

Phylum Arthropoda

“joint-footed” animals

Phylum Arthropoda

- the largest phylum
- comprises ~80% of all known animals

Arthropoda Characteristics

Triploblastic

Organ level of organization

Bilateral Symmetry

Cephalization

Eucoelomate

Protostome

Similarities Between Arthropods and Annelids

1. Segmentation: Arthropods and Annelids are both segmented

I. Livingstone © BIODIDAC

Annelid

J. Soucie © BIODIDAC

Primitive Arthropod

Similarities Between Arthropods and Annelids

1. Segmentation

Segmentation is reduced in Arthropods through:

1. Disappearance of segments
2. Fusion of segments
3. Structural and functional differentiation of segments

J. Soucie © BIODIDAC

Livingstone, © BIODIDAC

9w/95

Tagmatization: The fusion and specialization of metameric segments.

A developing Arthropod embryo

9u/99

Similarities Between Arthropods and Annelids

2. **Nervous system:** The nervous systems of Arthropods and Annelids consist of a dorsal brain (cerebral ganglion) and a ventral nerve cord with ganglia in every segment.

Annelid Nervous System

Arthropod Nervous System

Segmental ganglion

Similarities Between Arthropods and Annelids

3. Primitive Arthropods have one pair of appendages per segment

Annelid

I. Livingstone © BIODIDAC

Arthropod

9w/03

© BIODIDAC, Livingstone

Similarities Between Arthropods and Annelids

9u/03

© BIODIDAC, Livingstone

- These appendages are said to be serially homologous to one another.
- Serial homology: the correspondence (in the same individual) of repeated structures having the same origin and development.

9w/99

Examples of homologous characters: Vertebrate forelimbs

Examples of analogous characters: bat wings and insect wings

Bat wing

Fly wing

serially homologous
structures

9/4/97

Homology	Serial Homology	Analogy
<ul style="list-style-type: none"> - <u>2</u> individuals - structures have <u>same</u> developmental origin and <u>same or different</u> functions 	<ul style="list-style-type: none"> - 2 structures on <u>1</u> individual 	<ul style="list-style-type: none"> - <u>2</u> individuals - structures have <u>different</u> developmental origins but <u>same</u> function
bat wing & hand	cheliped & swimmeret	bat wing & insect wing

Similarities Between Arthropods and Annelids

1. Segmentation
2. Nervous system
3. Paired appendages

Similarities Between Arthropods and Annelids

- Despite these similarities Arthropods are a much more successful group of animals than Annelids.
- Over 1 million described species of Arthropods (probably 10 million undescribed) compared to 15,000 Annelids.

**What characteristics have
enabled Arthropods to achieve
such great diversity and
abundance?**

1. Exoskeleton

- hardened external cuticle secreted by the epidermis
- composed of chitin; has internal ridges/projections called apodemes to which muscles attach
- benefits: protection without loss of mobility
- limits growth → must be “molted”
- limits ultimate body size because of weight

Ecdysis (molting)

epicuticle

exocuticle

endocuticle

- new endocuticle forms under exocuticle

- exocuticle hardens

- old exocuticle ruptures
- ecdysis → the animal backs out of old exoskeleton

under hormonal control

- molting fluid dissolves old endocuticle
- new exocuticle is secreted

- new exocuticle is formed under the old one

2. Tagmatization and jointed appendages

- The fusion of segments into blocks called tagmata (sing:tagma) that are specialized for certain functions

head composed of 3 segments

94/95

head composed of 5 fused segments

9u/03

Livingstone, © BIODIDAC

9u/02

© BIODIDAC, Livingstone

9u/97

Ivy Livingstone © BIODIDAC

2. Tagmatization and jointed appendages

- usually each tagma has a pair of jointed appendages
- appendages may be highly modified with tagmata being specialized for certain functions (e.g. feeding, moving, sensory)
- appendages are essentially hollow levers that are moved by well-developed striated muscles (flexors and extensors) and are capable of fast, powerful movement

by Livingstone © BIODIDAC

9w/96

Raptorial leg

by Livingstone © BIODIDAC

9w/96

by Livingstone © BIODIDAC

9w/96

Leg of diving beetle

by Livingstone © BIODIDAC

9w/96

Jumping leg

by Livingstone © BIODIDAC

9w/96

Digging leg

by Livingstone © BIODIDAC

9w/96

Honey bee leg

3. Respiratory System

- on land: most have a respiratory system that consists of tubes that deliver air directly to tissues and cells (tracheal system)
- in water: most have gills
- these systems allow for a higher metabolic rate and level of activity

Insect tracheal system

Insect tracheal system

Ivy Livingstone © BIODIDAC

9y/97

4. Sensory System

- similar to Annelida
(ventral nerve cord, cerebral ganglia/brain...)
- possess a variety of sensory organs
(e.g. simple and compound eyes, antennae, chemoreceptors, sensory hairs...)

5. Complex Behavior

- have complex innate behaviors and some are capable of learning
- some even show communication and cooperation

6. Metamorphosis

- most have a larval stage that differs morphologically and behaviorally from the adult
- reduces competition between larvae and adults by allowing them to occupy different ecological niches

Arthropoda Characteristics

Feeding and Digestion

- Free living and parasitic forms

Cymothoa exigua

The only known case of a parasite substituting itself for a host's organ

Arthropoda Characteristics

Digestive System

- complete with regional specialization

Generalized Arthropod Digestive System

Arthropoda Characteristics

Circulatory System

- open circulatory system consisting of a hemocoel (main body-cavity) filled with hemolymph (blood)

pericardial sinus

heart

9w / 99

9/95

Arthropoda Characteristics

Excretion

- usually glands, some classes have specialized excretory systems

Reproduction

- usually sexual and dioecious
- usually internal fertilization

Subphylum
Trilobita

Trilobitomorpha

Subphylum
Chelicerata

Merostomata

Pycnogonida

Arachnida

Subphylum
Crustacea

Branchiopoda

Malacostraca

Copepoda

Ostracoda

Cirripedia

Chilopoda

Diplopoda

Insecta

Subphylum
Uniramia *

Subphylum Trilobita

(Class Trilobitomorpha)

- all are extinct
- the most diverse of the extinct arthropod groups (~5000 genera)

Subphylum Chelicerata

- no antennae
- 6 pairs of appendages:
 - 1st pair = pincer, fang-like chelicerae
 - 2nd pair = pedipalps
 - 3rd – 6th pair = walking legs
- body divided into 2 tagmata

opisthosoma:
consists of the abdomen

prosoma:
consists of the head and all the legs

Body Plan

Subphylum Chelicerata Class Merostomata

Horseshoe crabs have been essentially unchanged for ~250 million years

Class Merostomata

Class Merostomata

Subphylum Chelicerata Class Arachnida

Class Arachnida

spiders, scorpions, ticks, mites, chiggers, daddy longlegs

They usually have several adaptations for life on land:

- book lungs or tracheal system or both
- waxy cuticle

pedipalps

Class Arachnida

- arachnids as parasites
- chiggers (mites) and ticks

Class Arachnida

- arachnids as disease vectors
- Lyme disease is caused by infection with a bacteria that is transmitted by tick bites

Deer tick

Borellia

Subphylum Chelicerata

Class Pycnogonida

- sea spiders
- ~1000 marine species
- males carry the eggs

Subphylum Crustacea

- most are marine, some terrestrial and freshwater
- head has 2 pairs of antennae
- appendages are primitively biramous
(have 2 major branches)
- body divided into 2 tagmata:

cephalothorax:

consists of the head and the thorax

abdomen

Ivy Livingston © BIODIDAC

9/9/97

Subphylum Crustacea

- have mandibles, 2 pairs of maxillae, and 1 pair of legs per segment
- cephalothorax:
 - 2 pairs of antennae
 - mandibles
 - 1st and 2nd maxillae
 - 3 pairs of maxillipeds
 - 5 pairs of walking legs
- abdomen
 - usually has 6 segments
 - # 1-5 have pairs of swimmerets
 - last segment has a pair of uropods and a telson

J. Soucie, © BIODIDAC.

Subphylum Crustacea Class Branchiopoda

- sea monkeys and water fleas
- marine and freshwater
- important zooplankton

Subphylum Crustacea Class Ostracoda

- have a bivalved carapace
- marine and freshwater
- reduced number of appendages

Subphylum Crustacea Class Copepoda

- mainly marine, some freshwater and terrestrial (e.g. mosses...)
- usually the most abundant animal in the plankton
- median eye
- Extremely long first antennae

Subphylum Crustacea Class Cirripedia

- acorn barnacles and gooseneck barnacles
- marine and sessile as adults
- feed with modified appendages called cirri

Class Cirripedia

- modified body form

Class Cirripedia

- often form dense mats
- hermaphroditic with long extendable penis to reach neighbors

Subphylum Crustacea

Class Malacostraca

- largest class of Crustacea (23,000 species)
- marine, freshwater, terrestrial
- shows great diversity

Class Malacostraca

Class Malacostraca
contains the largest
Arthropods

Who are the Arthropods closest relatives ?

- Traditionally, Arthropods were thought to have derived from an Annelid-like ancestor.
- This hypothesis was based mainly on morphological similarities

Neilson 2001

- A new phylogeny based on RNA sequence data has changed our view of the relationship between Arthropods and Annelids (and many other taxa).
- According to this new view, Arthropods are more closely related to some of the pseudocoelomates (e.g. nematodes) than Annelids.

