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The experience of eating is inherently multimodal, combining intraoral gustatory,

olfactory, and somatosensory signals into a single percept called flavor. As foods

and beverages enter the mouth, movements associated with chewing and swallowing

activate somatosensory receptors in the oral cavity, dissolve tastants in the saliva to

activate taste receptors, and release volatile odorant molecules to retronasally activate

olfactory receptors in the nasal epithelium. Human studies indicate that sensory cortical

areas are important for intraoral multimodal processing, yet their circuit-level mechanisms

remain unclear. Animal models allow for detailed analyses of neural circuits due to the

large number of molecular tools available for tracing and neuronal manipulations. In this

review, we concentrate on the anatomical and neurophysiological evidence from rodent

models toward a better understanding of the circuit-level mechanisms underlying the

cortical processing of flavor. While more work is needed, the emerging view pertaining to

the multimodal processing of food and beverages is that the piriform, gustatory, and

somatosensory cortical regions do not function solely as independent areas. Rather

they act as an intraoral cortical hub, simultaneously receiving and processing multimodal

sensory information from the mouth to produce the rich and complex flavor experience

that guides consummatory behavior.
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1. INTRODUCTION

Eating is a multisensory experience (Small et al., 2004; Small, 2012; Prescott, 2015; Spence, 2015).
While extraoral sensory cues (e.g., orthonasal smell, sight, and food-related sounds) can influence
food intake, the perception of flavor originates from core sensations inside the mouth. When a
food or beverage enters the oral cavity, multiple sensory modalities are engaged simultaneously.
The chewing, movement, and swallowing of food activates somatosensory receptors (e.g., tactile,
thermal, proprioceptive, and nociceptive) located throughout the oral cavity and contributes
to the release of volatile molecules (i.e., odorants) that travel retronasally via the oropharynx
to activate olfactory receptors in the nasal epithelium. Meanwhile, non-volatile chemicals (i.e.,
tastants) dissolve in the saliva to activate taste receptors primarily located in the tongue. Largely,
this sensory information is transmitted centrally along separate pathways, but the integration of
these three intraoral senses into a unitary object generates the perception of flavor (Small, 2012). As
a consequence, the intraoral sensations associated with eating are inherently related (Schul et al.,
1996; Sakai and Yamamoto, 2001; Sakai and Imada, 2003; Torregrossa et al., 2012; Blankenship
et al., 2019; Fredericksen et al., 2019; Elliott and Maier, 2020; Maier and Elliott, 2020; McQueen
et al., 2020). Our current understanding of the behavioral and neural relationships between the
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intraoral senses is due in large part to many notable
human studies (Arabie and Moskowitz, 1971; Moskowitz, 1973;
Bartoshuk et al., 1982; Frank et al., 1993; Stevenson et al., 1995;
Dalton et al., 2000; Hollowood et al., 2002; De Araujo et al., 2003;
de Araujo et al., 2013; Prescott et al., 2004; Small et al., 2004,
2008; Veldhuizen et al., 2010; Lim and Johnson, 2011; Veldhuizen
and Small, 2011; Green et al., 2012). Yet, the circuit mechanisms
remain unclear. Recent findings from animal model studies
are beginning to elucidate the neural substrates underlying the
multimodal processing of flavor.

One key question is at which level of the bottom-up sensory
pathways do all three intraoral components of flavor converge?
For a subset of somatic stimuli (i.e., temperature), there is
evidence for taste-somatosensory interactions as early as the
peripheral taste-receptor cell (Talavera et al., 2005). Additionally,
gustatory and somatosensory signals appear to interact at
different subcortical areas along the taste pathway (Beidler, 1954;
Nagaki et al., 1964; Sato, 1967; Ogawa et al., 1988; Travers and
Norgren, 1995; Verhagen et al., 2003; Breza et al., 2006; Wilson
and Lemon, 2013; Li and Lemon, 2019). However, there is little
evidence of direct subcortical interactions with the olfactory
system. Although some neurons in the rat’s nucleus of the solitary
tract (NST) (Van Buskirk and Erickson, 1977; Escanilla et al.,
2015) and parabrachial nucleus (PBN) (Di Lorenzo and Garcia,
1985) are modulated by odors, the source of these olfactory
signals is likely due to cortico-fugal projections rather than direct
input from the olfactory bulb (Escanilla et al., 2015). Given the
findings of a number of recent anatomical and physiological
studies, the more commonly held view is that convergence and
integration of all three intraoral modalities likely occurs at the
level of cortex (Small, 2012).

Therefore, we focus this review on findings gleaned from
studies in rodents, concentrating on the cortical areas known
to process sensory information arising from the mouth. First,
we describe the anatomical features of the three primary
sensory cortical regions subtending flavor sensation (i.e.,
piriform cortex, gustatory cortex, and somatosensory cortex),
paying particular attention to studies examining the direct
corticocortical connectivity between them. Second, we review
neurophysiological findings detailing how the three cortical
regions represent and process their unimodal component of
flavor. Lastly, we discuss the evidence from recent studies
highlighting the capacity of the three sensory cortical regions to
process multimodal information related to flavor. Throughout
this review, we will emphasize the critical gaps in knowledge
that require further investigation to better understand the neural
substrates underlying the multimodal processing of flavor.

2. ANATOMY AND CONNECTIVITY OF THE
THREE PRIMARY SENSORY CORTICAL
REGIONS

Volatile chemicals, odorants or odors, reach olfactory sensory
neurons localized in the main olfactory epithelium via two
routes. Orthonasal olfaction occurs when odors are inhaled
through the nares directly into the nasal cavity (e.g., when

smelling a flower). Retronasal olfaction occurs when odors travel
from the mouth, passing through the orophyranyx, activate
olfactory receptors in the nasal epithelium (Rozin, 1982;Masaoka
et al., 2010; Gautam and Verhagen, 2012). Although olfactory
signals generated by either route are transmitted to the main
olfactory bulb by cranial nerve I, retronasal olfaction is a key
component for the perception of flavor (Small, 2012; Small
and Green, 2012; Bartoshuk et al., 2019). The olfactory system
is unique among the senses because sensory signals reach the
cortex prior to being processed by the thalamus (Shepherd,
2005). In rodents, output neurons from the main olfactory bulb
project to a number of cortical areas important for olfactory-
dependent behaviors, including the anterior olfactory nucleus
(Brunjes et al., 2005), olfactory tubercle (Wesson and Wilson,
2011), entorhinal cortex (Witter et al., 2017), and piriform cortex
(Haberly and Price, 1977; Igarashi et al., 2012). Often called
the primary olfactory cortex, the piriform cortex is located on
the ventrolateral surface of the brain (Figure 1), immediately
ventral to the insular cortex, and receives the majority of
projections from the main olfactory bulb (Ghosh et al., 2011).
Phylogenetically one of the oldest cortical structures, the piriform
cortex is a three-layered paleocortex (Rowe and Shepherd,
2016). Layer I contains the apical dendrites of the pyramidal
neurons in piriform cortex, the axons of projection neurons
from the olfactory bulb, and corticocortical association fibers,
layer II consists primarily of pyramidal cell bodies, and layer
III is composed of deep pyramidal cells, pyramidal cell basal
dendrites, a variety of interneurons, and is densely innervated
by corticocortical association fibers (Haberly, 2001; Neville and
Haberly, 2004). In rodents, the piriform cortex is traditionally
divided into functionally distinct anterior (aPC) and posterior
(pPC) subregions due to differences in their cytoarchitecture,
connectivity, and representation of olfactory signals (Wilson
and Sullivan, 2011). The anterior piriform cortex is densely
innervated by projections from the main olfactory bulb, while
projections from the bulb are reduced and supplanted by
association fibers in the posterior piriform cortex (Haberly and
Price, 1977; Neville and Haberly, 2004). Neurons within each
subregion form extensive connections amongst themselves, but
connections between the anterior and posterior subregions are
remarkably “one-way.” Neurons from the anterior piriform
cortex form extensive connections with neurons in the posterior
piriform cortex, but few neurons from posterior piriform cortex
project back to the anterior piriform cortex (Haberly, 2001;
Neville and Haberly, 2004).

The gustatory system is responsible for detecting and
identifying specific chemicals (sugars, salts, acids, alkaloids,
and amino acids) present in foods and beverages. In rodents,
information related to the chemical identity and the hedonic
properties of taste stimuli is carried by cranial nerves V, VII,
XI and first processed by two brainstem nuclei, the nucleus
of the solitary tract (NST) and parabrachial nucleus (PBN),
before ascending to the gustatory thalamus (the parvicellular
portion of the ventroposteromedial nucleus of the thalamus—
VPMpc) (Cechetto and Saper, 1987), and ultimately reaching
the gustatory cortex (GC) (Spector and Travers, 2005; Carleton
et al., 2010; Maffei et al., 2012; Ohla et al., 2019; Vincis and
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FIGURE 1 | Schematic representations of the three intraoral cortical regions in the mouse. (A) A lateral view displaying the relationship between the

oral-somatosensory cortex, gustatory cortex, and olfactory cortex. The red dotted lines indicate the position of two key landmarks: the rhinal fissure (r.f.) and the

middle cerebral artery (m.c.a.). The gray dotted arrows represent the corticocortical connections between regions. aGC, agranular gustatory cortex; dGC, dysgranular

gustatory cortex; gGC, granular gustatory cortex; mca, middle cerebral artery; aPC, anterior piriform cortex; pPC, posterior piriform cortex; rf, rhinal fissure; S1,

somatosensory cortex, area 1; S2, somatosensory cortex; area 2. (B) A coronal section of the mouse brain containing the oral-somatosensory cortex, gustatory

cortex, and piriform cortex. The solid gray lines indicate the divisions between the cortical layers. Note the loss of layer 4 in the dysgranular gustatory cortex. The

dotted gray line in the agranular gustatory cortex represents the fading boundary between layer 5 and layer 6, while the red arrow highlights the anatomical position of

the rhinal fissure (r.f.). Black bar is 1mm.

Fontanini, 2019; Gehrlach et al., 2020). The gustatory cortex is
located within the insular cortex on the lateral surface of the
brain, beginning dorsal to the rhinal vein and centered around
the middle cerebral artery (Allen et al., 1991; Carleton et al.,
2010; Maffei et al., 2012) (Figure 1). It is divided into three
cytoarchitecturally distinct subdivisions along its dorso-ventral
plane: the granular, dysgranular, and agranular gustatory cortex
(Allen et al., 1991; Maffei et al., 2012; Vincis and Fontanini, 2019).
These subdivisions are defined by the gradual disappearance
of the granular layer (i.e., layer IV) and a reorganization of
the laminar structure. Where the granular gustatory cortex is
identified by its traditional 6-layered neocortical architecture, the
dysgranular subdivision is characterized by a progressively fading
layer IV, and the agranular subdivision, being completely void of
a layer IV, is defined by its tri-laminar paleocortical architecture
(Cechetto and Saper, 1987; Shi and Cassell, 1998b; Maffei et al.,
2012). Although differently structured, these subdivisions are
highly interconnected with anatomical tracing studies identifying
feedforward and feedback interconnectivity between all of the
subdivisions of the gustatory cortex (Shi and Cassell, 1998b).

Somatosensation of the face and mouth relies on a number of
cranial nerves to convey sensory information relative to touch,
temperature, proprioception, and pain. In the brainstem, the
spinal trigeminal nucleus and the principal sensory trigeminal
nucleus receive somatic sensory input from cranial nerves V,
VII, IX, and X, thus representing somatic sensory signals from
the entire oral cavity and surface of the face (Erzurumlu and
Killackey, 1979; Capra and Dessem, 1992). The oral somatic
signals are then transmitted to the ventral posteromedial nucleus
and the posteromedial complex of thalamus before reaching
the oral-somatosensory cortex (Carvell and Simons, 1987;

Spreafico et al., 1987; Liao and Yen, 2008; Ohno et al., 2012).
Anatomical and functional studies confirmed that the cortical
area representing somatosensory inputs from the tongue and
the intraoral region are located on the most lateral portion of
the somatosensory cortex, rostral to the nose and the whisker
barrel fields (Remple et al., 2003; Song et al., 2018; Mayrhofer
et al., 2019) and immediately dorsal to the gustatory cortex
(Accolla et al., 2007; Nakamura et al., 2015) (Figure 2A). The
overall topography and connectivity of the primary (SI) and
secondary (SII) somatosensory cortical regions has been mapped
precisely in rodents (Chapin and Lin, 1984; Liao and Yen,
2008). Historically, transmission of somatosensory signals from
the periphery was thought to follow a hierarchical scheme, in
which sensory information is processed sequentially from the
thalamus to SI and then to the “higher-order” SII (Koralek
et al., 1990; Fabri and Burton, 1991; Brett-Green et al., 2003,
2004; Jones, 2012). However, evidence from a number of rodent
studies supports an equivalent hierarchy between SI and SII,
where somatic inputs are processed in parallel rather than serially
(Carvell and Simons, 1986; Heppelmann et al., 2001; Menzel
and Barth, 2005; Liao and Yen, 2008). In this scenario, sensory
information is rapidly transmitted to SI, but also to SII within
a short latency (milliseconds) (Kwegyir-Afful and Keller, 2004;
Benison et al., 2007; Hubatz et al., 2020). For these reasons, we
define both SI and SII as oral-somatosensory cortex, although we
will highlight important differences between the two areas when
especially pertinent.

The confluence of the olfactory, gustatory, and oral-
somatosensory pathways supports the hypothesis that
convergence and integration of all three intraoral signals occurs
at the level of the primary sensory cortical regions (Small, 2012).
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FIGURE 2 | (A) In vivo intrinsic optical imaging of the oral-somatosensory cortex and gustatory cortex; note that the cortical region responding to taste stimuli is

located ventral to the area activated by the tactile stimulation of the tongue. (B) The single-unit activity of a neuron in the gustatory cortex in response to the intraoral

delivery of individual taste stimuli (sucrose, NaCl, citric acid, and quinine) and individual odors dissolved in water (isoamyl acetate and benzaldehyde). (C) The

normalized activity of a neuron in the posterior piriform cortex in response to orthonasally presented odors (apple, cherry, and clean air) and intraorally delivered taste

stimuli (sucrose, citric acid, quinine, and water). Panels adapted from (A) Copyright (2007) Society for Neuroscience (Accolla et al., 2007), (B) (Samuelsen and

Fontanini, 2017), and (C) (Maier et al., 2012).

In rodents, these cortical areas are located on the ventro-lateral
surface of the brain, with the oral-somatosensory cortex most
dorsal, the piriform cortex most ventral, and the gustatory
cortex sandwiched in between (Figure 1). Specifically, the dorsal
component of the rodent’s gustatory cortex, the granular area,
lies just ventral to somatosensory areas (SI and SII) representing
oral regions (Yamamoto et al., 1981; Kosar et al., 1986; Cechetto
and Saper, 1987; Accolla et al., 2007; Nakamura et al., 2015),
while its most ventral component, the agranular area, is located
immediately dorsal to the piriform cortex (Carleton et al., 2010;
Maffei et al., 2012). In addition to their physical proximity,
their substantial corticocortical connectivity provides further
anatomical evidence for interactions when processing intraoral
signals. Both the anterior and posterior piriform cortex form
dense reciprocal connections with the agranular portion of the
gustatory cortex (Krushel and van Der Kooy, 1988; Datiche and
Cattarelli, 1996; Shi and Cassell, 1998a,b; Johnson et al., 2000;
Sewards and Sewards, 2001). Furthermore, studies by Shi and

Cassel provided detailed analyses of the neural efferents from
the different subdivisions of the gustatory cortex demonstrating
that corticocortical projections from the granular/dysgranular
gustatory cortex project to the oral-somatosensory cortex
(both SI and SII) (Shi and Cassell, 1998b). Another of their
studies showed that these corticocortical connections are not
unidirectional, with the different divisions of the gustatory
cortex receiving projections from the somatosensory cortex
(Shi and Cassell, 1998a). To the best of our knowledge, we are
unaware of any anatomical studies showing direct corticocortical
projections from either the anterior or posterior piriform cortex
to the intraoral field of the somatosensory cortex. However,
in a recent anatomical tracing experiment using pseudo rabies
virus, Wang et al. (2020) found that a subset of neurons in
the somatosensory cortex projects to the piriform cortex,
preferentially targeting the posterior region (Wang et al., 2020).
Whether these monosynaptic connections originate specifically
from the oral-somatosensory cortex remains unclear.
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3. UNIMODAL PROCESSING

Traditionally, most sensory neuroscience studies employ
unimodal stimuli to investigate sensory processing. These
findings provide the foundation for probing the circuit
mechanisms underlying the multimodal processing of intraoral
stimuli subtending the perception of flavor. In this section, we
discuss experimental findings from rodent studies describing
how the features of unimodal stimuli are represented by the
piriform, gustatory, and somatosensory cortical regions, focusing
on intraoral stimulation where available.

Most studies investigating the cortical processing of olfactory
signals have focused on understanding how orthonasal odors
are represented by the piriform cortex (Wilson and Sullivan,

2011). Furthermore, due in part to the density of input from
the main olfactory bulb, these studies primarily focused on the

anterior piriform cortex (Wilson, 1998, 2000, 2003; Rennaker
et al., 2007; Zhan and Luo, 2010; Miura et al., 2012; Bolding
and Franks, 2017; Iurilli and Datta, 2017). Multiple experimental
approaches in rodents, including odor-evoked immediate early
gene expression, imaging, and electrophysiological recordings,
show that responses to odors are spatially distributed across
ensembles of neurons in the piriform cortex without regard
to chemotopy (Illig and Haberly, 2003; Rennaker et al., 2007;
Stettler and Axel, 2009; Roland et al., 2017; Pashkovski et al.,
2020). Extracellular recordings in anaesthetized and alert rodents
revealed that neurons in the anterior piriform cortex represent
the chemical identity of odors (Wilson, 1998, 2000, 2003;
Rennaker et al., 2007; Zhan and Luo, 2010; Miura et al.,
2012), with ensembles of activated neurons capable of accurately
classifying odors within the first 100ms of inhalation (Bolding
and Franks, 2017; Iurilli and Datta, 2017; Blazing and Franks,
2020). Furthermore, odor-evoked activity in the anterior piriform
cortex represents a mixture of multiple odors as distinct from
its individual odor components (Wilson, 2000, 2003; Kadohisa
and Wilson, 2006; Wilson et al., 2020). Where neurons in the
anterior piriform cortex represent odor identity (e.g., orange),
neurons in the posterior piriform cortex represent the general
quality/category of an odor (e.g., citrus) (Litaudon et al., 2003;
Kadohisa and Wilson, 2006; Wilson et al., 2020) and may be
involved in associating odors with stimulus values (Calu et al.,
2007). The development of multiphoton imaging has confirmed
many of the coding properties of piriform cortex described by
single-unit electrophysiology studies (Stettler and Axel, 2009;
Roland et al., 2017; Pashkovski et al., 2020). Recently, a study by
Pashkovski et al. (2020) employed multi-photon imaging of the
posterior piriform cortex in “wakeful” mice to demonstrate that
the chemical representation of odors provided by the olfactory
bulb is transformed to cluster together representations of related
odors in layer 3 (and in layer 2 to a lesser extent) of the
piriform cortex. While these studies provide elemental insight
into the neural processing of the piriform cortex, the lack of
studies examining retronasal olfaction overlooks a key aspect of
flavor perception.

Retronasal olfaction is a fundamental component of flavor
perception (Murphy et al., 1977; Rozin, 1982; Lim and Johnson,
2011) and, to our knowledge, only one study has examined

how neurons in the piriform cortex represent retronasal odors
in behaving rats (Maier, 2017). In this study, Maier reported
that the intraoral delivery of odors dissolved in water elicited
variable and extended dynamic responses over a 2 s time course
in the posterior piriform cortex. In a subset of recordings,
they also probed how odor-evoked responses differed when
delivered either orthonasally or retronasally. While they found
that some individual neurons in the posterior piriform cortex
showed differences between the mode of delivery, there was
no difference at the population level. Although the relatively
small data set (13 neurons making 26 neuron-odor pairs)
precludes definitive interpretation, these findings reveal the
intricacy of olfactory processing and underscores the necessity of
investigating the cortical mechanisms underlying themultimodal
processing of flavor.

Over the last 40 years, multiple studies have investigated the
taste response profile of cortical neurons. While it is important
to highlight that taste-responsive neurons in the gustatory cortex
are often multimodal (see the section 4), these studies showed
that neurons in the gustatory cortex represent the identity and
hedonic value of taste stimuli. Neurophysiological data obtained
from extracellular recordings in anaesthetized and alert rodents
highlight the presence of both narrowly-tuned neurons (those
modulated by one taste quality) and broadly-tuned neurons
(those modulated by multiple taste qualities) (Yamamoto et al.,
1981; Kosar et al., 1986; Ogawa et al., 1992; Katz et al., 2001;
Stapleton et al., 2006; Jezzini et al., 2013; Levitan et al., 2019;
Bouaichi and Vincis, 2020; Dikecligil et al., 2020), with the
latter being the majority in awake conditions (Katz et al., 2001;
Stapleton et al., 2006; Samuelsen et al., 2012, 2013; Jezzini et al.,
2013; Levitan et al., 2019; Bouaichi and Vincis, 2020). Studies
in alert rodents, receiving taste stimuli either via an intraoral
cannula (IOC) or by licking a spout, emphasized the importance
of the temporal dynamics of taste-evoked activity. For example,
the intraoral delivery of taste stimuli evokes different epochs in
firing rates during the first 2.5 s. In this context, the neural activity
first represents the presence (~0–250 ms), then the identity
(~250–750 ms), and finally the hedonic value of taste stimuli
(Katz et al., 2001; Fontanini and Katz, 2006; Jones et al., 2007;
Grossman et al., 2008; Piette et al., 2012; Sadacca et al., 2012;
Jezzini et al., 2013; Samuelsen et al., 2013; Levitan et al., 2019;
Mukherjee et al., 2019). In addition, studies in which rodents
lick a spout to receive taste stimuli revealed additional complex
and rich temporal dynamics related to licking rhythmicity in
the gustatory cortex (see the section 4) (Stapleton et al., 2006;
Gutierrez et al., 2010; Bouaichi and Vincis, 2020).

Beyond the temporal properties of single neurons, multiple
groups have investigated whether taste responses in the gustatory
cortex are spatially organized in a chemotopic fashion. Optical
imaging studies in anesthetized rodents have reported discrepant
findings. One fluorescent-imaging study, using a calcium-
sensitive dye (Oregon Green) in anaesthetized mice (Chen et al.,
2011), reported that the superficial layers of the gustatory cortex
are organized in a strict chemotopic map; where taste stimuli
activated well-separated clusters (up to 1.5mm apart) of narrowly
tuned neurons (hot spots), interposed by large cortical areas
void of activity. Conversely, a study in anaesthetized rats using
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intrinsic imaging (Accolla et al., 2007) and one in anaesthetized
mice using calcium imaging (GCaMP6s) (Fletcher et al., 2017)
showed an extensive degree of overlap in the response to
different taste qualities in the gustatory cortex; where the spatial
organization of taste responses showed a continuous distribution
lacking discrete anatomical clustering and no unresponsive
areas. These latter observations were confirmed by calcium
imaging (GCaMP6s) studies in awake mice (Livneh et al., 2017;
Chen et al., 2021), which reported that taste responses in
the superficial layers of the gustatory cortex show neither a
large-scale (millimeters) nor a fine-scale (tens of micrometers)
topographical organization. Few experiments have investigated
the intracortical circuitry of the gustatory cortex. Although these
studies denote potential differences in responsiveness across
subdivisions (Kosar et al., 1986; Ogawa et al., 1992) (but see
Livneh et al., 2017), across layers, and between neuron types
(classified based on physiological properties) (Yokota et al., 2011;
Dikecligil et al., 2020), significantly more work is required to
further address the circuit properties of the gustatory cortex.

Compared to the piriform and gustatory cortical regions, less
information is available on the response properties of the oral-
somatosensory cortex. Indeed, while the whisker barrel field
(i.e., region of the somatosensory cortex that processes tactile
signals from the whisker pad) has been extensively studied,
few experiments have investigated the cortical organization of
somatic inputs from the oral cavity. Early electrophysiological
studies in anesthetized rats provided the first experimental
evidence of intraoral tactile-evoked neural activity within the
lateral somatosensory cortex (Welker, 1971; Yamamoto et al.,
1981; Chapin and Lin, 1984; Kosar et al., 1986). Of particular
interest is a study performed by Remple et al. (2003), where they
used a microelectrode mapping technique to carefully investigate
the topographical organization of the rat’s lateral somatosensory
cortex in response to somatic stimulation of multiple intraoral
structures. They observed a somatotopic organization in which
the cortical areas responding to the dental pulp of lower and
upper incisors flanked the region receiving inputs from the
tongue/inner mouth. Interestingly, these regions extend along
the anterior-posterior axes and, for the most part, are located
just dorsal to the gustatory cortex. These in vivo observations
were later confirmed by multiple research groups. In 2007,
Accolla et al. performed intrinsic imaging in the lateral cortical
region encompassing both the rat’s gustatory cortex and oral-
somatosensory cortex (Accolla et al., 2007). While their main
focus was on taste-evoked responses in the gustatory cortex,
they also performed control experiments probing cortical activity
in response to tactile stimulation of the tongue. Similar to the
findings of Remple et al., Accolla and colleagues (Figure 2A)
showed that the tongue cortical field is located in the oral-
somatosensory cortex, just dorsal to the gustatory cortex. More
recently, two studies in anesthetized rats, provided deeper
insight into the representation of somatic sensory signals by the
oral-somatosensory cortex. Nakamura et al. (2015) performed
extracellular recordings and imaging of voltage sensitive dye to
probe the neural responsiveness and topographical organization
of the somatosensory cortex during the electrical stimulation of
multiple extraoral and intraoral regions (Nakamura et al., 2015).

Where Clemens et al. (2018) used whole-cell recordings to
examine post-synaptic responses to tactile and thermal stimuli
in the oral-somatosensory cortex (Clemens et al., 2018). These
studies expanded upon the data obtained by Remple et al. and
verified the location of the oral-somatosensory region, with the
tongue field located in between the mandibular incisor andmolar
responsive areas.

4. MULTIMODAL PROCESSING

Traditional theories of multisensory integration propose that
information from different sensory modalities is first isolated and
processed by the primary sensory cortical regions before being
integrated by higher-order areas (Felleman and Van Essen, 1991).
This hierarchical view is being challenged by recent findings
showing that corticocortical connections between sensory areas
modulate responses to multimodal stimuli at the single-unit
level in visual cortex (Iurilli et al., 2012; Ibrahim et al., 2016;
Meijer et al., 2017; Chanauria et al., 2019), auditory cortex
(Atilgan et al., 2018), and somatosensory cortex (Sieben et al.,
2013; Stehberg et al., 2014; Bieler et al., 2017). In this section,
we discuss experimental findings, as well as the gaps in the
current knowledge, in effort to elucidate the neural mechanisms
underlying the multimodal processing of intraoral stimuli.

The vast majority of knowledge pertaining to cortical
multimodal processing of intraoral stimuli comes from
experiments focused on the gustatory cortex. Experimental
evidence from electrophysiological and optical imaging studies
shows that neurons in the gustatory cortex represent non-
gustatory multimodal stimuli experienced before and/or
during sampling (Yamamoto et al., 1981; Kosar et al., 1986;
Katz et al., 2001; Samuelsen et al., 2012, 2013; Vincis and
Fontanini, 2016; Livneh et al., 2017; Maier, 2017; Samuelsen
and Fontanini, 2017; Chen et al., 2021). Of particular relevance
for this review are the studies investigating the representation
of intraoral olfactory (retronasal) and somatosensory stimuli
by neurons in the gustatory cortex. Two recent studies using
multielectrode recordings in behaving rats showed that neurons
in the gustatory cortex are modulated by the intraoral delivery
of tasteless odors dissolved in water (Maier, 2017; Samuelsen
and Fontanini, 2017) (Figure 2B). Furthermore, Samuelsen and
Fontanini showed that while most neurons in the gustatory
cortex responded exclusively to either odor or taste stimuli
(unimodal), a significant proportion of neurons responded
to both chemosensory modalities (tastes and odors; bimodal)
(Samuelsen and Fontanini, 2017). One potential caveat is
represented by the liquid nature of the odors delivered into the
mouth. As a consequence, rather than representing olfactory
signals, the responses in the gustatory cortex might also reflect
somatosensory and/or taste-related activity. However, Samuelsen
and Fontanini demonstrated that the odor-evoked activity in
the gustatory cortex was linked with respiration and depended
upon olfactory inputs (Samuelsen and Fontanini, 2017). These
studies provide single-unit evidence describing the multisensory
nature of the gustatory cortex, but many questions remain as
to its involvement in processing multimodal chemosensory
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signals. For example, it is still unclear how neurons in the
gustatory cortex represent an odor-taste mixtures compared to
the mixture’s individual components or whether specific subsets
of neurons solely respond to unimodal or multimodal signals.

Many studies, in both anesthetized and alert rodents, show
that neurons in the gustatory cortex respond to somatosensory
tactile stimulation of the tongue and oral cavity (Yamamoto
et al., 1981, 1988; Kosar et al., 1986; Katz et al., 2001; Stapleton
et al., 2006; Gutierrez et al., 2010; Bouaichi and Vincis, 2020;
Dikecligil et al., 2020). In awake behaving rodents, when
taste stimuli are delivered directly into the mouth via IOCs,
somatosensory responses emerge as fast and phasic changes
in neural activity within 200ms following fluid delivery (Katz
et al., 2001). Moreover, neurons in the gustatory cortex exhibit
somatosensory-evoked activity when taste-delivery is contingent
upon licking a spout (Stapleton et al., 2006; Gutierrez et al.,
2010; Bouaichi and Vincis, 2020; Dikecligil et al., 2020). In this
condition, the vast majority of neurons exhibit spiking activity
entrained to licking at rates between 6 to 12 Hz. However, it
is important to highlight that it is still unknown whether this
rhythmic activity is merely the result of tactile stimulation of the
tongue (following its contact with licking spout) or also features
a motor component. Nevertheless, it is noteworthy to mention
that while not all licking-coherent neurons respond to gustatory
information, a significant subset of neurons with spiking activity
correlated with licks accurately represents taste signals (Bouaichi
and Vincis, 2020; Dikecligil et al., 2020).

Fewer studies have examined how neurons in the gustatory
cortex respond to other intraoral somatosensory features, such
as variations in temperature and texture. Although pioneering
work in anesthetized rats indicates that thermal changes of fluid
solutions seems to modulate the activity of a subset of neurons
(Yamamoto et al., 1981, 1988; Kosar et al., 1986), we are unaware
of any studies examining the effects of temperature or texture
in behaving rodents. To the best of our knowledge, the only
studies examining the neural correlates evoked by these intra-
oral somatosensory features in behaving animals are obtained
from the primates insular/opercular cortex (Verhagen et al., 2004;
Kadohisa et al., 2005). These data implicate the gustatory cortex
as a key region for the multimodal processing of taste with
thermal and texture signals, but many questions remain. For
instance, it is unknown if and how neurons in the gustatory
cortex of alert rodents are also modulated by intraoral thermal
and texture stimuli. Moreover, no evidence is available on the role
that temperature and texture play in shaping the chemosensory
response profile of neurons in the gustatory cortex.

Although there are only a handful of electrophysiology
experiments investigating convergence of olfactory and gustatory
signals in the piriform cortex, their results offer keen insights into
the possible corticocortical processes underlying multisensory
integration. These studies found that subsets of neurons in
the posterior piriform cortex selectively represent orthonasal
odor stimuli and intraoral taste stimuli (Maier et al., 2012,
2015) (Figure 2C). Furthermore, simultaneous recordings in the
posterior piriform cortex and gustatory cortex revealed that taste-
evoked activity is functionally correlated between the cortical
regions (Maier et al., 2015). Arguably the most interesting

finding from these studies is that optogenetic perturbation
of the gustatory cortex significantly decreased taste-evoked
activity and modulated odor-evoked responses in the posterior
piriform cortex (Maier et al., 2015). These findings suggest a
functional relationship between the posterior piriform cortex
and gustatory cortex for processing unimodal chemosensory
signals. Future studies are needed to better understand the role
of these corticocortical circuits for the integration and processing
multimodal chemosensory signals.

To our knowledge, only one electrophysiology study has
examined whether the oral-somatosensory cortex represents
gustatory signals. Clemens and colleagues performed in vivo
whole-cell recordings in the rat’s oral-somatosensory cortex
(Clemens et al., 2018). In addition to probing post-synaptic
responses to tactile and thermal stimuli, they investigated
whether taste information was represented by neurons in
the oral-somatosensory cortex. Their analysis of subthreshold
membrane responses to water and two different taste stimuli
(sucrose and quinine), revealed that the oral-somatosensory
cortex is not robustly sensitive to sweet or bitter taste (Clemens
et al., 2018). While this study suggests that gustatory signals
are not represented, additional experiments probing taste-evoked
activity in response to a wider variety of gustatory stimuli
are needed to better elucidate taste responsiveness in the oral-
somatosensory cortex.

5. FINAL REMARKS

Throughout this review, we highlighted the evidence from rodent
studies indicating that the primary sensory cortical regions
that process information arising from within the mouth play a
key role in the processing of flavor. Specifically, we reviewed
neurophysiological findings of how neurons of the three cortical
regions represent and process the unimodal and multimodal
information related to flavor as well as their corticocortical
connectivity. While it is clear more work is needed, the emerging
picture is that, the piriform, gustatory, and somatosensory
cortical regions do not function solely as independent areas.
Rather, they act together as an intraoral cortical hub—with
the gustatory cortex representing the anatomical and functional
core—that simultaneously receives and processes intraoral
multimodal sensory signals. Of course, these cortical areas are not
the sole brain regions affecting the perception of flavor. While
outside the scope of this review, many higher-order regions are
known to process salient information relevant to flavor, including
the orbitofrontal cortex (Rolls and Baylis, 1994; Lipton et al.,
1999; Kadohisa et al., 2005; Roesch et al., 2007), the amygdala
(Grossman et al., 2008; Piette et al., 2012; Sadacca et al., 2012),
and the mediodorsal thalamus (Courtiol and Wilson, 2014,
2016; Pelzer et al., 2017; Fredericksen et al., 2019). Additionally,
subcortical and brainstem areas integrate bottom-up as well as
cortico-fugal top-down inputs salient for taste-mouthfeel and
taste-smell interactions (Beidler, 1954; Nagaki et al., 1964; Sato,
1967; Van Buskirk and Erickson, 1977; Di Lorenzo and Garcia,
1985; Ogawa et al., 1988; Travers and Norgren, 1995; Verhagen
et al., 2003; Breza et al., 2006; Wilson and Lemon, 2013; Escanilla
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et al., 2015; Li and Lemon, 2019). Regardless, the experimental
evidence discussed here indicates that the cortex is likely the first
site of convergence across the bottom-up pathways of the three
main sensory components of flavor.

To begin to understand why we choose the foods we eat,
experiments must start to elucidate the neural mechanisms
underlying the integration of the intraoral senses. Thus, it is
imperative to embrace the complexity of the sensory features
of foods and beverages, and design experiments—in behaving
animals—to probe the behavioral and neurophysiological
correlates evoked by the components of intraoral stimuli as well
as their associations. For example, how are the sensory signals
from the three intraoral modalities represented in the piriform
cortex and oral-somatosensory cortex of behaving animals?
Are corticocortical connections necessary for the integration
and processing of multimodal intraoral signals? How does
experience with intraoral odor-taste mixtures shape cortical
processing and influence consummatory behaviors and food
choices? Do changes in the temperature and/or texture of a food
object significantly alter the neural representation and behavioral
salience of its associated odors and tastes? These are just some

of the questions that can guide future experimental endeavors
to progress toward a better understanding of the neural and
behavioral correlates driving the perception of flavor.
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