Quiz 1 Answer Key

1.  The Na ion channel is an example of how molecules are transferred across the phospholipid bilayer by the process of

            a.         simple diffusion

            b.         facilitated transport

            c.         secondary active transport

            d.         primary active transport

ANSWER:  b.

           

2.  If you placed one of your cheek cells (given: The ICF = 150 mM NaCl ) in a solution of 300 mM glucose, and you assume neither compound could permeate the PL bilayer, through the process of osmosis your cell would

            a.         crenate

            b.         lyse

            c.         be happy as a clam (normal cell volume)

            d.         cannot determine by the provided information

ANSWER:  c.

 

3.  The Na/K ATPase pump uses a method called __________________   __________________

or successive phosphorylation/dephosphorylation cycles to change its configuration and pump ions against their concentration gradients.

            a.         phosphatase enzymes

            b.         secondary active transport

            c.         molecular peristalis

            d.         brownian movement

            e.         chemiosmotic hypothesis

ANSWER:  c.

           

4.  T or F 

 

All cells have a negative resting membrane potential and thus have the capacity to generate an action potential.

            a.         TRUE

            b.         FALSE

ANSWER:  b.

 

5.  Which of the following physiological processes requires no ATP expenditure?

            a.         endocytosis

            b.         exocytosis

            c.         osmosis

            d.         facilitated diffusion

            e.         two of the above

ANSWER:  e.

 

6.  Which of the following organic molecules would be classified as a protein?

            a.         glycogen

            b.         molecules that contain free fatty acids

            c.         molecules that are produced from peptide bond formations

            d.         steroids

            e.         DNA

ANSWER:  c.


7.  If a cell had the following ionic concentrations and permeabilities, about at what voltage would you predict an action potential would change polarity (peak of the action potential spike)?

HINT: You can decide whether to use Nernst or Goldman.

 

PK = 10

PNa = 10,000

Assume you are computing for my pug Jack (mammalian temperatures)

 

[K+]o = 40 mM

[K+]i = 365 mM

[Na+]o = 310 mM

[Na+]i = 55 mM

 

            a.         45 mV

            b.         52 mV

            c.         58 mV

            d.         41 mV

            e.         -58 mV

ANSWER:  a.

 

8.  If the resting potential of the cell in #7 was -85 mV, at what voltage would this action potential fire fully, given the all-or-none principle?  HINT: Threshold.

           

            a.         around -64 mV

            b.         around -60 mV

            c.         around -66 mV

            d.         around -84 mV

            e.         cannot be determined with the data provided

ANSWER:  c.

 

9.  Which phase of the action potential is driven by the underlying activity (gated open) of K channels without any contribution of Na channel conformational changes?

            a.         depolarization

            b.         repolarization

            c.         hyperpolarization

            d.         latency

            e.         the resting membrane potential

ANSWER:  c.

 

10.  Which of the following properties is associated with the Action Potential?

            a.         they are an all-or-none process

            b.         they decrement in amplitude the further down the axon they travel

            c.         their threshold activity is mediated by the space constant or lambda

            d.         they have increased frequency when potassium channels are gated open

            e.         they can fire during the ARP phase

ANSWER:  a.

 

 

 

 

11.  If an action potential (AP) reaches threshold, where in the neuron will the AP “spike” be initiated?

            a.         the dendrite

            b.         the soma

            c.         the axon hillock

            d.         the synaptic terminals

            e.         the sodium/potassium ATPase pump

ANSWER:  c.