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Abstract

We explore the estimation of uncertainty in evolutionary parameters using

a recently devised approach for resampling entire additive genetic variance–
covariance matrices (G). Large-sample theory shows that maximum-likeli-

hood estimates (including restricted maximum likelihood, REML) asymptoti-

cally have a multivariate normal distribution, with covariance matrix

derived from the inverse of the information matrix, and mean equal to the

estimated G. This suggests that sampling estimates of G from this distribu-

tion can be used to assess the variability of estimates of G, and of functions

of G. We refer to this as the REML-MVN method. This has been imple-

mented in the mixed-model program WOMBAT. Estimates of sampling vari-

ances from REML-MVN were compared to those from the parametric

bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC)

approach (implemented in the R package MCMCglmm). We apply each

approach to evolvability statistics previously estimated for a large, 20-dimen-

sional data set for Drosophila wings. REML-MVN and MCMC sampling vari-

ances are close to those estimated with the parametric bootstrap. Both

slightly underestimate the error in the best-estimated aspects of the G

matrix. REML analysis supports the previous conclusion that the G matrix

for this population is full rank. REML-MVN is computationally very effi-

cient, making it an attractive alternative to both data resampling and MCMC

approaches to assessing confidence in parameters of evolutionary interest.

Introduction

The evolutionary properties of sets of phenotypic traits

in outbred populations are summarized by the additive

genetic variance–covariance matrix, G (Lande, 1979).

When paired with an estimate of the strength and

direction of selection, it predicts the rate and direction

of evolution. As a result, G matrix estimates are an

essential element in a wide variety of evolutionary sta-

tistics that quantify such features as the ability of a

population to respond to directional selection on multi-

ple traits (Lande, 1979; Cheverud, 1996; Hansen &

Houle, 2008), the degree of modular structure to varia-

tion and how variation of evolution is spread across

phenotypic dimensions (Mezey & Houle, 2005; Hine &

Blows, 2006; Kirkpatrick, 2009; Houle & Fierst, 2013).

A related set of methods focuses on comparison of the

evolutionary potential of different populations (Krza-

nowski, 1979; Cheverud, 1996; Cheverud & Marroig,

2007; Hansen & Houle, 2008; Hine et al., 2009; Kirkpa-

trick, 2009; Houle & Fierst, 2013; Aguirre et al., 2014).

While calculating estimates of such statistics is

straightforward, assessing the sampling properties of

these statistics is much more challenging. The first step

is always to identify a set of G matrices consistent with

sampling variation of the original data. Once this is

done, the sampling variation of functions of G can then

be estimated by applying the function to these sample

matrices. For many years, data resampling methods,

such as bootstrapping or jackknifing (e.g. Phillips &

Arnold, 1999; Mezey & Houle, 2005; Hine et al., 2009),

have been the major tool for generating such families

of estimates. As the estimation of G matrices is gener-

ally computationally demanding, data resampling can
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be prohibitively time-consuming. The rise of numerical

Bayesian estimation using Markov chain Monte Carlo

(MCMC) methods (Hadfield, 2010; Gelman et al., 2013)

and their increasing application to quantitative genetics

(Sorensen & Gianola, 2002; O’Hara et al., 2008; Ovas-

kainen et al., 2008; Aguirre et al., 2014; Stinchcombe

et al., 2014) has provided a simpler general route to the

assessment of the uncertainty in evolutionary charac-

teristics. In MCMC methods, the estimation of a G

matrix proceeds by estimating the distribution of G

matrices consistent with the data. The samples from

this posterior distribution are then used to estimate var-

iation in evolutionary statistics (e.g. Aguirre et al.,

2014). MCMC approaches can also be computationally

demanding, and therefore difficult to apply to data sets

with large numbers of parameters and large-sample

sizes.

Meyer and Houle (2013) recently proposed an alter-

native method for sampling entire G matrices based on

restricted maximum likelihood (REML). Provided that

large-sample theory holds, the sampling distribution of

the parameters of G approaches a multivariate normal

distribution with covariance matrix given by the inverse

of the information matrix. Values of G can be readily

sampled from this distribution. This approach has been

implemented in the mixed-model program WOMBAT

(Meyer, 2006–2015). We call this the REML-MVN

method. A similar general approach has been suggested

by Mandel (2013). Meyer & Houle (2013) compared

estimates of sampling variances from REML-MVN with

those based on simulated data drawn from the same dis-

tribution, and obtained close agreement. They showed

that confidence intervals from REML-MVN were more

accurate than those based on the Delta method (Oehlert,

1992) for parameters near their boundaries, such as

genetic correlations approaching unity. Kingsolver et al.

(2015) used REML-MVN to estimate variation in decom-

positions of G for function-valued traits.

In this contribution, we demonstrate the estimation

of evolutionary statistics using REML-MVN for data

from a large, high-dimensional data set on wing shape

variation in Drosophila melanogaster (Mezey & Houle,

2005). Hansen & Houle (2008) previously estimated

measures of evolvability for these data. The addition of

confidence limits to their analysis allows us to assess

the robustness of their conclusions. We compare these

error estimates to those estimated using the parametric

bootstrap and MCMC.

Sampling G matrices based on REML estimates

The restricted maximum-likelihood multivariate normal

(REML-MVN) sampling approach relies on the result

that the distribution of maximum-likelihood estimates

asymptotically approaches a multivariate normal

distribution as sample size increases. Let h denote the

vector of parameters to be estimated, for example the

k(k + 1)/2 distinct elements of a covariance matrix

G. The covariance matrix of the estimates is approxi-

mated by the inverse of the information matrix,

denoted as H(h). If the vector of estimates at conver-

gence is ĥ, then the distribution of ĥ is N(ĥ, H ^ðhÞ).
REML estimates of covariances matrices are con-

strained to the parameter space, that is forced to have

non-negative eigenvalues throughout so that they are

positive semi-definite. Most REML software enforce this

by reparameterizing to estimate the elements of the

Cholesky factors of covariance matrices, the elements of

the lower triangular matrix L for G = LL0. In addition,

positive diagonal elements of L are ensured by trans-

forming them to logarithmic scale (Meyer & Smith,

1996). On completion of the analysis, a ‘valid’ estimate

of G is obtained by reversing the transformation.

Asymptotic normality of ĥ holds on either scale.

This then presents the possibility of using the multi-

variate normal sampling approach on two different

scales; on the G scale, we can use multivariate normal-

ity to directly sample the elements of G (with vector of

estimates hG), while on the L scale, we can sample the

elements of L (with vector of estimates hL) and use

those to construct samples of G. More formally, we can

generate G matrix values, denoted Ĝ, drawn from the

sampling distribution of G, denoted ~G, by sampling the

elements of Ĝ, or by sampling the elements of L̂.

Sampling hG directly attempts to approximate the

large-sample distribution of G, similar to what MCMC

typically does, albeit for different distributions. There is,

however, a key difference between G-sampling and

MCMC in that sampling on the G scale does not guar-

antee that samples Ĝ are positive semi-definite; that is,

we may obtain values outside of the parameter space,

especially for matrices with eigenvalues close to the

boundary. In contrast, MCMC algorithms typically sam-

ple a sum-of-squares and cross-products matrix guaran-

teed to be positive definite. Sampling on the G scale

will yield a mean of the ~G across samples equal to the

REML estimate Ĝ. For linear functions of G, sampling

errors and confidence intervals derived are equivalent

to those obtained from H(hG). For nonlinear functions,

we are likely to obtain slightly more appropriate esti-

mates than the Delta method as we are not performing

a linear approximation.

In contrast, sampling hL mimics what is done during

the REML estimation process and thus attempts to

approximate the actual distribution of estimates of Ĝ.

This is affected by constraints on the parameter space

and, while it ensures positive semi-definite samples ~G,

their mean is thus not necessarily equal to Ĝ, the dif-

ference reflecting bias due to constraints. This bias can

be substantial if sample sizes are small and k is reason-

ably large. Samples ~G or its functions obtained by sam-

pling hL should thus be more comparable to those from

the MCMC methods discussed above, which also con-

strain estimates to the parameter space.
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On either the L or G scale, samples from the distribu-

tion ~G are obtained as

~h ¼ ĥþ LHd

where LH is the Cholesky factor of the inverse of the

information matrix, and d is a vector of standard

normal deviates di �Nð0; 1Þ. The vector ~h is then

reshaped into a sample matrix ~G for analysis. This

approach has been implemented in the freely available

mixed-model package WOMBAT (Meyer, 2006–2015).
Using simulated data, Meyer and Houle (2013)

demonstrated excellent agreement between empirical

estimates of sampling variation and the L-scale

REML-MVN estimates, a point we return to in the

Discussion.

Materials and methods

We estimated the G matrix based on wing measure-

ments of a wild-collected population of D. melanogaster

from Wabasso, Florida, USA (Mezey & Houle, 2005).

Mezey and Houle generated 170 half-sib and 790 full-

sib families and measured 17 331 wings from parents

and offspring. The phenotypic data were the x,y coordi-

nates of 12 vein intersections measured with WING-

MACHINE, a semi-automated system that records scale

information and detects vein positions from digital wing

images (Houle et al., 2003). The 24 coordinates

obtained from each wing were geometrically aligned to

the mean shape using Procrustes least-squares superim-

position(Rohlf & Slice, 1990), which removes centroid

size as a scaling factor. Although the superimposed data

are still in the form of 12 pairs of coordinates, four

degrees of freedom are used for superimposition, so the

resulting G matrix has a maximum rank or dimension-

ality of 20. Mezey & Houle (2005) estimated G piece-

wise using a method-of-moments mixed-model

analyses of each pair of traits. Hansen & Houle (2008)

used the average of Mezey & Houle’s male and female

G matrices, shown in Table S1. We will refer to this as

the H&H08 G.

To estimate sampling error using REML-MVN, we

re-estimated G using REML implemented in WOMBAT

(Meyer, 2006–2015). Before the new analyses, the ori-

ginal Wabasso data were geometrically aligned with a

much larger set of 83 000 wings, including specimens

from 117 dipteran species, our spontaneous mutation

data (Houle & Fierst, 2013), and 184 Drosophila Gen-

ome Reference Project (Mackay et al., 2012) inbred

lines. This enables as yet unpublished comparisons of

the Wabasso G matrix to these data sets. We refer to

the original superimposition used in previous publica-

tions (Mezey & Houle, 2005; Hansen & Houle, 2008)

as the ‘Wabasso’ superimposition, and the new one as

the ‘combined’ superimposition. Before analysis, we

scored wing data on the first 20 eigenvectors of the

phenotypic variance–covariance matrix from the

pooled Wabasso population male and female data. We

fit sex as a fixed effect to obtain a direct estimate of

the pooled-sex G matrix. Estimation of G was carried

out for both full- and reduced-rank models (Kirkpa-

trick & Meyer, 2004; Meyer & Kirkpatrick, 2005,

2008), and we selected the best-fitting model on the

basis of Akaike’s information criterion corrected for

small sample size (AICc). REML-MVN estimates of

sampling variances were then obtained drawing

100 000 samples of G on both the G- and L scale.

MCMC analyses were carried out in the R package

MCMCglmm (Hadfield, 2010). To investigate conver-

gence, we initiated runs using parameters that were

functions of the sex-adjusted phenotypic covariance

matrix. All runs used a degree of belief of 20.002,

slightly more than the dimensions of each matrix, and

parameter expansion with a half-Cauchy prior with a

scale parameter of
ffiffiffiffiffiffiffiffiffiffiffi
1000

p
. These values combine to

establish the priors as minimally informative. With

parameter expansion, convergence was rapid, and

burn-ins of just 100 iterations were necessary. Thinning

to 60 iterations reduced autocorrelations between sam-

ples to 0.1 or less. Without parameter expansion, runs

with different priors needed approximately 5000 itera-

tions of burn-in to achieve a stationary distribution,

and runs with starting parameters far from the REML

estimates often did not converge.

To provide a meaningful baseline against which to

compare the parameter means and variances, we car-

ried out a parametric bootstrap analysis. This involved

resampling data from a multivariate normal distribution

on the pedigree of the Wabasso experiment, using the

REML estimates of G and residual variances as popula-

tion parameters. A full REML analysis was then carried

out for each of 1000 simulated data sets, and estimates

of sampling variances were obtained as empirical vari-

ances across replicates. Both resampling and analysis

were carried out in WOMBAT.

We used the mean wing shapes of seven other dro-

sophilid species (listed in Tables 2 and 3) to choose

interesting directions in which to investigate evolvabil-

ity (Hansen & Houle, 2008). The mean of each species

was based on approximately 200 wings obtained from

laboratory-reared flies. We recalculated the directions

from D. melanogaster based on the same specimens

used in H&H08, but using the combined superimposi-

tion, instead of a species-data only superimposition.

This resulted in slightly different estimates of pheno-

typic distance and direction from those shown in

H&H08.

Evolvability, e, is the predicted response to unit

strength selection in the direction of the selection

gradient, b, in the absence of stabilizing selection. It is

calculated as the projection of the response vector to a

unit-length b on b
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eðbÞ � b0Gb:

Conditional evolvability, c, is the response to unit

strength selection when stabilizing selection around the

selected direction is infinitely strong. Conditional evolv-

ability is

cðbÞ ¼ ðb0G�1bÞ�1
b0b;

and gives the response in direction b to a unit-length b

when the response is constrained to be in direction b.

The actual response to selection in direction b will be

between e(b) and c(b), falling closer to e(b) when stabi-

lizing selection in other directions is weak. Autonomy,

a, is the ratio c/e, and captures the proportion of varia-

tion that allows response in the direction of a selection

gradient. These measures of evolvability are informative

when the units in which traits are measured are the

same (as in our wing shape data), or the traits have

been standardized in the same manner.

When the direction of selection is not predictable,

one can ask about the average evolvability of a popula-

tion averaged over all possible directions. Hansen & Ho-

ule (2008) showed that the expected evolvability, �e, is
the average eigenvalue of the G matrix. No exact solu-

tion is available for the expected conditional evolvabili-

ty, �c, or the expected autonomy, �a, but good

approximations have been derived in Hansen & Houle

(2008, 2009). The corrected formulas for these are

repeated in the Appendix.

Results

Reanalysis of Mezey & Houle’s (2005) data on wing

shape in the Wabasso population of Drosophila melanog-

aster shows that the best estimate is a G of rank 20

(full-rank). The full model is superior by 38 AIC-penal-

ized log-likelihood units to the simplified rank 19

model in both the Wabasso and combined superimposi-

tions. Mezey & Houle’s (2005) conclusion that there

were at least 18 dimensions of genetic variation in

these data was conservative. The REML estimate of G,

back-projected into the original 24 dimensions, is

shown in Table S2.

Table 1 shows the values of a set of evolvability sta-

tistics (Hansen & Houle, 2008; see Methods for defini-

tions) and their sampling errors from parametric

bootstrapping, MCMC estimation and the REML-MVN

method. In addition, estimates for the G estimated by

Hansen & Houle (2008) are shown for comparison.

Overall, the sampling standard deviations are quite

small relative to their means, resulting in sampling

coefficients of variation (CV) for the evolvability statis-

tics of 5% or less, with the exception of the minimum

eigenvalue, emin, which has a CV > 10% by all methods.

The minimum eigenvalue is the most difficult to esti-

mate as it is the variance closest to a boundary value of

0. G-scale estimates are not constrained to have a non-

negative emin, so the fact that the G-scale estimates of

emin are still many standard deviations > 0 supports the

finding of a full-rank G matrix. The sampling distribu-

tions of all statistics were estimated to be approximately

normal (results not shown).

The parametric bootstrap estimates are a suitable

baseline to compare the other methods with, as that

method enforces multivariate normal data, and makes

no large-sample assumption. The mean REML and

MCMC estimates are all within a small fraction of the

sampling standard deviation of the parametric bootstrap

value, suggesting that there is little bias in the mean

estimates of the parameters. On the other hand, the

H&H08 estimates of �e and emax are more than four stan-

dard deviations higher than the REML estimates. Con-

versely, the H&H08 �c and emin are about two standard

deviations lower than the REML estimates. The larger

eigenvalues in the H&H08 estimate are biased upwards,

while the smaller eigenvalues are biased downwards.

Systematic over-dispersion of sample eigenvalues is a

well-known outcome for estimates that are not con-

strained to the parameter space (Hill & Thompson,

1978).

Closer examination shows that the estimates of mean

and sampling variation may show subtle biases. Even

though the parametric bootstrap was initiated with

the REML estimate, the estimates recovered from the

Table 1 Overall evolvability statistics. Evolvabilities and conditional evolvabilities have units of 106 centroid size. Bootstrap, REML

resamples and MCMC posterior distributions are all calculated from 1000 samples.

Mean Standard deviation

�e emax emin �c �a �e emax emin �c �a

H&H08 14.61 83.04 0.09 1.00 0.069

REML 13.071 70.870 0.129 1.076 0.0947

Parametric bootstrap 13.081 71.652 0.109 1.000 0.0883 0.247 3.247 0.016 0.049 0.0045

REML-MVN, G scale 13.083 71.527 0.109 1.001 0.0883 0.222 2.834 0.018 0.055 0.0049

REML-MVN, L scale 13.121 71.418 0.122 1.067 0.0937 0.227 2.822 0.017 0.049 0.0044

MCMC 13.259 72.168 0.110 1.022 0.0888 0.211 2.558 0.015 0.050 0.0044
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bootstrap do not match the ‘best’ REML’ estimate pre-

cisely. In particular, the three statistics that depend on

the inverse of G and therefore on the smallest eigen-

values (emin, �c, �a) are all more than a standard deviation

lower in the bootstrap sample. This may indicate depar-

tures of the data from multivariate normality in the ori-

ginal data. The same three statistics have slightly higher

means in the L-scale sample than in the G-scale sam-

ple, which is consistent with the L-scale constraint

towards positive-definite matrices. For these data, sam-

pling on the G scale, hG, did not yield any samples

which were not positive definite, and no values of emin

based on sampling the elements of its Cholesky factor,

hL, approached the arbitrary constrained value of

0.0001 in WOMBAT. This leaves the precise cause of

the discrepancy somewhat unclear.

To get a broader sense for the similarity of the esti-

mates, we calculated the mean and standard deviation

of a range eigenvalues, with the results shown in

Fig. 1. On the log scale, all four sets of mean estimates

are quite similar, with differences only becoming appar-

ent in the smallest eigenvalues. Sampling standard

deviations are systematically lower in the REML esti-

mates compared with the bootstrap, and MCMC

standard deviations are even lower. This may suggest a

small bias in the REML-MVN error estimates, as they

are asymptotic, lower bound values. While the Wabasso

data set comprises a large number of records, a 20-vari-

ate, full-rank REML analysis requires estimation of 420

covariance components. Larger estimates from the para-

metric bootstrap may thus indicate that the sample size

is not quite sufficient for large-sample theory to hold.

This pattern is sometimes reversed for the smallest ei-

genvalues and the statistics that depend on G�1. This

may be due to the fact that the REML constraints on

the parameter space will tend to truncate the smallest

eigenvalues (Amemiya, 1985). An alternative explana-

tion for these exceptions is sampling error, as the preci-

sion of the error estimates for these statistics is

relatively low.

Schluter (1996) found that among-species and

among-population variation tended to lie close to the

first eigenvector of G, gmax. Hansen & Houle (2008 -

H&H08) reasoned that if G shapes among-species differ-

ences, then the differences among species should be in

those aspects of variation that have the highest evolv-

abilities, even if those are very different from gmax. To

choose interesting directions of selection to investigate,

Hansen & Houle (2008) took Drosophila melanogaster as

the focal species and predicted the ability of D. melanog-

aster to evolve towards the phenotype of seven other

species that span the traditional genus Drosophila and

one closely related outgroup (Scaptodrosophila latifasciae-

formis). The results are shown in Table 2 for evolvabili-

ty and Table 3 for conditional evolvability.

As originally found with the H&H08 G, evolvabilities

and conditional evolvabilities in the directions of these

species are all in the more variable parts of the pheno-

type space. As a result, most of the estimates in H&H08

are substantial overestimates, consistent with the bias

in the higher eigenvalues of G noted above.

Estimates of sampling error for the evolvabilities esti-

mated with each method are again broadly similar,

consistent with the results noted above. The estimates

are fairly precise, with sampling coefficients of variation

slightly < 5% for the evolvabilities, and 6–15% for the

conditional evolvabilities. These errors are sufficiently

small that almost all differences in evolvabilities

between species are statistically significant.

Discussion

It has long been known that the additive genetic vari-

ance–covariance G is a useful tool for making predic-

tions about evolution, and for interpreting the pattern

of diversification among taxa (Lande, 1979). Until

recently, efforts to utilize these results have been ham-

pered by the difficulty of assessing the sampling varia-

tion of G and of the complex and often nonlinear

statistics that are functions of G. Bayesian estimation

using a Markov chain Monte Carlo algorithm (MCMC)

has recently been applied to such problems (e.g. O’Hara

(a)

(b)

Fig. 1 Mean (a) and standard deviation (b) of log10 eigenvalue

estimates from the parametric bootstrap, REML-MVN on the

L- and G scales, and MCMC.
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et al., 2008; Hadfield, 2010; Aguirre et al., 2014; Stinch-

combe et al., 2014), but the application of MCMC

methods can be computationally intensive for large

problems.

As an alternative, we have applied our recently

implemented REML-MVN method (Meyer & Houle,

2013) of estimating the sampling variation in restricted

maximum-likelihood (REML) estimates of additive

genetic variance–covariance matrices. As our example,

we used data on wing shape in Drosophila melanogaster

from a very large experiment (Mezey & Houle, 2005).

We focused on sampling variation in the evolvability

statistics proposed in Hansen & Houle (2008).

Our goal in this contribution has been first to dem-

onstrate the REML-MVN approach for a single-well-

estimated data set. Comparison of parameter estimates

and their sampling error based shows that REML-MVN

estimates are quite similar to those derived from the

parametric bootstrapping and MCMC in mean and vari-

ance. We can use the parametric bootstrap as the base-

line for comparison, as those results depend on

simulated data that corresponds to the assumptions of

the analysis. The similarity of all three sets of results

validates the accuracy both the parameter estimates

and their sampling errors from the REML-MVN and

MCMC approaches. This validation of the REML-MVN

approach is also supported by the results for simulated

data reported by Meyer & Houle (2013).

Looking more closely, there are small quantitative

departures between bootstrap, REML-MVN and MCMC

estimates. Discrepancies could in principle be explained

either by flaws in the methods, in their application, or

by departures of the data from the assumed multivariate

normal distribution. In the case of REML-MVN, these

departures potentially reflect insufficiently sampled

aspects of G for which large-sample results do not hold.

Given these results, the REML-MVN approach is

attractive because it is usually computationally much

more efficient than either MCMC, or bootstrap

approaches. For the data reanalysed here, convergence

in WOMBAT (Meyer, 2007, 2006–2015) from a poor

initial estimate of G (equal to half the phenotypic vari-

ance-covariance matrix) takes 9.5 h on an AMD Opter-

on 4180 processor with speed of 2793 MHz. Generation

of 100 000 REML-MVN samples then requires only sec-

onds of processor time. Using the R package

MCMCglmm (Hadfield, 2010), the same problem takes

about 6.5 h to produce 1000 iterations. Thinning to

every 60 generations, production of the 1000 samples

used in this analysis took over 400 h of processor time.

The greater the number of variables, and the closer the

initial estimates are to the final estimate, the greater

the run time advantage of REML-MVN over MCMC.

A second advantage of a maximum-likelihood

approach is can be used to test whether fitting a com-

plex model over a simpler one is supported by the data

Table 2 Evolvabilities in the direction of species divergence, e(b), in units of centroid size 9 106. Phenotypic distances from D. melanogaster

wings to other Drosophilid flies are in centroid size units.

Species

Distance to

D. melanogaster

Best estimate Mean Standard deviation

H&H08 REML MCMC Bootstrap

REML

L scale

REML

G scale MCMC Bootstrap

REML

L scale

REML

G scale MCMC

D. simulans 0.011 34.4 22.52 22.22 22.50 22.55 22.59 23.08 1.11 1.00 0.98 0.92

D. ananassae 0.082 66.7 41.44 41.85 41.43 41.50 41.54 42.11 1.92 1.70 1.67 1.45

D. pseudo-obscura 0.041 64.9 38.44 38.50 38.47 38.46 38.40 38.99 1.79 1.64 1.57 1.59

D. willistoni 0.056 55.1 47.5 48.40 47.60 47.50 47.75 48.35 2.26 2.03 2.07 1.81

D. virilis 0.057 46.6 30.96 31.31 31.00 30.84 31.00 31.26 1.40 1.28 1.20 1.20

D. grimshawi 0.172 55.2 41.78 41.95 41.82 41.66 41.89 42.20 1.94 1.70 1.64 1.55

S. latifasiaeformis 0.114 56.9 48.63 49.03 48.68 48.65 48.84 49.21 2.29 1.95 1.96 1.65

Table 3 Conditional evolvabilities in the direction of species divergence, c(b), in units of centroid size 9 106. Samples described in Table 2.

Species

Best estimate Mean Standard deviation

H&H08 REML MCMC Bootstrap

REML

L scale

REML

G scale MCMC Bootstrap

REML

L scale

REML

G scale MCMC

D. simulans 2.7 1.69 1.50 1.57 1.66 1.58 1.50 0.17 0.17 0.18 0.16

D. ananassae 13.7 13.75 13.11 13.09 13.51 13.11 13.11 1.04 0.96 0.99 0.84

D. pseudo-obscura 12.7 6.69 6.51 6.28 6.58 6.30 6.51 0.56 0.54 0.59 0.57

D. willistoni 10.7 10.88 10.68 10.48 10.68 10.46 10.68 0.68 0.65 0.64 0.60

D. virilis 10.5 4.68 4.58 4.48 4.60 4.50 4.58 0.30 0.28 0.30 0.28

D. grimshawi 17.4 7.5 7.65 7.20 7.36 7.21 7.65 0.46 0.43 0.46 0.45

S. latifasiaeformis 24.9 9.53 8.24 8.75 9.37 8.75 8.24 1.15 1.19 1.24 1.08
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(Meyer & Kirkpatrick, 2005, 2008). Such tests are

important to perform when there is some doubt about

whether a complex model can be supported by the

data, given that both standard MCMC and the L-scale

REML-MVN approach produce estimates constrained to

be of full rank.

While our results, plus the simulations reported in

Meyer & Houle (2013), validate the use of REML-MVN

in some cases, this does not means that REML-MVN will

perform well for all data sets. Therefore, we suggest that

REML-MVN estimates of sampling error should continue

to be validated with estimates from a second approach.

Parametric bootstrapping based on the REML estimates

obtained is probably the least computationally intensive

of the alternatives, given that if the model is strongly

supported by the data convergence with a new simu-

lated data set should be relatively rapid. Restricted maxi-

mum likelihood does well for multivariate normal data,

but is unsuitable when the data follow other distribu-

tions, whereas Bayesian methods readily accommodate

such cases. REML-MVN depends on large-sample

approximations that are inappropriate for data sets

where the amount of information in the data is small

relative to the number of parameters estimated. For such

cases, MCMC is likely to perform better. Alternative

approaches, based for example on the profile likelihood

for individual parameters, might also be more appropri-

ate than REML-MVN when large-sample properties do

not hold.

The REML reanalysis of these data confirmed Mezey

& Houle’s (2005) conclusion that the G matrix for this

data set is full rank. Models with lower dimensionality

fit at least 38 Akaike information criterion units less

well than the full 20-dimensional model. Hine & Blows

(2006) suggested that the bootstrapping method

employed by Mezey & Houle was biased towards high

dimensionality, but they simulated only one of the two

bootstrapping approaches of Mezey & Houle (2005). On

the other hand, these new analyses do show that the

original estimates obtained by Mezey & Houle (2005),

using a method-of-moments analysis, were biased.

Results that depend on the best-estimated parts of the

G with large additive genetic variances, such as the

maximum evolvability and the average evolvability,

were overestimated by Mezey & Houle (2005) by up to

17%. On the other hand, the less well-estimated

aspects of the matrix that have the least genetic vari-

ance were underestimated by up to 8%. This pattern of

bias is expected for unconstrained estimates of covari-

ance matrices (Hill & Thompson, 1978).

In conclusion, resampling G matrices using the

restricted maximum likelihood, multivariate normal

approach can generate accurate assessments of sampling

variation in evolutionary statistics. The relatively short

run time of this method makes it an attractive alterna-

tive to both data resampling and Bayesian estimation

using a Markov chain Monte Carlo approach.
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Appendix

The original approximations for the expected condi-

tional evolvability, �c , and autonomy, �a, over all direc-

tions in phenotype space in Hansen & Houle (2008)

were incorrect and were corrected in Hansen & Houle

(2009). For clarity, we repeat the corrected equations

here.

The approximations depend on the following quanti-

ties: k is the dimension of matrix, E[k] and E[1/k] are

the means of the eigenvalues and of the inverse eigen-

value, respectively, H[k] = 1/E[1/k] is the harmonic

mean eigenvalue; I[k] = Var(k)/(E[k]2) is the variance

of the eigenvalues, standardized by the square of the

mean eigenvalue; I[1/k] = Var(1/k)/(E[1/k]2) is the var-

iance of the inverse of the eigenvalues standardized by

the square of the mean inverse eigenvalue.

The expected value of �c is approximately

�c � H½k� 1þ 2I½1=k�
kþ 2

� �
:

The expected value of �a is approximately.

�a � H½k�
E½k�

1þ 2
I½k� þ I½1=k� � 1þ H½k�=E½k� þ 2I½k�I½1=k�=ðkþ 2Þ

kþ 2

� �
:

Supporting information

Additional Supporting Information may be found in the

online version of this article:

Table S1 Average of Mezey & Houle’s (2005) male and

female G matrices, referred to as H&H08 G in text.

Table S2 REML estimate of G (of dimension 20) pro-

jected back into the original 24 dimensions.
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