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Naud R, Houtman D, Rose GJ, Longtin A. Counting on dis-
inhibition: a circuit motif for interval counting and selectivity in the
anuran auditory system. J Neurophysiol 114: 2804–2815, 2015. First
published September 2, 2015; doi:10.1152/jn.00138.2015.—Informa-
tion can be encoded in the temporal patterning of spikes. How the
brain reads these patterns is of general importance and represents one
of the greatest challenges in neuroscience. We addressed this issue in
relation to temporal pattern recognition in the anuran auditory system.
Many species of anurans perform mating decisions based on the
temporal structure of advertisement calls. One important temporal
feature is the number of sound pulses that occur with a species-
specific interpulse interval. Neurons representing this pulse count
have been recorded in the anuran inferior colliculus, but the mecha-
nisms underlying their temporal selectivity are incompletely under-
stood. Here, we construct a parsimonious model that can explain the
key dynamical features of these cells with biologically plausible
elements. We demonstrate that interval counting arises naturally when
combining interval-selective inhibition with pulse-per-pulse excita-
tion having both fast- and slow-conductance synapses. Interval-de-
pendent inhibition is modeled here by a simple architecture based on
known physiology of afferent nuclei. Finally, we consider simple
implementations of previously proposed mechanistic explanations for
these counting neurons and show that they do not account for all
experimental observations. Our results demonstrate that tens of mil-
lisecond-range temporal selectivities can arise from simple connec-
tivity motifs of inhibitory neurons, without recourse to internal clocks,
spike-frequency adaptation, or appreciable short-term plasticity.

auditory processing; counting; interval selectivity; neural network;
temporal features

FEATURE EXTRACTION by summing excitatory and inhibitory
inputs from neurons with different receptive fields is consid-
ered a fundamental principle in different modalities (Hubel and
Wiesel 1962; Knudsen and Konishi 1978). Much of the infor-
mation relevant to sound processing, however, involves the
time domain and therefore transcends the classical receptive
field concept (Mauk and Buonomano 2004). Recognizing
speech (Buonomano and Merzenich 1995), bird songs (Konishi
1985), and frog calls (Schwartz 1993) relies on timing infor-
mation in the tens of millisecond range. What core constituents
of the biophysical machinery give rise to temporal-interval
selectivities? In the tens of millisecond range and irrespective
of the modality, hypotheses abound: interacting and resettable
pacemaker cells (Miall 1989) or networks (Ahissar et al. 1997),
an array of integration time constants (Grossberg and Schma-
juk 1989), a slow ion channel (Hooper et al. 2002), spike-

triggered adaptation (Drew and Abbott 2006), and short-term
plasticity (Buonomano and Merzenich 1995). Although these
hypotheses are biologically plausible, they remain to be put in
a close parallel with experimental observations. Recent work
has begun to demonstrate how such biologically plausible
processes contribute to selectivity for temporal features of
sensory signals (Baker and Carlson 2014; Edwards et al. 2008).

Acoustic communication in anurans represents an excellent
system in which to uncover neural mechanisms of temporal
selectivity in the tens of millisecond range, and how temporal
patterns of spikes are decoded in the brain in general. Many
species of anurans produce calls that consist of a series of
pulses delivered at particular rates; within each call, interpulse
intervals (IPIs: the time between onsets of successive pulses)
are generally highly regular. Anurans can discriminate between
calls that differ in IPIs and pulse number (Gerhardt et al. 2000;
Klump and Gerhardt 1987). In some cases, insertion of a short
silent gap into a pulse sequence can reduce its attractiveness
(Schwartz 1993; Schwartz et al. 2011).

Selectivity for IPIs arises between the auditory nerve and the
midbrain (Alder and Rose 2000; Rose and Capranica 1985). In
vivo experiments in the anuran IC have revealed cells selective
for short IPIs which respond only after a threshold number of
sound pulses have occurred. Consistent with behavioral exper-
iments (Schwartz 1993; Schwartz et al. 2011), these cells do
not respond when a silent gap is introduced in the pulse
sequence (Edwards et al. 2002). Inspection of whole cell
recordings from these interval counting neurons (ICNs) led to
the hypothesis that the counting process resulted from rate-
dependent enhancement of excitation on a background of
inhibition (Edwards et al. 2007). Yet, it is not clear how this
model can account for the response to calls with short inter-
ruptions. Thus, while interplay between excitation and inhibi-
tion are clearly important for interval-selectivity and counting,
the precise mechanisms for interval-selective counting remain
incompletely understood.

What core processes could underlie the selectivities of these
ICNs for both IPI and pulse number? In this study, we gener-
ated a computational model that can explain experimental
observations (Fig. 1). This model incorporates a simple dis-
inhibitory network that provides interval selective inhibition to
ICNs. We also show that inhibition triggered at every sound
pulse is inconsistent with experimental observations, even
when excitation undergoes short-term facilitation or when
inhibition undergoes short-term depression. Our results predict
that dis-inhibitory microcircuits (Chamberland and Topolnik
2012; Jiang et al. 2013) and slow-conductance excitatory
synapses are strong candidates for temporal selectivity in the
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nervous system. We also discuss how a “number sense” (De-
haene 1997) may be an integral part of certain neural systems.

METHODS

In this study, model ICNs are constructed to reproduce observed
responses to temporal sequences of sound pulses (Fig. 1; Alder and
Rose 2000; Edwards et al. 2002, 2007; Leary et al. 2008; Rose et al.
2011). We first review experimental observations and then describe
the computational models.

Review of Experimental Observations

ICNs have been recorded (Alder and Rose 2000) in the anuran
homolog to the IC (Wilczynski 1988; Wilczynski and Endepols 2006)
using extracellular and intracellular methods. The typical experiment
consists of a series of sound pulses delivered to a frog while recording
from cells in the IC. Whole cell in vivo patch recordings are per-
formed according to previously published methods (Rose and Fortune
1996).

The recordings show a series of features illustrated in Fig. 1: i) the
number of sound pulses required to fire, i.e., count thresholds, varies
across neurons; ii) short-IPI selectivity for baseline intervals and for
the middle interval (MIPI) of an 8-pulse sequence; iii) the first 1–3
pulses cause primarily inhibition (onset-inhibition); iv) the amplitude
of excitatory events appears to increase with pulse number; v) after the
onset-inhibition, the increase in membrane potential is approximately
monotonic, even after 200 ms; vi) with a slightly longer interval
between the 4th and 5th pulses (the MIPI), the 5th pulse elicits a
small, brief depolarization, followed by a prominent inhibitory event;
vii) the cell remains depolarized well after the call has terminated;
viii) this is followed by hyperpolarization; and ix) the increase in
amplitude and duration of EPSPs with repeated sound pulses is
preserved when the neuron is hyperpolarized.

Computational Modeling

Mathematical modeling is based on the integrate-and-fire formal-
ism. Depending on the cell, we include synaptic currents for excitation
and inhibition and/or subthreshold ion channel activation. Each model
feature is described in detail in the following subsections. We use the

Fig. 1. Interval-counting neurons in anurans. The white roman numerals in black circles point to a set of 9 main features described in METHODS. A: a series of
sound pulses are produced by a loudspeaker while recording from a cell in the midbrain. B: a pulse sequence made of 8 regular intervals (IPI � 13 ms, top) and
the membrane potential response (bottom). The dotted diagonal lines indicate the correspondence between sound pulses and their associated postsynaptic
potentials. C: a pulse-sequence interrupted by a longer middle interval MIPI � 25 ms. D–F: recorded membrane potential in response to calls interrupted by
increasingly long intervals. G: recorded membrane potential for a cell with a high count threshold. H: the probability PF of observing a response to a periodic
train of pulses as a function of the number of pulses in a call. Each curve corresponds to a different cell. I: dependence of PF on the baseline IPI (filled squares).
Roughly the same dependence is found by increasing only the MIPI (abscissa value) but keeping the baseline IPI fixed to 10 ms (empty circles), when the number
of pulses that preceded and followed the MIPI was one less than the count threshold. J: responses to sequences made of 1–4 sound pulses. The minimum
membrane potential is marked with a circle and a vertical line. K: responses to sequences made of 2–4 sound pulses when the same cell was hyperpolarized by
12 mV. Same scale as in subplot J. Data from Alder and Rose (1998), Edwards et al. (2002, 2007), and Rose et al. (2011).
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fourth-order Runge-Kutta method for numerical integration (0.1 ms
time step) of the differential equations.

Auditory afferents. In vivo experiments have demonstrated that
spiking activity of the auditory nerve undergoes phase locking to the
amplitude modulation of sound waves (Rose and Capranica 1985).
Synchronization coefficients between 0.6 and 0.8 were observed for
carrier frequencies representing the spectral peaks in the calls of these
animals, when the amplitude of the sound was 10–20 dB above each
unit’s threshold. Such synchronization is independent of pulse repe-
tition rate between 10 and 100 Hz. Synchronization persists in the
first-order central auditory region (dorsal medullary nucleus), which
projects prominently to the midbrain. Therefore, we model the main
auditory afferents to cells in our models as a temporal sequence of
spikes at the times at which the sound pulses reach the ear. Trans-
mission delays from the ear to the interval-selective cells are not
modeled explicitly. The afferent spikes trigger excitatory synaptic
responses in the interval-selective network.

Membrane potential dynamics. All neurons are modeled as leaky
integrate-and-fire units receiving excitatory and/or inhibitory inputs.
To simulate the dynamics of each neuron type, a system of differential
equations for the evolution of the membrane potential V(t) and the
adaptation current w is integrated numerically. Parameters are used to
determine the contribution of different elements in the model. The
subthreshold adaptation variable w is used in only one model cell type
(see below). The system of differential equations for a single neuron is

�m

dV

dt
� �(V � EL) � �m[gE(t)(V � EE) � gI(t)(V � EI) � w] ⁄ C

�w

dw

dt
� a(V � EL) � w

(1)

where gE is the total excitatory conductance density, EE its reversal
potential, gI is the total conductance density of inhibitory input, EI its
reversal potential, �m the membrane time constant, C the membrane
capacitance, EL the leak reversal potential and w a subthreshold
adaptation variable (described below). If the membrane potential
reaches a threshold value of VT a spike is triggered. To simulate an
absolute refractory period, V is clamped to 0 mV for 1 ms while
keeping w fixed to its value at the threshold crossing. Immediately
after, the potential is reset to V � EL.

The additional current w is introduced here to create post-inhibitory
rebound action potentials. During prolonged periods of hyperpolar-
ization, the subthreshold variable w relaxes with time constant �w to a
negative value proportional to the coupling parameter a. Upon release
from inhibition, w results in a net depolarizing current which may be
sufficient to trigger a spike. Subthreshold adaptation results from the
dynamics of voltage-gated ion channels (Mauro et al. 1970; Richard-
son et al. 2003; Sabah and Leibovic 1969) or dendritic compartments

(Gerstner et al. 2014). When a is set to zero, we recover the leaky
integrate-and-fire model.

The single-neuron model used here is a special case of the gener-
alized leaky integrate-and-fire model, which can be tuned to reproduce
firing patterns and predict spike timing of many cell types in vitro
(Gerstner et al. 2014; Naud et al. 2008). We note that when a spike is
fired, the variable for subthreshold adaptation may undergo a small
negative jump due to the voltage reset. This spike-triggered effect is
sufficiently weak and short that Eq. 1 can be assumed to not produce
spike-triggered adaptation. For this reason, our neuron models do not
display spike-frequency adaptation.

Synaptic dynamics. All synaptic dynamics follow an alpha-func-
tion. Based on the observation of membrane potential deflections in
responses to calls (Fig. 1), we consider three types of synapses: fast
inhibitory (subscript I), fast excitatory (subscript E), and slow excit-
atory (subscript NMDA):

�x(t) � �
kx

�x
te�t ⁄�x t � 0

0 t � 0

(2)

where �x is the synaptic time constant and t measures elapsed time
with respect to the presynaptic action potential. The parameter kx

scales the alpha-function to the appropriate units. It is arbitrarily set to
0.0014 nS for excitatory conductances and 0.1 nS for the inhibitory
conductances.

Fast and slow currents contribute to excitatory postsynaptic poten-
tials (EPSPs) triggered at times Tj:

IE(t) � �
j

wj
(E)�E(t � Tj)�wNMDAZ(V )�NMDA(t � Tj) (3)

where the parameters wE and wNMDA are the synaptic weights for fast
and slow excitation, respectively. The fast excitatory synapse has a
time constant of �E � 2 ms as observed in IC (Raman et al. 1994),
which mimics the alpha-amino-3-hydroxy-5-methyl-5-isoxazole prio-
pionate acid (AMPA) receptors. Typically, the AMPA synaptic
weight wj

(E) has a constant amplitude wE, but it is allowed to change
when we consider the effect of short-term plasticity (below). The slow
excitatory synapse has a time constant of �NMDA � 100 ms, a value
within the range typical for this type of receptor (Attwell and Gibb
2005). Its activation depends on the postsynaptic membrane potential,
in accordance with experimental recordings of N-methyl-D-aspartate-
activated (NMDA) receptor dynamics. Voltage-dependent removal of
the magnesium block is modeled with the activation Z(V) � [1 �
cAexp(�BV)]�1, with A and B parametrizing the activation threshold
and sensitivity, respectively. Parameter values for A and B are based
on experimental data (Gabbiani et al. 1994; Jahr and Stevens 1990)
and the concentration c is fixed to 0.92 mM as measured in frog
cerebrospinal fluid (Davidoff et al., 1988). All parameters are shown
in Table 1 and take values in standard ranges (Gerstner et al. 2014).

Table 1. Parameter values used in the simulations

LIN ICN Synapses

Name Value Unit Name Value Unit Name Value Unit

EL �65 mV EL �65 mV A 0.28 1/mM
EI �77 mV EI �77 mV B 0.062 mV
EE 5 mV EE 5 mV �NMDA 100 ms
VT �60 mV VT �40 mV �E 2 ms
C 100 pF C 100 pF �I 5 ms
�m 10 ms �m 20 ms �F 100 ms
�w 30 ms a 0 nS f 0.9
a 8 nS wE 7.5 �D 10–200 ms
WE 7.5 wI 1 d 0.1–2
WI 2.5 wNMDA 1

See text for definitions of parameters.
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Inhibitory postsynaptic potentials (IPSPs) triggered at times Tj

follow the conductance changes:

gI(t) � wI�
j

�I(t � Tj) (4)

where wI is the synaptic weight of inhibition onto ICN. Equation 4
will also be used but with wI replaced by WI for afferents from RI onto
LIN (see below). The inhibition unfolds with a time constant of �I �
5 ms attributable to GABAergic synapses (Destexhe and Pare 1999;
G. J. Rose, unpublished observations). Recent experimental work
indicates (G. J. Rose, unpublished observations) that GABAA recep-
tors mediate much of the inhibition in the anuran IC, consistent with
studies of the mammalian IC (Ma et al. 2002). Also, GABAA

receptors mediate much of the inhibition in the mammalian dorsal
nucleus of the lateral lemniscus (DNLL; Yang and Pollak 1994).

Dis-inhibitory counting circuit. We consider two topologies for the
afferent circuit. In the first, ICNs receive direct feedforward excitation
and inhibition from a simple dis-inhibitory subnetwork. The neural
network, shown in Fig. 2A, was suggested by the physiology of the
DNLL (Yang and Pollack 1994, 1997) and the pivotal role of
inhibition for temporal representation in IC (Casseday et al. 1994;
Edwards et al. 2007; Hall 1999). In particular, the temporal firing
patterns of cells in the anuran nucleus of the lateral lemniscus (NLL;
G. J. Rose, unpublished data) are consistent with a dis-inhibitory
circuit of this type.

In the dis-inhibition model, the ICN receives fast (AMPA-mediated)
and slow (NMDA-mediated) excitation as well as fast (GABAergic)
inhibition. Both AMPA and NMDA synapses are triggered by the
main afferents with a synaptic weight given by wE and wNMDA,
respectively. The dynamics of an ICN are simulated with Eq. 1
without subthreshold adaptation (a � 0).

To release the ICN from inhibition for short IPIs, the presynaptic
inhibitory cell (LIN, for long-IPI transmission neuron) is modeled to
fire in response to each pulse at slow pulse rates (long IPIs), but only
in a phasic manner at fast pulse rates (short IPIs). The mechanism for
long-interval selectivity in LIN is based on the combination of strong
excitation with delayed inhibition, as described in centers presynaptic
to the IC.

The putative location of LIN is in the anuran homolog of the NLL
(Rose and Wilczynski 1984). As observed in mammalian DNLL
(Yang and Pollak 1997), LIN receives a combination of strong
excitation from the main afferents and disynaptic inhibition through a
relay inhibitory neuron (RI). Both excitation and inhibition are trig-

gered at every pulse, but inhibition is delayed with respect to
excitation.

The response of LINs corresponds to the “pauser” firing pattern,
which has been observed for neurons in the anuran NLL (G. J. Rose,
unpublished observations) and DNLL of bats (Yang and Pollack
1994). They respond in a phasic on-off manner to short IPIs; the
onset-response results from strong excitation that precedes inhibition,
while the offset response is modeled as a postinhibitory rebound.
These firing patterns account simultaneously for the initial transient
inhibition in the ICN (Fig. 1, feature iii), the reset inhibition (Fig. 1,
feature vi) and the inhibition observed after the offset of the pulse
sequence (Fig. 1, feature viii). The dynamics of LIN follows Eqs. 1–4,
without NMDA synapses (wNMDA � 0). Relay inhibition is not
simulated explicitly, but it is represented by pulse-per-pulse inhibition
delayed by 2.5 ms with respect to the afferent excitation.

Note that uppercase W denotes synaptic strength in the interval
selection layer (afferents to LIN) and lower case w denotes synaptic
strength parameters in the counting layer (afferents to ICN). Also note
that in the integrate-and-fire formalism a lower threshold can be
compensated by a lower excitatory synaptic weight.

Short-term plasticity. Previous work (Edwards et al. 2007; Rose et
al. 2011) described an alternative, conceptual model of ICNs that
involves synaptic plasticity (Fig. 2B). In this second connectivity
model, the ICN receives fast inhibition and AMPA-mediated excita-
tion from the primary afferents. The inhibition is delayed with respect
to excitation by 5 ms, and excitation undergoes short-term facilitation.

The synaptic efficacy in Eq. 3 [wj
(E)] was modeled by a constant

weight (wE) times a factor F(t) for the rate dependence. Facilitation of
excitation is modeled with a time-dependent function F(t) that mod-
ifies multiplicatively the synaptic weights (Varela et al. 1997):

wj
(E) � wEF(Tj) (5)

dF

dt
� (1 � F) ⁄ �F (6)

where �F is the facilitation time constant. The variable F is reset to f �
F after a spike arrives at time Tj. The timescale parameter �F is fixed
to 100 ms, identical to the particular time constant for our model of
NMDA synapses (�NMDA). The parameter value is in the range
observed in L2-3 pyramidal cells of the cortex (Varela et al. 1997).
This value was chosen to be sufficiently long to account for the slow
membrane potential increase observed in ICNs with high count
thresholds.

A B

Fig. 2. Schematic illustration of the neural architectures considered for short-pass interval counting. A: counting on dis-inhibition circuit motif. From the main
afferent, a first layer performs interval selectivity: a relay inhibitory neuron (RI) provides disynaptic inhibition (GABAA) to a long interval selective neuron (LIN)
with subthreshold adaptation strength a. In the second layer, the interval-counting neuron (ICN) combines afferent excitation (AMPA and NMDA) with the
interval-selective inhibition from LIN (GABAA). ICN receives inhibition at every pulse for long IPIs but is dis-inhibited for short IPIs. B: network diagram for
a model based on short-term plasticity (STP). Both excitation (AMPA) and inhibition (GABAA) are triggered at every pulse. Either the excitatory or the inhibitory
synapse is dynamic and undergoes substantial short-term plasticity.
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Analysis Methods

Assessing interval selectivity. Interval selectivity was determined
from the simulated response to periodic pulse-sequences containing
ten sound-pulses. We simulated responses of the neural network for
different IPIs between 10 and 100 ms. Either for the LIN or ICN, we
determined if the cell responded to any of the sound pulses after the
third one. If only IPIs greater than a threshold IPI excited the neuron
it was classified as long-IPI selective, or “long-pass.” A cell respond-
ing only to a range of short IPIs was classified as short-IPI selective
or “short-pass.”

LIN firing patterns. Classifications were based on the responses to
an 8-pulse sequence in which a middle interval (MIPI) was twice as
long as the other intervals (Fig. 1C). Responses of LINs at various
times after the start of a pulse sequence were denoted as “transient-
onset” (phasic response at stimulus onset), “resetting” (response after
a gap in the pulse sequence), or “rebounding” (response following the
end of the pulse train). The term “resetting” relates to the capability of
this firing pattern to reset the count in downstream ICNs. None of
these categories are exclusive since for some parameter values the
LIN can be transient, resetting, and produce a rebound action
potential.

ICN count selectivity. The synaptic weights of excitation regulate
the number of sound pulses required for the ICN to elicit an action
potential. We determined such count thresholds by simulating the
counting neuron model and its presynaptic input from the interval
selective layer. When the ICN model produced an action potential, we
stopped the simulation and counted the number of sound pulses
received up to that time.

Mathematical analysis of STD transients. The dynamics of short-
term depression (STD) were analyzed to determine if the phasic
aspect of inhibition can be modeled by STD of pulse-per-pulse
inhibition of the ICN. We did not implement STD in a counting
network; we only tested if it can account for the type of transient
inhibition observed in the experiments (Fig. 1, features iii and vi).

STD of inhibition is assumed to follow a model similar to that for
facilitation (Dayan and Abbott 2001). The synaptic weight is con-
trolled by a depression variable D

wj
(I) � wID(Tj) (7)

where the depression variable relaxes to one on a time constant �D

dD

dt
� (1 � D) ⁄ �D. (8)

After a spike at time Tj the dynamics of the depression variable D
in Eq. 8 is reset to dD. The depression parameter, d, regulates the level
of depression caused by a presynaptic spike. It is varied between 0 and
1, and the time constant �D between 0 and 150 ms. Equation 7
determines the effective synaptic weight.

To determine the conditions that enable STD to be reversed during
a long interval, we use the discrete map formulation of STP. We solve
Eq. 8 for the value of D after a time 	 from an initial condition D0.
This forms the discrete map M	 defined as:

D(	) � 1 � (1 � dD0)e
�	 ⁄�D � M	(D0). (9)

The discrete map is used to obtain an expression for the maximal
conductance amplitude after each presynaptic spike.

We defined a count reset as “effective” if the inhibitory connection
between the LIN and the ICN starts from a depressed state D0 � 0.5
and recovers to at least 0.9 after a time �, such that M�(0.5) � 0.9.
Using the discrete map, the effective reset condition can be written in
terms of the parameters �D and d:

d � 2 � 0.2e
 ⁄�D. (10)

In a similar way, we defined inhibition as being phasic if, starting
from D � 1, a single IPI elicits inhibition that is less than 50% of
maximum (M	 � 0.5). The relation

d � 1 � 0.5e	 ⁄�D (11)

determines the parameters for which short-term depression renders
inhibition phasic.

RESULTS

Schematic of the models for counting intervals that are of
sufficiently short duration are shown in Fig. 2. In both cases,
spikes occur when the number of pulses, presented at optimal
intervals, exceeds a threshold value. In the “dis-inhibitory” circuit
model (Fig. 2A), afferents make excitatory synapses (AMPA- and
NMDA-type) onto ICNs, “long-interval” neurons (LIN) that pro-
vide direct inhibition to ICNs and “relay” inhibitory interneurons
(RI). The RIs, like their excitatory afferent inputs, faithfully spike
in response to each stimulus pulse across the biologically mean-
ingful range of pulse rates (up to �100 pulses/s), and provide
delayed inhibition of LINs. The delayed inhibition from RI pre-
vents firing in LINs for short intervals, a circuit motif that can
perform long-IPI selectivity in centers presynaptic to the inferior
colliculus (Yang and Pollak 1997). For short intervals, ICNs are
released from inhibition; this dis-inhibition enables a relatively
unopposed accumulation of excitatory inputs in the counting
neurons. In the second model (Fig. 2B), excitatory and inhibitory
synapses undergo short-term plasticity, i.e., facilitation and de-
pression, respectively.

We first describe in more detail how the various response
characteristics of short-IPI selective counting neurons (re-
viewed in METHODS) can be explained by the short-IPI counting
network shown in Fig. 2A.

Short-IPI Selectivity

We propose that short-pass ICNs result from an integration
to a threshold that can be vetoed by IPI-dependent inhibition.
For long IPIs, this inhibition counteracts and in fact vetoes the
summation of excitatory events arising from sound pulses (Fig.
3A). For successive short IPIs, however, inhibition of the ICNs
(from LIN) is phasic and is restricted to the onset and offset of
the pulse sequence (Fig. 3B), consistent with early and late
hyperpolarizations observed experimentally (features iii and
viii; Edwards et al. 2007). Consequently, the ICN can fire only
between these episodes of inhibition and after a threshold
number of pulses have occurred. Thus the network presynaptic
to ICN in Fig. 2A simultaneously selects long IPIs and detects
stimulus onset and offset. The strength of excitatory connec-
tions to the ICN determines the count threshold (Fig. 3C).
Small count thresholds require very strong AMPA synapses
whereas large count thresholds require weak AMPA synapses
and stronger NMDA synapses. This relation is shown in Fig.
3E, where the excitatory parameter space that corresponds to
count thresholds of 10–40 are smaller than the regions asso-
ciated with count thresholds 1–10. This indicates that small
count numbers will be encoded more reliably than large count
number in the presence of noise, since a small fluctuation of
EPSP amplitude can change the count threshold. In principle,
variations in the strength of AMPA synapses alone can span all
count thresholds but large counts cannot be represented reli-
ably. The long time constant of the NMDA synapse is essential
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to encode large count-numbers reliably (larger areas for larger
wNMDA in Fig. 3E). Figure 3E also shows that there is a
continuous range of parameter values that result in the same
count threshold. Since the proportion of NMDA and AMPA
components will influence the amplitude of the sustained
depolarization after the pulse train, the model can be tuned to
produce either marked, as in Fig. 1C, or modest, as for some
cells in Rose et al. (2011), sustained depolarization.

Since the synaptic dynamics of AMPA and NMDA synapses
implement a low-pass filter (long-IPI selectivity), the short-pass
properties of the modeled ICN must be inherited from the inhi-
bition. Therefore, it is mainly the dynamics of the inhibitory input
onto ICNs that determines the interval selectivity. Furthermore,
since for large count thresholds the inhibition is brief compared
with the duration of the pulse-train, the slow increase of the
membrane potential results primarily from excitation. The weight
and decay time of the excitatory synapses onto ICN strongly
influence the count threshold; for example small weights and long
decay times result in large count thresholds.

The model is consistent with single-pulse experiments (Figs.
1 and 3D) in which the membrane potential response shows an
immediate, brief depolarization that is followed by a longer
hyperpolarization. In response to a longer sequence of IPIs in
short succession, the transient nature of inhibition from LIN
can, in part, explain the increase in both width and amplitude
of the EPSPs, even when the cell is hyperpolarized (Fig. 3D
and Fig. 1, feature ix). In response to a sequence of pulses
presented with optimal intervals, the decline of inhibition and
additional excitation result in depolarizing EPSPs that are
progressively larger and longer lasting (rounded shape; Fig. 1,
feature vii). This incremental augmentation of EPSP amplitude
and duration can result from NMDA receptor activation on a
background of AMPA-type excitation and residual inhibition.

Interrupted Calls

Remarkably, a gap that is 10–20 ms longer than the optimal
IPI can reset the interval counting process (Edwards et al.

2002; Fig. 1, feature vi). In many cases, the time required for
resetting the interval-counting process is much shorter than that
of the counting itself, e.g., counting more than 10 pulses
separated by 20 ms (Rose et al. 2011) would require a time
constant on the order of 100 ms. This “dichotomy of time
scales” is explained in our model by the distinct patterning of
inhibition vs. excitation, i.e., the release from phasic, early
inhibition and the slow activation of excitation. As noted in the
previous section, larger counting thresholds are associated with
a greater role of the slow activation of NMDA synapses. A
single long-IPI elicits inhibition from LIN and effectively
resets the interval-counting process in the ICN (Fig. 4). As for
uninterrupted calls, it is mainly the dynamics of the inhibitory
input onto ICNs that determines the time course of resetting the
counting process.

Many features of the electrophysiological recordings sum-
marized in Fig. 1 are consistent with the network in Fig. 2A.
Simulations show that if a MIPI is too short to produce a
rebound spike in the LIN but sufficiently long to release LIN
from inhibition, the ICN will receive additional inhibition only

Fig. 3. Simulated responses of LIN and ICN to uninter-
rupted calls. A: response to a pulse sequence with long
IPIs (top black ticks, IPI � 100 ms) in the ICN (black
line) and LIN (blue). B: same as A but for short IPIs
(IPI � 10 ms). Note that the rebound spike in LIN causes
offset-inhibition in ICN. C: weaker excitatory synapses
onto ICN increase the count threshold. D: simulated
responses to 1- to 4-pulse stimuli are stacked vertically.
Responses of LIN (blue traces) show a rebound for more
than two pulses. Responses of ICN when hyperpolarized
by 12 mV show an apparent increase in EPSP amplitude
(black traces, middle). Responses of ICN (black traces,
bottom) reach their minimum with increasing delay as the
number of pulses is increased. E: count thresholds be-
tween 1 and 40 are shown (colormap on the right) as a
function of the excitatory synaptic weights wE and wNMDA.
The steplike appearance of the boundaries in parameter
space is due to the discrete nature of the count thresholds.
Simulations were performed with IPI � 10 ms. Parame-
ters are shown in Table 1, except for C, which used a
smaller synaptic weight wE � 5 to increase the count
threshold to 15.

Fig. 4. Simulated responses to interrupted calls. A: a short interruption (long
interval) in an 8-pulse call (top, each tick corresponds to an excitatory event in
the main afferent) causes a spike in LIN (blue) which hyperpolarizes the ICN
after the pulses resume, resetting its counting process (black, bottom). Call is
made of short intervals (IPI � 10 ms) and a longer middle interval (MIPI �
20 ms). Inhibition is seen after the fifth excitatory event (black arrow). B: for
longer silent gaps (MIPI � 35 ms), LIN now fires a rebound spike before the
fifth pulse arrives. Accordingly, inhibition in the ICN is seen before the fifth
excitatory event (black arrow). Parameter values are shown in Table 1.
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after the call resumes, that is after the 5th EPSP (compare Fig.
4A with Fig. 1, feature vi). For longer interruptions, the LIN
may fire before the call has resumed (compare Fig. 4B with
Fig. 1F), inhibiting the ICN before the fifth EPSP. Thus, our
model of presynaptic inhibition reproduces features ii–iv and
vi–ix, whereas the features i and v were captured by our model
of excitation.

Sensitivity to Model Parameters

To determine if the simulations shown in Figs. 3 and 4
depend on a finely tuned set of parameters, we analyzed the
model dynamics in terms of elements critical to short-IPI
selectivity. Here, the parameters that regulate the firing patterns
are the synaptic weights (WI and WE) as well as the subthresh-
old coupling a; the time constants and reversal potentials
remain fixed to typical values (Table 1). Figure 5A shows
regions of different firing patterns observed in response to an
interrupted pulse-sequence as we change the adaptation cou-
pling parameter a and the inhibitory weight, WI, of RI onto
LIN. Sample traces are shown in Fig. 5B for different param-
eter combinations. For a restricted portion of the parameter
space, LIN fires at the onset, after the interruption, and after the
termination of the pulse sequence in a manner consistent with
our simulations in Figs. 3 and 4.

Different values of the coupling parameter, a, and inhibitory
weight, WI, of RI on LIN also determine the range of IPIs that
elicit response in LIN. Across the parameter space, LIN re-
sponds selectively to intervals shorter than an IPI threshold.
Figure 5C shows the contour lines of IPI thresholds 10, 20, 30,
40, 50, and 75 ms in parameter space. Increasing the subthresh-
old adaptation allows LIN to respond to shorter IPIs (faster
pulse rates), thereby restricting responses in the ICN to just the
shortest IPIs, i.e., strong selectivity for very fast pulse rates.
The regime of long-IPI selectivity (leading to short-IPI selec-
tive ICN) is very large and covers most of the parameter space

(Fig. 5D). Short-IPI selectivity in ICNs thus appears robust to
changes in parameters.

Short-Term Facilitation of Excitation or Depression of
Inhibition

Next, we tested the hypothesis that some ICNs receive
rate-dependent excitation that interacts with a steady inhibition
(Edwards et al. 2007; Rose et al. 2011). This hypothesis was
motivated by the potentially crucial role of short-term plasticity
for interval selectivity (Buonomano and Merzenich 1995;
Buonomano 2000). Here, an ICN receives pulse-per-pulse
inhibition and facilitating excitation using a known dynamical
model of short-term facilitation (without NMDA, see Compu-
tational Modeling; Fig. 2B).

There are only three parameters in this STP model: the
baseline synaptic weight wE, the facilitation time constant �F
and the facilitation jump f (see METHODS). The facilitation time
constant is fixed to a typical physiological value (100 ms). To
generate the onset-inhibition (feature iii), the baseline excit-
atory synaptic weight must remain small. The facilitation must,
therefore, be sufficiently strong to overcome the constant
inhibition. For the ICN to reach threshold after 8 pulses, while
preserving the initial hyperpolarization, the facilitation jump
must be very large (f � 2; Houtman 2012), a parameter value
that appears unrealistically large because its measured values
are smaller than one (Varela et al. 1997). Importantly, this
simple model cannot show repolarization after a long interval
has occurred (feature vi), as illustrated in Fig. 6. Taken to-
gether, these results suggest that STP is not strongly at play in
allowing excitation to overcome inhibition.

We consider, last, if short-term depression (STD) of pulse-
per-pulse inhibition could be sufficient for generating the
patterns of membrane potential fluctuations seen in recordings
(Fig. 1). Depression of inhibition, coupled with weak excita-
tion, could produce the transient hyperpolarization that is

A B

C D

20 40 60 80 100
IPI [ms]

d

c

b

a

Fig. 5. Parameter space for the dynamics of LIN. A:
parameter space for different subthreshold adaptation a
and inhibitory weight. The response to 8-pulse sequences
interrupted after the fourth pulse are classified as resetting
(cyan, a thin strip at the top of the white region), transient
(magenta), resetting and transient (blue), resetting and re-
bound (peach), or resetting, rebound and transient (green).
Parameters labeled b were used to generate Figs. 3 and 4. B:
simulated membrane potential (black lines) in response
to an interrupted call (IPI � 10 ms, MIPI � 20 ms, black
ticks, top) for the four sample parameter sets (a–d)
shown in A. Spikes appear as sharp reset after the
membrane potential has reached the threshold (red
dashed lines). C: parameter space showing the minimum
IPI for eliciting a sustained response in the LIN (IPI
threshold). D: interval selectivities for the four sample
sets of parameter values shown in C. The black (blue)
bar shows the IPIs for which 10-pulse sequences elicit a
response in the ICN (LIN).
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observed (features iii, vi, and viii). However, STD of inhibition
fails to account for the hyperpolarization seen after the end of
a pulse train (feature viii) because the inhibitory synapses have
undergone depression (not shown). Can STD of inhibition
alone also explain the inhibitory transient observed after a
longer MIPI (feature vi)? We have analyzed STD mathemati-
cally (see Analysis Methods) and found that the regions of
parameter space associated with an initial transient are mark-
edly separate from the regions for which inhibition could
recover after an IPI twice the baseline IPI (Fig. 7). The
depression time constant typically observed for inhibitory
synapses (�D � 30 ms, Hefft et al. 2002; Kramer et al. 2014)
can produce transient inhibition but not recovery of inhibition
after a short interruption.

Consequently neither STF of excitation nor STD of inhibi-
tion captures features vi, vii, and viii. We conclude, therefore,
that the model shown in Fig. 2B, when considering STF of
excitation or STD of inhibition, is insufficient for generating
the experimentally observed results: unconventional types of
presynaptic facilitation and depression would be required (Ed-
wards et al. 2007; Houtman 2012). The dis-inhibitory motif of
Fig. 2A captures these features.

DISCUSSION

We have presented a novel neural architecture that is able to
reproduce experimental observations of interval counting and

interval selectivity of ICNs in anuran IC. These results are
discussed in three parts. First we consider the neural bases for
interval counting. Then we discuss the neural bases for interval
selectivity. We close with experimentally testable predictions.

Neural Bases for Interval Counting

The ability of animals to count and integrate events or
objects and its underlying mechanisms, including the possible
existence of a dedicated “number sense,” is a topic of much
recent fascination and research interest (Dehaene 1997; Nieder
and Dehaene 2009). For acoustic signals, where elements that
are to be counted appear over time, ICNs can encode numer-
osity of sound pulses.

A neuronal model for encoding numerosity has been pro-
posed for counting static visual objects by Dehaene and Chan-
geux (1993). This McCulloch-Pitts-type network has three
layers: one to detect features, another to sum the activity of the
first network and compare it to various thresholds, and a third
to signal numerosity. Conceptually, ICNs belong to the second
layer since they implement a count threshold, not strict numer-
osity. Combining the interval-counting network motif with the
layered structure of Dehaene and Changeux (1993) or Gross-
berg and Repin (2003) suggests a simple, biologically plausible
process for counting objects in space and time. It is also
possible that the information relevant for mate selection is
decoded directly from the counting neurons, without ever
representing numerosity in the strict sense.

Reliably counting a large number of pulses requires an
accumulating process with a slow time course. In our model,
this slow time course originated from NMDA synapses. Im-
portantly, the contribution of NMDA-type synaptic transmis-
sion to late responses in IC neurons is supported by in vitro and
in vivo recordings (Kelly and Zhang 2002). Other intrinsic
biophysical processes that could contribute to prolonged re-
sponses and influence count threshold include T-type calcium
currents, slow sodium currents, and network processes. It is
well known that a recurrent excitatory network harbors a
“reservoir of time constants” (Bernacchia et al. 2011; Buono-
mano 2003; Buonomano and Maas 2009; Maass et al. 2002),
yet it is not clear how recurrent connections would account for
the effects of pharmacological removal of inhibition (Edwards
et al. 2007) and for onset inhibition (feature iii). Further
experiments are required to determine which of these processes
underlies the slow accumulation associated with counting in
ICNs. Also, further work could determine the robustness of our

Fig. 6. Simulations of STP model (Fig. 2B) compared with experimental
recordings. Left column shows membrane potential recordings of ICNs (as in
Fig. 1). Right column shows simulations of model depicted in Fig. 2B with
short-term facilitation of excitation and pulse-per-pulse inhibition. Calls with
IPI � 10 ms are interrupted by MIPI � 15 ms (top), 20 ms (middle), and 35
ms (bottom). The arrows indicate the EPSP associated with the fifth sound
pulse. Model parameters are shown in Table 1.

Fig. 7. Short-term depression cannot explain reset
inhibition. A: parameter space for short-term de-
pression. The parameters implementing an initial
transient correspond to the shaded area (Eq. 11)
and the parameters for synaptic recovery after a
MIPI correspond to the hatched area (Eq. 10,
IPI � 15 ms, MIPI � 30 ms). B: conductance
time course gI from LIN onto ICN simulated with
short-term plasticity according to sample param-
eters shown in A (arbitrary vertical scale). The top
row displays synaptic spike times as vertical bars
(IPI � 10 ms, MIPI � 20 ms).
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proposed interval selectivity mechanism to both intrinsic noise
and acoustic background.

Neural Bases of Interval Selectivity

Given their central importance in motor planning and speech
recognition, the neural mechanisms for processing temporal
information have received considerable theoretical attention
(Konishi 1985; Mauk and Buonomano 2004). Early theoretical
analyses have suggested additional elements such as delay
lines (Jeffress 1948; Tank and Hopfield 1987), coincidence
detection mechanisms (Poggio and Reichardt 1973), or dedi-
cated timekeeping mechanisms (Braitenberg 1967; Church
1984; Creelman 1962; Meck 2006; Roberts 1981; Treisman
1963). These models do not incorporate inhibition.

We note two instances where feedforward inhibition con-
tributes to temporal feature extraction. We discuss, first, the
duration-tuned neurons (DTNs) in auditory midbrain (Aubie et
al. 2009, 2012; Casseday et al. 1994; Covey et al. 1996; Leary
et al. 2008; Sayegh et al. 2011). Long-pass DTNs are modeled
by a sustained excitation overcoming an inhibitory transient.
This gradually decreasing but sustained inhibition is modeled
by Aubie et al. (2009) with spike-frequency adaptation, which
is absent in our model of interval selectivity. Band-pass dura-
tion-selectivity, which favors responses to midrange durations,
is thought to result from inhibitory rebound combined with a
delayed excitation. Short-pass DTNs are thought to elicit a
response only when a delayed onset excitation arrives after the
termination of sustained inhibition. The inhibition of DTN is
constant during the presentation of the stimulus for the short-
pass and the mid-pass, but not for the long-pass DTNs. For the
long-pass DTNs, inhibition is sustained but gradually decreas-
ing in intensity. Therefore the central role of stimulus-depen-
dent release from inhibition, i.e., dis-inhibition, in our model is
distinct from Aubie et al. (2009).

A second type of temporal feature is the interaural time
difference (ITD) encoded in the mammalian auditory hindbrain
(Grothe 2003). In this case, ipsilateral inhibition hinders re-

sponse to large ITDs and contralateral inhibition hinders re-
sponse to small ITDs. Inhibition appears to sharpen the sub-
millisecond ITD tuning curve (Grothe 2003). This is similar to
the role of inhibition proposed here. One of the predictions of
our model is that blocking inhibition to the ICNs should
eliminate their IPI selectivity. Together these results suggest a
computational role for precisely timed inhibition, a view that
arises also in other modalities (Berman and Maler 1998; Taylor
et al. 2000).

Our results can be contrasted with the hypothesis of Buono-
mano and Merzenich (1995) regarding the biophysical basis for
interval selectivities in the millisecond range. Their hypothesis
contained four central elements: random excitatory connec-
tions with Gaussian distribution of weights, layered feedfor-
ward excitation, slow disynaptic inhibition [or depressing in-
hibition as in Buonomano (2000)], and short-term plasticity.
Short-term plasticity is crucial to extend the sensitivity of their
network from 5–15 ms to hundreds of milliseconds. Without
short-term plasticity, excitation combined with disynaptic in-
hibition can select intervals in the range of 5–15 ms, as shown
here. Combining STP with the dis-inhibitory circuit would
enhance interval selectivities. Our dis-inhibitory circuit motif
explains interval selectivity more parsimoniously, but further
work will be needed to determine to what extent short-term
plasticity is crucial to the short interval selectivity observed in
neurons of the auditory midbrain.

The disynaptic inhibition network motif (Fig. 2A) is a
recurring feature of diverse brain areas including neocortex,
cerebellum, hippocampus, and amygdala (Bruno 2011). Tha-
lamic input to the cortex, for instance, often consists of volleys
of action potentials that provide input to a network motif
consistent with our LIN network in Fig. 2A (Beierlein et al.
2003; Bruno 2011). The same network motif was hypothesized
to gate the flow of information in recurrent networks (Krem-
kow et al. 2010; Vogels and Abbott 2009). The new compu-
tational properties discussed in this article may contribute to
the neural computations outside of the midbrain.

Fig. 8. Simulated pharmacological blockade of circuit
components. A: blockade of excitation onto ICN. Top
traces show the responses to long IPIs (IPI � 100 ms).
Middle traces show responses to short IPIs (IPI � 10
ms). Bottom traces correspond to a short interruption
after the fourth pulse (MIPI � 20 ms). B: as in A but
for the blockade of inhibition onto ICN. C: as in A but
for the blockade of inhibition onto LIN. Pharmacolog-
ical blockade is simulated by putting the relevant
synaptic weight to zero without altering other param-
eter values.
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Predictions

In our model, the delayed release of inhibition onto ICNs
that occurs for short IPIs (fast pulse rates) is due to the delayed
inhibitory action of the RI neurons onto the LINs. This time-
dependent release from inhibition at fast pulse rates produces
short-IPI selectivity. This patterning of the inhibition is unlike
any conceptual models of interval counting or duration selec-
tivity previously proposed.

To test this hypothesis, in vivo pharmacological blockade
of excitation in ICNs should reveal a dependence of inhibi-
tion on IPI (Fig. 8A). In short-IPI selective ICNs, we predict
that this inhibition will be phasic at short IPIs, that is,
transient inhibition should be observed at the onset and
offset of the pulse-sequence. Furthermore, our model also
predicts qualitatively different responses for blockade of
excitation onto the ICNs (Fig. 8B) than for blockade of
excitation onto LINs (Fig. 8C).

Researchers have recorded “pauser”-type neurons in the
auditory systems of many animals, including frogs (Condon et
al. 1995), but the functional role of this response phenotype has
remained mysterious. If the putative LINs are located away
from IC, it should be possible to locally block GABAergic or
glycinergic synapses. This should alter the inhibition pattern in
the ICNs. We predict that locally blocking inhibition to the
LINs will result in a tonic firing pattern and inhibition to ICN
at fast pulse rates; without the normal rate-dependent release
from inhibition, counting and short-IPI selectivity will be
precluded (Fig. 8C).

The question of the anatomical localization of the interval-
selective network remains open. One possible location for LIN
is in the superior olive (SO). Studies in the medial SO of bats
show neurons responding at the onset of fast amplitude mod-
ulations and at every cycle of slow amplitude modulations
(Grothe 1994). Some neurons in the medial SO also signal both
the onset and the offset of amplitude modulated sound waves
(Grothe 1994). These responses are consistent with those LIN
for various strengths of subthreshold adaptation. Another pos-
sible location is the nucleus of the lateral lemniscus (NLL).
Neurons in the dorsal NLL of bats show response properties
similar to those hypothesized for the LINs in our models (Yang
and Pollak 1997). In particular, the temporal firing patterns of
NLL neurons in anuran (G. J. Rose, unpublished data) are
consistent with a dis-inhibitory circuit of this type. The NLL
projects directly to the IC and contains neurons that have been
immunocytochemically identified as inhibitory.

According to our model for interval counting, we further
predict that IPI-number thresholds will increase following
pharmacological blockade of NMDA receptors in ICNs. For
ICNs with high count-thresholds, removal of the NMDA com-
ponent should abolish spike responses to long pulse-sequences.
Electrophysiological recordings could also reveal that the long-
lasting response (Fig. 1, feature vii) and the lengthening of
excitatory events with increased number of pulses depend on
NMDA receptors. This block will similarly increase the num-
ber of IPIs required for response after a pause.

Like delay- and duration-tuned neurons, the ICNs—and
particularly their resetting properties—embody a form of tem-
poral receptive field. Our results suggest however that ICNs
show two-dimensional temporal receptive fields, with interval
length and pulse number contributing to their responses. Du-

ration-selective neurons are thought to arise from a preserved
network motif across different species (Aubie et al. 2012).
Further experiments could determine if our interval- and count-
selectivity model applies to interval-selectivity across verte-
brates. Neurons with similar properties have been observed in
pulse-type electric fish (Carlson 2009; Pluta and Kawasaki
2010), and possibly in auditory neurons in IC of mice (Geis
and Borst 2009). Combined with an investigation of the con-
nectivity structure of inhibitory projections to the ICNs, addi-
tional experiments could reveal a firm biological basis for
counting and temporal processing on the millisecond time-
scale.
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