Respiratory Physiology

Three steps to respiration:

- 1. Pulmonary ventilation (breathing): involves the physical movement of air into/out of lungs
- 2. Gas exchange: involves gas diffusion between respiratory membrane and alveolar capillaries
- Gas transport: involves the transport of O₂ and CO₂ to and from alveolar capillaries and the capillary beds in tissues

Problems with Respiration

If any of these processes are hindered, reduced gas exchange occurs – reducing cell metabolism.

- Hypoxia low tissue O₂ levels causes reduced metabolic activities of affected areas
- Anoxia O₂ supply completely cut off causing cell death in local area. Damage to tissue seen in:
 - Strokes
 - Heart attacks

Pulmonary Ventilation

- Physical movement of air into/out of respiratory tract
- Respiratory cycle (single breath): consists of
 - Inspiration (inhalation)
 - Expiration (exhalation)
- Respiratory rate: number of breaths per minute
 - Typical normal adult rate ~ 12-18 breaths/min
 - Typical child rate ~ 18-20 breaths/min

Pulmonary Ventilation

- Breathing maintains adequate alveolar ventilation (movement of air into/out of alveoli)
 - Provides constant supply of O_2 for bloodstream
 - Prevents built up of CO_2 in alveoli

Airflow into the Lungs

- Caused by air moving from an area of higher pressure to an area of lower pressure
- Pressure gradient: difference between air pressure at high and low pressure
- Remember: each lung is enclosed in a pleural cavity
 - Covering the lung is the visceral pleura
 - Covering the inner wall of the thoracic cavity is the parietal pleura
 - Pleural fluid in the pleural space links the pleura

Airflow into the Lungs

- As the thoracic cavity increases:
 - The parietal pleura "pulls" on the visceral pleura
 *Remember: the pleural fluid links the two pleura
 - The lung expands and the pressure of the air inside the lungs decreases
- As thoracic cavity contracts:
 - The parietal pleura "pushes" on the visceral pleura
 - The lung contracts and the pressure of the air inside the lungs increases

Airflow into the Lungs

- Changes in thoracic cavity results from movement of the diaphragm and rib cage
 - Diaphragm: forms floor of thoracic cavity
 - Flattens when contracted, increases thoracic cavity volume
 - Projects upward when relaxed, decreases thoracic cavity volume
 - Rib cage:
 - Elevation of ribs increases thoracic cavity volume – Caused by external intercostal and accessory muscles
 - Lowering of rib cage decreases thoracic cavity volume
 Caused by internal intercostal and abdominal muscles

The Respiratory Cycle

Starts with pressures inside and outside of lungs being identical: no movement of air occurs.

- 1. Diaphragm and respiratory muscles contract, causing:
 - Enlargement of the thoracic and pleural cavities.
 - Lungs expand, creating lower air pressure inside $({\rm P}_i)$ compared to atmospheric pressure $({\rm P}_o)$
- 2. Air enters respiratory passageways
 - Since P_i is lower than P_o (atmospheric air pressure)

The Respiratory Cycle

- 3. Diaphragm relaxes, moves up; rib cage moves down causing:
 - Compression of the thoracic and pleural cavities.
 - Lungs compress, creating higher air pressure inside (P_{i}) compared to atmospheric pressure (P_{o})
- 4. Air moves out of the lungs

Compliance

Compliance – resilience and ability of lungs to expand. Depends on elasticity of lungs and surface tension in alveoli

- Low compliance greater force needed to fill and empty lungs
 - Seen in reduced surfactant production (respiratory distress disorder)
- High compliance less force needed to fill and empty lungs
 - Seen in emphysema (loss of supporting tissue)

Modes of Breathing

Two modes:

- 1.Quiet breathing: inspiration involves muscle contractions but expiration is passive
 - Inspiration: contraction of diaphragm and external intercostal muscles
 - Expiration: relies on elastic recoil of lungs and relaxation of muscles to push air out

Modes of Breathing

- 2. Forced breathing: both inspiration and expiration uses muscles
 - Inspiration: external intercostal <u>and</u> accessory muscles (sternocleidomastoid, scalene, pectoralis minor, serratus anterior) contract
 - Expiration: internal intercostal <u>and</u> abdominal muscles contract

Lung Volumes

Tidal Volume (V_T): amount of air moved into/ out of lungs in a respiratory cycle (~500 ml) Expiratory reserve volume (ERV): amount of

air that can be expelled after the end of normal expiration (~1000 ml)

Inspiratory reserve volume (IRV): amount of air that can be taken in over normal inspiration (~3300 ml in males, ~1900 ml in females due to difference in lung size)

Lung Volumes

Vital capacity: maximum amount of air that can be moved into/out of the respiratory system in a single respiratory cycle (VC = V_T +IRV+ERV)

Residual volume: amount of air that remains in your lungs after maximal expiration (~1200 ml in males, ~1100 ml in females)

*Note: some air (~150 ml) inspired never reach

the alveoli. They remain in the respiratory

passages - anatomic dead space of the lungs

Gas Exchange

Gas exchange between the alveolus and alveolar capillary depends on:

1.Partial pressure of gases involved

- At sea level, the partial pressure of O₂ is 159 mm Hg, the partial pressure of CO₂ is 0.3 mm Hg
- 2.Diffusion of molecules between a gas and a liquid

Partial Pressures

Main components of air:

- 1. Nitrogen (78.6%)
- 2. Oxygen (20.9%)
- 3. Carbon dioxide (0.5%)

Each gas contributes to the overall pressure of air. Their contribution is called the partial pressure of that gas. At sea level, the partial pressure of O_2 (P_{O_2}) is 159 mm Hg, the partial pressure of CO_2 (P_{CO_3}) is 0.3 mm Hg

Partial Pressures

OURCE OF SAMPLE	NITROGEN (N ₂)	OXYGEN (O ₂)	WATER VAPOR (H ₂ O)	CARBON DIOXID (CO ₂)
haled air (dry)	597 (78.6%)	159 (20.9%)	3.7 (0.5%)	0.3 (0.04%)
weolar air (saturated)	573 (75.4%)	100 (13.2%)	47 (6.2%)	40 (5,2%)
(reominan (summers)				
ixhaled air (saturated) right © 2007 Pearson Education, in	569 (74,8%) c., publishing as Benjamin Cur	116 (15.3%) mings	47 (6,2%)	28 (3.7%)
right © 2007 Pearson Education, In	569 (74,8%) c., publishing as Benjamin Cur	116 (15.3%) nnings	47 (6,2%)	28 (3.7%)
shaled air (saturated) right © 2007 Pearson Education, In	. 309 (74.8%) c., publishing as Benjamin Cur	116 (15.3%) nnings	47 (6,2%)	28 (3.7%)
xhaled air (saturated) right © 2007 Pearson Education, In	369 (74,8%) c., publishing as Benjamin Gur	116 (15.3%)	47 (6.2%)	28 (3,7%)

Partial Pressures

As air enters the respiratory tract, the partial pressures of gases change since:

- 1. Air becomes warmer
- 2. Air becomes more humid
- 3. Inspired air mixes with air already in the respiratory tract (in the "dead space")

At the alveoli, the ${\rm P}_{{\rm O}_2}$ is 100 mm Hg and the $({\rm P}_{{\rm CO}_2})$ is 40 mm Hg.

External Respiration

Difference between the P_{O_2} (100 mm Hg) of the alveolus and alveolar capillary (40 mm Hg) drives O_2 into the capillary.

Movement of CO_2 out of the capillary is also driven by difference in the P_{CO_2} in the alveolar capillary (45 mm Hg) and the alveolus (40 mm Hg)

This exchange of gases between the alveolar air and blood is called <u>external respiration</u>

Internal Respiration

During internal respiration, diffusion of gases occur between the oxygenated blood in the capillary and the interstitial fluid (tissues). O2 enters tissues and CO2 leaves tissues since:

- Normal interstitial fluid has a $\rm P_{O_2}$ of 40 mm Hg and $\rm P_{CO_2}$ 45 mm Hg
- Capillary blood at the arteriole end has a $\rm P_{O_2}$ of 100 mm Hg and $\rm P_{CO_2}$ 40 mm Hg

Therefore, there is a driving force of 60 mm Hg on O_2 into tissue, and 5 mm Hg of CO_2 out of tissue

Gas Transport: O₂

Most O₂ transported in blood is bound to hemoglobin (Hb) in red blood cells

- Only 1.5% of $\rm O_2$ are transported dissolved in plasma
- Release of O2 from Hb is influenced by:
 - Partial pressure of O₂
 - pH (active tissue = lower pH)
 - Temperature (active tissue = higher temp)

Gas Transport: O₂

- More active a tissue, the lower the $\mathsf{P}_{\mathsf{O}_2}$ of that tissue and the more O2 will be released from Hb
- Inactive tissue ~ $\mathsf{P}_{\mathsf{O}_2}$ of 40 mm Hg, causes release of 25% of Hb bound $\mathsf{O}_2^{}$
- Active tissue ~ $\mathsf{P}_{\mathsf{O}_2}$ of 15-20 mm Hg, causes release of 80% of Hb bound O_2

Gas Transport: CO₂

CO₂ is transported in blood using three reversible methods:

- 1. Dissolved in plasma
- 2. Bound to hemoglobin
- 3. Converted to carbonic acid (H₂CO₃)

CO₂ Transport

- Only about 7% of CO₂ is transported in blood in dissolved form
- About 27% of CO₂ can be transported by red blood cells.
 - CO₂ binds onto the protein "globin" of hemoglobin to form <u>carbaminohemoglobin</u>.
 - Binding of CO_2 to Hb does not alter Hb's O_2 transport function.

CO₂ Transport

- Most CO₂ (~70%) transported in the body as bicarbonate ions (from carbonic acid)
 - CO2 is converted to carbonic acid by carbonic anhydrase in red blood cells

- Carbonic acid rapidly dissociates into bicarbonate and H⁺
 H⁺ binds to Hb
 The BPC number HCO is put, and Cli in (ablerid)
 - The RBC pumps HCO_3^- out, and Cl^- in (chloride shift)

CO₂ Transport

When venous blood reaches the alveoli, CO_2 diffuses out of the plasma and the process seen in Figure 15.13 occurs in reverse to convert bicarbonate ions to CO_2 which then diffuses into the alveolus.

Control of Respiration

To supply a constant supply of O_2 and to remove the CO_2 generated, the body can:

- 1. Adjust the blood flow and O₂ delivery by local controls
- 2. Change the depth and rate of respiration (under the control of the brain's respiratory center)

Local Control of Respiration in Tissue

Increased tissue activity uses more O_2 (thus lowering P_{O_2}). This increases the difference in P_{O_2} between capillary blood and interstitial fluid.

Increased tissue activity also generates more CO_2 . This causes relaxation of smooth muscles of arterioles in the area (increases blood flow).

Local Control of Respiration in Lung

Increased tissue activity also generates more CO_2 . The CO_2 is transported to alveolar capillaries and released into the alveolar space. The increase in CO_2 causes lung bronchioles to dilate (to increase airflow to lung lobules with higher P_{CO_2}).

Respiratory Centers of the Brain

Two components:

- 1.Involuntary respiratory centers: medulla oblongata and pons regulate respiratory muscles to control breathing rate and depth
- 2.Voluntary control: cerebral cortex gives voluntary control on:
 - The output of respiratory centers
 - Respiratory muscles

Reflex Control of Respiration: Chemoreceptor Reflexes

- Chemoreceptors: respond to changes in blood and cerebrospinal fluid. Stimulation of these chemoreceptors causes increase in respiration rate and depth.
- Centers located in carotid bodies and aortic bodies respond to:
 - pH: decreased pH caused by increase in lactic acid • P_{CO_2} : very sensitive. Slight drop in CO_2 is detected
 - P_{O_2} : not as sensitive as CO_2
- Receptors in medulla oblongata respond to pH and P_{CO_2} in cerebrospinal fluid

Respiratory Problems

Decompression sickness: painful condition that occurs when a person is exposed to a sudden drop in atmospheric pressure (nitrogen gas comes out of solution, forms bubbles in joint cavities, blood, cerebrospinal fluid)

Respiratory Problems

Emphysema: chronic, progressive condition characterized by shortness of breath, inability to sustain physical exertion. Cause linked to inhalation of toxic vapors (cigarette smoke), genetic factors, normal aging process

Carbon monoxide poisoning: CO has high affinity for Hb compared to O_2 and prevents O_2 binding to Hb. Treatment includes:

- Administration of pure O2

- Transfusion of red blood cells

Respiratory Problems

Lung Cancer: originate in bronchial passages or alveoli. Caused by inspiration of carcinogens (smoke, etc), genetics, highfat/high-cholesterol diet. Symptoms include chest pain, shortness of breath, cough/ wheeze, weight loss. Treatments include surgery, radiation exposure, chemotherapy.