
R Tutorial 1 1

Tutorial 1: Getting Started with R
Jason Pienaar and Tom Miller (updated May 13, 2020)

Why R ?

R is an independent, open source statistical computing environment, incorporating

implementations of an older commercial program called “S” by an international team of

statisticians. Most other statistics packages are mostly orientated towards applying standard

methods of data analysis, which is great, but it is difficult to apply non-standard methods or to

add to the capabilities of existing methods. Further, they often don’t have ideal graphics abilities

and cannot be easily modified by the user for different types of data sets or analyses. And, of

course, they are often expensive and/or require licensing agreements. One of the great strengths

of R (other than that it is free) is the relative ease with which new capabilities can be added (the

R language is really easy to use). R really integrates statistics, quality graphics, and a

programming language, which allows the user to easily create new functions or combine existing

functions or data. BUT in order to use R we need to learn the R language -- hence these simple

tutorials.

Obtaining your own copy of R and further resources
Note that most computers associated with Biology at Florida State University already have R

installed. For your own computer, both PC and Macintosh versions of R can be downloaded

from the R home page:

http://www.r-project.org/

It is easy to get there by simply typing r in your search engine, and selecting “the R project for

statistical computing”. Download and install R as follows:

1. Find the heading download (on the left-hand side of the page).

2. Click on CRAN.

3. Find USA cran mirrors.

4. Click on any US site (I use the Iowa State University site, but it makes little difference).

5. Choose the version you want (i.e. mac or PC). Make sure you have an appropriately

updated operating system.

6. Follow the instructions and set-up wizard appropriate for your system.

The R home page also contains user manuals. R manuals can be very useful once you know a bit

about R, but may not really be helpful for a beginner (they do usually have great examples at the

end). A really easy introduction to using R for statistics is “An R and S-PLUS Companion to

Applied Regression” by John Fox. Another book that is useful and has more on programming in

R is “Modern Applied Statistics with S” by Venables & Ripley. Finally, several of us have found

that Michael Crawley’s “Statistics: An Introduction using R” is a good guide for beginners.

There are also many webpages with tutorials and instructions on particular aspects of R.

By the way, the PC and Mac versions of R work identically about 99% of the time. We will try

to highlight the minor differences where we spot them.

R Tutorial 1 2

The Simplest Tricks with R:

Basic arithmetic

Open the R program by double clicking on the R icon. Under the opening message, you will find

the “>” prompt, waiting for you to ask R to do something. Data analyses in R proceeds as an

interactive dialogue. We type some instruction statement at the > prompt, press Enter, and R will

then execute the statement, i.e. by returning a result, producing graphical output or sending

output to a file or device. Try typing in the following simple arithmetic examples (just type what

follows the prompt > and then Enter).

>2+3

>2-3

>2*3

>2/3

>2^3

>4^2-3*2

>(2-3)*(2*3)

The usual precedence for mathematical operators is followed (R will do multiplication and

division first, then addition and subtraction). In general, R ignores spaces and so they are not

necessary, but for bigger expressions spaces may improve the readability.

R functions

R is a “functional” programming language meaning that pretty much everything we do in R is in

terms of specific functions. R includes hundreds of built-in functions for mathematical

calculations (including matrix algebra, which is extremely useful in statistics), data analyses,

graphing, etc. Values passed to functions are specified within parenthesis after the function

name. Here are some simple examples to try:

>log(100)

>log(100, base=10)

>seq(1, 4)

>seq(2, 8, by=2)

>seq(0, 1, length=11)

To obtain help or additional info on a function, type ? before the function name or help(function

name) and press Enter. (Note: the function log returns the natural log, unless you tell it

otherwise).

Variables and Vectors

Most R functions (including the simple arithmetic ones from above) can operate on more

complex data structures that individual numbers. The simplest data structure (and one that we

will use often) is a vector. To construct a vector, use the c function

R Tutorial 1 3

>c(1, 2, 3, 4)

The “c” function combines all the numbers you provide into a vector or a list. From now on, we

will give these vectors a variable name so that we can re-use them. To do this simply assign a

name to the vector using “=” symbol and press Enter (R pros would prefer you instead use “<-”

because it is directional, but “=” is simpler and usually works fine). Note that R is case sensitive

so Vector1 and vector1 are not the same variable.

>Vector1 = c(1, 2, 3, 4)

To see what is stored in the variable simply type the variable name and press Enter (that is, now

type “Vector1”, hit return, and R will show you Vector1). The sequence operator from above

(seq) also returns a vector. Functions applied to vectors operate on an element-wise basis. Thus:

>Vector2 = log(Vector1)

returns the natural log values of the elements stored in Vector1 and then stores them in the

variable Vector2 (note: you will probably use this at some point to log-transform a variable). The

rules for naming variables in R are simple: variable names are composed of letters (a-z, A-Z),

numerals (0-9) and periods (.) and can be of any length (the first character cannot be a number,

and spaces are not allowed). Consequently, variables can be given descriptive names: for

example, “this.is.a.variable.containing.log.values.for.vector1” is a valid variable name. Stupid,

maybe, but valid.

>this.is.a.variable.containing.log.values.for.vector1 = log(Vector1)

However, remember that you will have to type it out again to recall the variable. Unlike in many

programming languages, variables in R are dynamically defined and redefined so we do not need

to tell the interpreter how many values, their form (real, integer, etc.) or whether it is numeric or

a character. We can also redefine a variable simply by assigning it to a different function e.g.

>Vector2 = rnorm(100)

Here the previous values in Vector2 are replaced by 100 standard-normal random numbers, with

a default mean = 0 and standard deviation = 1. We could easily change these defaults to

whatever we want. For example, rnorm(20, mean=25, sd=17) returns a vector containing 20

numbers drawn randomly from a set of normally distributed numbers with mean of 25 and

standard deviation of 17). If we wish to print only one of the elements of a vector we index the

element using square brackets as in the following example.

>Vector2[21]

returns the 21st element of the vector.

R Tutorial 1 4

But, R is much more than just a calculator. It can manipulate data, conduct much of the same

statistics covered in SAS, JMP, Canoco, etc., and has excellent graphic capabilities. It can also

serve as a programming language. We will cover examples of these in subsequent tutorials.

Quick Exercises (Answers at the end).

1. Create a variable “random.set” containing 300 elements, randomly drawn from a normal

distribution of elements with a mean of 2 and standard deviation 0.5.

2. Create a second variable that contains the natural log values of the above elements

3. Use the function mean to return the means of the two variables

4. Use the function var to return the variances of the two variables

5. The function “plot” will create a separate window on your screen with a standard labeled

plot. Type plot(variable) to create a scatter plot of your variables against their indices,

substituting your variable name into the brackets, and also plot(variable1, variable2) to

plot your variables against each other.

R Tutorial 1 5

Answers or Hints for selected problems:

1. >random.set = rnorm(300,mean=2,sd=0.5)

2. >log.random.set = log(random.set)

3. >mean(random.set)

>mean(log.random.set)

4. >var(random.set)

>var(log.random.set)

5. >plot(random.set)

>plot(log.random.set) >plot(random.set, log.random.set)

