Tutorial 3: Graphics and Exploratory Data Analysis in R
Jason Pienaar and Tom Miller

Getting to know the data

An important first step before performing any kind of statistical analysis is to familiarize
oneself with the data at hand (this is often called exploratory data analysis). This usually
involves graphing the variables in various distributional displays (histograms, box plots
etc.) and plotting the relationships between variables (scatter plots, box plots etc). The
focus of this tutorial is therefore on how to use some graphical and other tools in R that
are generally useful in preliminary graphic data analyses. Exploratory analysis also helps
us decide on whether or not to transform a variable to meet some statistical requirements.
In this tutorial we will cover some of the basic plotting functions that are built into the R
system. In particular, we will cover histograms, boxplots, and scatterplots (with linear
regression).

Basic plotting functions in R

Before starting, create a data frame named fis/ of the data contained in egl.txt (this file
should be available to you along with this tutorial). The data in this example (kindly
provided by Joe Travis) are derived from a larger study of character variation in sailfin
mollies (Poecilia latipinna). Specifically, the data consists of selected measurements on
females from three populations (identified by the POP variable, populations 1, 2 and 5).
We can ignore the column headed IDNO: this matches the line in the example data set to a
record in a lab notebook where the data was originally recorded. The actual data recorded
includes several measurements taken on individual fish: RAYNO, a discrete variable for
the number of rays (finger-like bones) in the dorsal fin; SL, a quantitative variable of the
body lengths of the females in millimeters; FINAREA, a quantitative variable containing
measurements for the area of the dorsal fin in square millimeters (a function of the fin’s
length, height and shape), and TAREA, a quantitative variable of the tail-fin area in square
millimeters (a function of the tail’s length height and shape).

The Histogram in R

The most common way to examine the distribution of a quantitative (continuous)
variable is by means of a histogram. A histogram dissects the range of the variable into
equal-width class intervals called bins and then plots the number of observations falling in
each bin as a bar chart (i.e. the height of the bar represents the number, proportion or
percentage of observations in that class). To plot histograms of the variables SL,
FINAREA and TAREA, use the hist command as follows (remember to attach the fish
data frame first to make the variables visible to R):

>hist(SL)

Histogram of SL

15 20
L

Frequency

10

SL

For histograms of the other two variables simply replace the input in parenthesis by the
variable names (note that R is case-sensitive). These data come from three different
populations; can we plot histograms separately for each population? Recall that POP is a
factor identifying which population each measurement came from. Therefore we can
simply specify which variable and from which population to plot using the population
variable as follows:

>hist(SL[POP==1])
>hist(FINAREA[POP==5])

Note the double equals sign is used for specifying the population: a single equals sign is
used to change the actual values stored in POP, so don’t do this. In addition, there cannot
be a space between the equal signs. Often a factor such as the POP variable will be
specified by a name (i.e., a text string) rather than a number. In this case, if we want to
specify the level of the factor we place it inside inverted commas (Note: a factor is just
another name for a categorical variable where the different classes of the variable are
known as the levels of the factor). For example if the POP factor contained the entries
U.S.A, Mexico, Canada etc, we could specify the USA level with:

>hist(SL[POP=="U.S.A™])
Note also how R automatically creates the axes labels. To modify an axis label we set the
properties x/ab or ylab (or both) within the histogram command, separated from the other

function arguments by commas. The axis title is given between inverted commas. Thus

>hist(SL[POP==1], xlab = *“ body length for population 1”)

produces a histogram of SL for population 1, where the X axis is labeled with the text

between the inverted commas. The main property is used to give a main heading to your
graph. So to give the graph above the heading “Size” we would type:

> hist(SL[POP == 1], xlab = ““ body length for population 17, main="Size”)

Type ?hist or help(hist) to find out about more options on how to customize your
histogram. Note that there are quite a few options concerning bar color, number of bins to
use etc. The available colors are encoded by numbers or you can try some color names in
quotes (e.g., col = “blue”). Try different colors for your histogram by setting the col
property. Eg:

> hist(SL[POP == 1], xlab = ““ body length for population 17, main="Size”, col=2)

should change your bars to red. If you prefer shading lines rather then a full color for you
histogram bars then set the density function:

> hist(SL[POP == 1], xlab = ““ body length for population 17, main="Size”, col=2,
density = 5)

Try some different density values to see what happens (you can go up to pretty high
numbers (50+) to get a shading effect).

The Box Plot in R

The box plot is another useful way to examine the distribution of a variable. A box plot
consists of a box on a set of axes where the top and bottom lines of the box represent the
upper and lower quartiles respectively (see the example in the figure below). A
horizontal line within the box shows the median. The length of the box is known as the
inter-quartile range. Box plots also include vertical lines (called whiskers), extending
from the top and bottom of the box up to the largest and smallest observations
respectively, that fall within 1.5 inter-quartile ranges. All observations that fall beyond
these limits are plotted individually as points.

Statisticians really like boxplots because a number of distributional properties are easily
visualized. Box plots show a measure of location (the median line), dispersion (the
length of the box and distance between the upper and lower whiskers), skewness
(asymmetry of the upper and lower portions of the box and asymmetry of the whisker
lengths), and long drawn out tails (for example whisker length in relation to the length of
the box). Box plots are particularly useful as a quick visual comparison between 2 or
more samples. To create a box plot in R use the command boxplot(variable), where
“variable” is the name of the variable you want to plot. Adding labels to the axes is done
in exactly the same way as for hist, as is changing the color (use ?boxplot to check all the
options, some differ from the Aist function). A very useful feature of the hoxplot function
is the ability to plot a number of box plots of different variables, parallel to each other on

the same plot. Thus
>boxplot(SL[POP==1])
Creates a box plot of the SL measurements from population 1 whereas:

>boxplot(SL[POP==1], SL[POP== 2], SL[POP==5])

—_—
]
w o |
13]
]
]
]
o
1
R
[}
[}
w | |
. |
o '
= |
! 1
—_— "
|
w | |
r |
|
—_— |
1
T T
1 2 3

creates parallel box plots of the SL variable from all three populations. Note here that you
can see that both the median (solid bar in box) and range (whiskers) increase as we go
from population 1 to 5.

By the way, there is a short-cut that you can use to see all boxplots for all the subclasses
of a variable:

>boxplot(SL~POP)

Neat, eh? Just use the tilda (~). This works for a lot of the graphics, but not generally for
other functions.

If you are the nonvisual type and prefer text output rather than a graph the function
summary could help you out. Summary returns the minimum and maximum values, the 1*
and 3:d quartiles, the mean and the median of a given vector. For example, to return these
values for RAYNO from population 5 type use:

>summary(RAYNO[POP= =5])

which returns:

Min. Ist Qu. Median Mean 3rd Qu. Max.
14.00 15.00 15.00 15.04 15.25 16.00

Whereas:
>summary(fish)

would return the same statistics for all the variables in the data frame “fish” (not by
population however).

There are many other ways of customizing your boxplot (as with any plot in R), but that
is something you can check for yourself using the help functions or user manuals. As a
final example, let’s say we want to plot some blue boxplots of the SL variable on top of
each other rather than next to each other, then we would type:

>boxplot(SL [POP==1], SL[POP==2], SL[POP==5], col=4, horizontal = TRUE)

All these parameters can be found in the help(boxplot) information.

The Scatter Plot in R

The scatter plot is the standard graph for examining the relationship between two
quantitative variables. The plot function is used to create scatter plots (amongst other
things), where two numeric vectors are required as arguments to the function. For
example, to create a simple scatter plot of FINAREA against TAREA type:

>plot(FINAREA, TAREA)

R interprets the first vector as the horizontal coordinates and the second as the vertical
coordinates. An alternative means to plotting the relationship is by specifying a simple
linear model in the function arguments. This is done with the tilde symbol (~):

>plot(FINAREA~TAREA)

o
o
— -]
-]
2
] @ ¢ % °
m > e
< Ch 6o 00000
= o o o
C o2 Q
o %O‘P qé’m%
o m& O oQ
bl %IEGBD
o f
% o o
240 ©
T T T T T T T
40 GO 80 100 120 140 160
TAREA

Note that using the tilda switches the axes: the response or dependent variable
(FINAREA) is now plotted on the vertical (y) axis whereas the predictor or
independent variable (TAREA) is on the horizontal (x) axis.

Once again xlab and ylab can be used to add labels to the axes (most of the plotting
functions use roughly same arguments to modify their attributes). Interpretation of a
scatter plot is often assisted by enhancing the plot with least squares or non-parametric
regression lines. As such lines are often dependent on the particular statistical model we
are applying we won’t go into too much depth here, but just to see what I mean, let’s add
a simple linear regression line to the plot above. The function /m can be used to specify
a linear model and abline to add a line of the slope-intercept form. So to add a simple
linear regression line to the plot above we type:

>abline(Im(FINAREA~TAREA))

Note: the graph has to already be there, so if you have closed the graphics panel, first
replot the variables. As we are busy with graphics, we might as well discuss some ways
to modify the line (i.e. width, type and color). The attributes /wd, /ty, and col are used to
specify the line width, line type and line color respectively. First, close the graphics
window and plot FINAREA against TAREA again (this is because we are going to add a
line to the graph but at the moment, we are adding a new line, not modifying the existing

one, so it will be difficult to see against the one already plotted). Next, type:
> abline(Im(FINAREA~TAREA), Iwd = 10, Ity = 2, col=3)

Wow, didn’t expect that, did you? Repeat this a few times with different values for the
line parameters to see what’s available.

Often scatter plots include a number of overlapping points (this is especially true when
we are plotting discrete variables, as they can only take so many values). For example
create a scatter plot of RAYNO against POP. You will notice that only nine points are
shown on the plot. This is because a number of these points are overlapping (i.e. POP can
only take on three different values and RAYNO 4, so there is bound to be a lot of
overlap). In these situations, the jitter function comes in handy. The jitter function adds a
small random quantity to the data coordinates thus serving to separate the overplotted
points. Try the following:

>plot(jitter(RAYNO), POP)
>plot(jitter(RAYNO), jitter(POP))

And, finally:

>plot(jitter(RAYNO), jitter(POP), xlab="number of rays”, ylab="population”, main="A
jittered scatter plot”)

A jittered scatter plot

w1 @ @ D@%g' e
o &’Q goq}o
<+ -
c
Qo
5
5 ™
o
Q
o
oo ol
oA oo %D@& oo
o o o
o =] +]
= of o S o -
L) o Yo @

T T T T T T T
130 135 140 145 150 155 160

number of rays

Multiple Figures on One Plot
You will have noticed by now that each time a plotting function is used, the previous
graph is replaced by the new one. Although you can copy and paste the graphs into some

other program in order to compare them, it might be useful to plot them simultaneously in
R in one panel. One way of doing this is to use the split.screen function (as per usual,
there are many other ways, but we will start with this one). Let’s say that we want to
plot histograms and box plots of the SL variable for the three different populations, all on
one screen. We could begin by using split.screen to create 6 separate areas in the graphics
panel as follows:

>split.screen(figs=c(2, 3))

The function above splits the graphics panel into a matrix of 2 rows and 3 columns where
the screens are numbered 1-6 by rows (the original graphics surface is now called screen
0). Next we specify which screen we want to plot in. for example to plot a histogram of

the SL variable from population 1 in the first screen we use the following two commands:

>screen(1)
>hist(SL[POP= =1])

We can now plot the rest of the graphs on the screen by specifying which screen to use
each time, then typing the actual plotting function. E.g.:

>screen(2)
>hist(SL[POP==2])

>screen(4)

>boxplot(SL[POP== 1])
etc.
Histogram of SL[POP ==1] Histogram of SL[POP == 2] Histogram of SL[POP == 5]
w @
@
w
w
g o & 7 oo
g & &
3 2] 3 =+ 3
o o o =+
@ o o
wow w w
o o
o o
I T T T T T T 1 r T T T T 1 r T T T T T 1
36 40 44 48 30 35 40 45 50 55 30 35 40 45 50 55 60

SL[POP ==1] SL[POP ==2] SL[POP ==5]

50

46

38
35

42
1 1
40 45
L
35 40 45 50 S5
L L

Split.screen mode is terminated by using the function close.screen(all=TRUE) or simply
by closing the graphics window. One consideration when plotting multiple plots on the
same screen is the size of the text labels and headings. You might have noticed that the
text is a little too big and ungainly and that no journal would accept such figures for
publication. To change the size of the axis labels use the cex.axis attribute (this is just one
of those things that is not so intuitive and often needs to be looked up in some reference
manual). Try:

>plot(FINAREA, TAREA, cex.axis=0.5)

In a similar fashion, cex.lab and cex.main change the text size of your axes labels and
graph heading respectively.

Finally, another way to get multiple graphs on the same figure is to first use the par
function that allows you to set graphical parameters. If we simply say:

> par(mfrow=c(1,3))
> hist(SL[POP==1])
> hist(SL[POP==2])
> hist(SL[POP==5])

You will get the histograms found at the top of the last graph. Using the
par(mfrow=c(1,3)), we told R to set up a graphics space for three figures in one row.
Then each time we asked for a graph, it created the graph in the next available graphic
space. This can be a little bit easier way to draw things, but doesn’t use as precise
control over where each figure is created.

Exercises

1. Create parallel box plots of a given variable for the three different populations in the
fish data set. Add the labels “population” to the x axes and “range” to the y axes.
Give the boxes in each plot different colors. In addition give the graph a title named
“these are the results of my first function and the graph heading was made a little
smaller in order to fit on the page”. In other words, change the size of the heading so
that it fits in the graphics panel.

2. Now, this time use the par(mfrow=(c(2,3)) format. Plot the graph above, as well as
3 different scatter plots of TAREA vs. FINAREA (for the three different
populations) with appropriate axes labels and headings, all on the same graphics
panel. Add a linear regression line showing the relationship between the points in
each graph and use a different color for the points and lines in each of your three
scatter plots.

Answers:

1. >split.screen(fig=c(1,3));
>screen(l);
>boxplot(datal,xlab="population”,ylab="range",col=5);
>screen(2);
>boxplot(dataz,xlab="population",ylab="range" ,main="these are the
results of my first function and the graph heading was made a
little smaller in order to fit on the page",cex.main=0.6,col=6);
>screen(3);
>boxplot(data3,xlab="population”,ylab="range",col=7);
>close.screen(all=T);

s ars
e et ot st Wneton dred e oy beadig as nad 3
lithe senaller Ik arder 10 1 on Fe page’

- r - r - Tr
- 1]
& : - . .
1 - 1]
] uy 1 & 1
1 1]
1 1]
]
$ T : I
1]
1 o= L
\ i)
3]
R R R 0
2 2 2 =%
8 g i 8
o 1
=+ 1
Er 7 1 1
1 I
1 -1 I
1 3 I
1 I
Er — [1
1]
1]
1 1 wn]
: & :] :
o 1
@ i : |
—_ —_ _
population population population

2. >par(mfrow=c(2,3));
>boxplot(SL[POP==1],xlab="population",ylab="range",col=4);
>boxplot(SL[POP==2],xlab="population”,ylab="range",col=5);
>boxplot(SL[POP==5],xlab="population",ylab="range",col=6);
>plot(TAREA[POP==1],FINAREA[POP==1], col=4);
>abline(1m(FINAREA[POP==1]~TAREA[POP==1]), col=4)
>plot(TAREA[POP==2],FINAREA[POP==2], col=5);
>abline(1m(FINAREA[POP==2]~TAREA[POP==2]),col=5)
>plot(TAREA[POP==5], FINAREA[POP==5], col=6);
>abline(1m(FINAREA[POP==5]~TAREA[POP==5]), col=6)
>close.screen(all=T);

