over coincidence models
* No evidence for postinhibitory rebound effects

* Inhibition via GABA channels suppresses suprathreshold excitation via
NMDA and AMPA glutamate channels

* Inhibition is only overcome by excitation in presence of short sounds



Yamada et al. (2018)_GABAergic local interneurons shape

female fruit fly response to mating songs

e Goal: Understand the neural circuitry between auditory sensory

neurons (JO) and the antennal mechanosensory and motor center
(AMMC) region of the brain

* Interval-selective neurons in Drosophila

e Methods

e Calcium imaging in vivo of JO-B and AMMC-B1 neurons
* Expressed Ca?* sensor GCaMP6f in each neuronal type to monitor neuronal activity
* Played songs with different interpulse intervals (IP1) and measured response
* Knocked down expresson of GABA subunit rd/ => non-functional GABA receptors

* Female copulation assay



Yamada et al. (2018)

In JO-B neurons, Ca%* response the same across IPls
and neurons equally activated across stimuli

Suggests JO-B neurons transmit information of pulse

songs without computing IPl information

In AMMC-B1 neurons, response increases
monotonically from 105 to 25 IPI, then drops
significantly at 15 IPI

= Selective attenuation of postsynaptic activity
during signal transmission by AMMC-B1
neurons at 15 IPI
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Yamada et al. (2018)

Knockdowns rd/ (GABA, receptor subunit) showed

significantly higher Ca2+ response compared to controls

at low IPIs

Suggests that suppressing GABA, receptors leads to
decreased selectivity at low IPIs by AMMC-B1 neurons
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Yamada et al. (2018)

Something is suppressing AMMC-B1 neurons

via GABA, receptors

Could it be local interneurons?
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Yamada et al. (2018)

Fig 3C. Demonstrates synapses between
AMMC-LN/AMMC-B1 and AMMC-B2/AMMC-B1 in the
AMMC brain region

AMMC-L

Fig 3D. Shows direction of flow of information is into
AMMC zone B (not zone D)

AMMC-B2

Fig 3E. Shows presynaptic sites of candidate
interneurons overlap with dendritic sites of AMMC-B1

Fig 3F-G. Reveals that JO-neurons transmit signals
directly to candidate interneurons via cholinergic
synapses
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Yamada et al. (2018)
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Yamada et al. (2018

When either of the two candidate interneurons are
silenced, AMMC-B1 loses selectivity at low IPIs

Red = TNT (tetanus toxin) expressing neurons
Blue = IMPTNT (inactivated tetanus) expressing neurons
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Yamada et al. (2018)

Copulation Rate Experiments
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Indicates these neurons
contribute positively to
behavioral response of females
to courtship song

If inactivate AMMC-LN or AMMC-B2 with TNT,
then mating increases at short IPls

Indicates both GABAergic interneurons normally
suppress female response to short IPIs
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Interneurons suppress mating
most effectively for 15 IPI songs
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Yamada et al. (2018)--Summary

* Auditory circuit identified that contributes to recognition of temporal
song elements

* Involves excitation and inhibition of auditory neurons
* Inhibition occurs through GABAergic local interneurons of the AMMC

e Suppression of these interneurons directly affects female mating
behavior



