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Abstract. Competition is an important interaction in ecology, and many experiments
have been done to examine the effects of intraspecific and interspecific competition. Un-
fortunately, most of these experiments have been done using either substitution or additive
experimental designs. Substitution designs, and to a lesser extent additive designs, severely
limit the useful inferences that ecologists can draw from the resulting data. Response surface
experimental designs, which vary the densities of two competing species independently,
offer the advantage of being able to compare the fits of alternative competition models and
to estimate model parameters. This kind of experimental design has been relatively little
used in ecology to date. I consider the use of response surface designs from two perspectives.
The first is the optimal allocation of experimental effort among density treatments, with
the goal of distinguishing among alternative models. Second, I compare the ability of six
response surface designs to estimate known competition coefficients correctly, using sim-
ulated data. Low densities and densities near equilibrium in one generation tend to return
similar densities the following generation and thus provide little or no information for
comparing alternative population models. Experimental designs that span a wide range of
densities, including high densities above carrying capacities, provide more accurate pa-
rameter estimates in general, but low densities are helpful for estimating population growth
rates. Designs that are not fully factorial are one compromise solution that can yield accurate
parameter estimates for models and yet require less experimental effort than full factorial
surfaces. In general, response surfaces are a powerful class of experimental design and
offer potentially stronger connections between empirical and theoretical approaches than
traditional experimental designs.

Key words: competition; experimental design; model selection; parameter estimation; response
surface.

INTRODUCTION

Interspecific competition for a limiting resource is
thought to be one of the major factors limiting the
distribution and abundance of species. In theory, the
intensity of competition among species can influence
their evolution, population dynamics (e.g., May 1974,
Hassell and Comins 1976, May and Oster 1976), and
coexistence (e.g., Hardin 1960, Atkinson and Shor-
rocks 1981, Tilman 1994, Inouye 1999a). Because of
the important role of competition in ecology, hundreds
of experiments have investigated intraspecific and in-
terspecific competition (reviews in Schoener 1983,
Ridsdill-Smith 1991, Gurevitch et al. 1992). Many of
these experiments have used one of two basic experi-
mental designs, substitution (replacement) series or ad-
ditive designs; however, both of these experimental de-
signs have been sharply criticized for their limitations
and misinterpretations (e.g., Connolly 1986, Cousens
1991, Gibson et al. 1999). These limitations make this
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large body of data less useful than it could have been,
had more powerful experimental designs been used in-
stead. The use of substitution and additive experimental
designs has largely precluded generating quantitative
estimates of the effects of interspecific competition on
population dynamics or coexistence, beyond the infer-
ence that species do or do not compete. In this paper
I discuss the benefits and uses of response surface de-
signs, a third type of design for competition experi-
ments that does not have the same limitations as sub-
stitution or additive experimental designs.

I concentrate on the properties of response surface
experimental designs because these designs are well
suited for fitting explicit competition models to data.
Fitting explicit mathematical models of competition is
an important objective for two reasons. First, the use
of explicit models allows quantitative prediction of
population dynamics, as opposed to qualitative mea-
sures of the presence or absence of competition (Peters
1991). For example, in order to rank threats to a native
species that are posed by introduced competitors, we
need to quantify the effects of interspecific competition
on the population dynamics and persistence of the focal
species. Results from experiments that use a substi-
tution or additive design cannot be used to fit predictive
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FIG. 1. Examples of the three main classes of experi-
mental designs used for competition experiments. Each point
represents a different treatment, or combination of densities,
of species X and Y. Density is the number of individuals per
unit area. Designs C and D are two alternative response sur-
face designs.

models and limit our inference to the particular den-
sities used in the experiment, even though natural pop-
ulations commonly change in size from year to year.
Second, fitting explicit models allows one to measure
competition in the field using the same units as theo-
retical models, thus allowing a more direct connection
between theoretical and empirical approaches and more
rigorous tests of theory (Damgaard 1998) than tradi-
tional null-hypothesis tests. Despite the profusion of
empirical competition studies, relatively few have cal-
culated the interspecific competition coefficients that
are the focus of most theoretical studies of competition
(but see Park 1948, Vandemeer 1969, Ayala et al. 1973,
Pfister 1995, Damgaard 1998, Inouye 1999b, Freck-
leton et al. 2000). Examples of competition experi-
ments that used some form of response surface exper-
imental design but did not estimate standard compe-
tition coefficients are not uncommon (e.g., Wilbur
1972, Watkinson 1981, Farmer et al. 1988, Connolly
et al. 1990, Bullock et al. 1994, 1995, Juliano 1998,
McPeek 1998). Indeed, few studies have fit any com-
petition models to data, other than the unrealistically
simple models implicit in some statistical tests (i.e., a
global linear response to density).

Many of the advantages of response surface exper-
imental designs for investigating competition have
been mentioned before (e.g., Goldberg and Scheiner
1993, Gibson et al. 1999), but few field studies have
actually used these experimental designs, and a thor-
ough review of the ecological application and analysis
of these designs is still lacking. One deterrent to the
use of response surface experimental designs is that a
large set of potential experimental designs are grouped
in this category, with few guidelines for empiricists on
how to choose among them. In this paper, I review
substitution, additive, and response surfaces experi-
mental designs, and then focus on response surface
experimental designs from two different perspectives.
First, given that experimental effort is always limited,
it is useful to ask which treatments are most efficient
for gaining information. I address the optimal alloca-
tion of experimental effort by asking whether some
densities of competitors are more informative for dis-
tinguishing among competing models than others. Sec-
ond, I use simulations to compare the ability of six
different response surface designs with different allo-
cations of experimental effort to estimate correctly the
parameters of simple competition models under a va-
riety of conditions.

REVIEW OF EXPERIMENTAL DESIGNS:
USES AND OBJECTIVES

The first step in choosing an appropriate experimen-
tal design is to clearly state the objectives of the in-
vestigation. I consider three possible objectives for
evaluating the utility of different experimental designs.
The first is to quantify the effects of a competitor (Y )
on the performance of a focal species (X ), without

regard for the reciprocal effects of X on Y. For example,
in an agricultural setting, one might want to know the
competitive effects of a weed on the performance of a
crop, but not care about the effects of competition on
the weed. A second objective might be to distinguish
among models that describe the effects of both intra-
specific and interspecific competition, including mod-
els that incorporate density- or frequency-dependent
effects. Comparing the fit of alternative models can
help to decide among competing hypotheses about
competitive mechanisms, and selecting a best-fit model
(or testing the fit of a particular model) is important
for creating a predictive framework or verifying mod-
eling assumptions. The third possible objective is to
estimate parameter values for a particular model, once
an appropriate functional form for the model has been
chosen. Certainly there are other possible objectives
for investigations of interspecific competition, but I
have chosen to concentrate on the objectives of fitting
and parameterizing models describing the effects of
both intraspecific and interspecific competition. Data
analysis by model selection and fitting allows close
connections between empirical and theoretical work,
aids ecologists in making quantitative predictions about
the consequences of species interactions in natural and
managed communities, and is an increasingly common
tool (Hilborn and Mangel 1997, Burnham and Ander-
son 1998, Ellison 1999).

Examples of the three categories of experimental de-
sign discussed in this paper are shown in Fig. 1. For
simplicity, I will describe the experimental designs and
their analyses in the context of two competing species,
denoted X and Y; however, the designs and conclusions
are equally valid for investigations of competition be-
tween genotypes of a single species, and can be ex-
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FIG. 2. Six alternative response surface de-
signs. Density is the number of individuals per
unit area.

tended to studies of more than two species or geno-
types. For a substitution design (Fig. 1A), the total
density of individuals in each treatment is usually held
constant, while the proportion of each species is varied.
In the most common form of this design, only three
treatments are used: ratios of 1:0, 1:1, and 0:1 of spe-
cies X and Y. Substitution designs are also commonly
called ‘‘replacement series’’ (Connolly 1986, Snaydon
and Satorre 1989, Silvertown and Doust 1993) or ‘‘de
Wit series’’ in studies of plant competition (after de
Wit 1960). In an additive design (Fig. 1B) the density
of one species is held constant, and the density of the
putative competitor is varied. The critical feature of
these two types of designs is that all of the treatments
fall along a single line through the two-dimensional
plot of densities for X and Y: a diagonal line for sub-
stitution designs and a vertical (or horizontal) line for
additive designs.

Substitution designs confound the effects of varia-
tion in intraspecific and interspecific density, and are
poorly suited for any of the objectives outlined above.
Inferences from substitution designs are limited also
by the fact that the results of an experiment will depend
critically upon the (arbitrary) single-species densities
that are chosen as the end points of the mixtures (In-
ouye and Schaffer 1981, Firbank and Watkinson 1985,
Connolly 1986, 1997, Snaydon 1991, 1994; but see
Sackville Hamilton 1994). By controlling the density
of a competitor, additive designs can detect a significant
effect of interspecific competition on the performance
of a focal species, thus addressing the first objective
described above. Drawbacks of additive designs in-
clude the limitations that the effects of intraspecific
competition cannot be estimated for comparison to in-
terspecific effects (because the density of the focal spe-
cies is held constant, Fig. 1B), and that inferences about
the effect of interspecific density may depend on the
density of the focal species that was chosen. Further-
more, in an additive design frequency dependent com-
petitive effects are confounded with interspecific com-

petition. The scope of this last problem is not known,
since very few studies have even attempted to look for
frequency-dependent effects of competition (but see
DeBenedictis 1977, Law and Watkinson 1987, Anto-
novics and Kareiva 1988).

Response surface experimental designs (Figs. 1C and
D, 2) vary the densities of both species independently.
Most often this is done by using treatments with fac-
torial combinations of the two species at two or more
densities, but any design where treatments do not all
fall on a single line is a response surface design even
if treatments are not factorial. Several authors have
used ‘‘factorial designs’’ or ‘‘complete additive de-
signs’’ to refer to response surface designs in general
(Fig. 2A–E; e.g., Cousens 1991, Snaydon 1991, Sil-
vertown and Doust 1993), neglecting other kinds of
response surfaces that are not factorial. Response sur-
face design F (Fig. 2) has also been called a ‘‘replace-
ment series design’’ (Silvertown and Doust 1993) and
an ‘‘addition series’’ (Cousens 1991), unfortunately
confusing earlier terminology.

Response surface experimental designs are poten-
tially suitable for a wide range of experimental objec-
tives. Their worst shortcoming seems to be that they
are overkill for some purposes (Cousens 1991). By us-
ing a range of densities for each species, response sur-
face designs can describe intraspecific and interspecific
competition without limiting inference to any particular
densities. This is important for studies in natural sys-
tems, where the densities of the competitors may
change over time, and is necessary for studies aiming
to predict population dynamics or coexistence. Re-
sponse surface designs are the only one of the three
classes of experimental design considered here that can
distinguish among different models and provide pa-
rameter estimates for these models. Two-species com-
petition models describe a surface, but substitution and
additive designs only provide data along a one-dimen-
sional line under this two-dimensional surface.

Substitution, additive, and response surface designs
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TABLE 1. Five competition models from the literature,
where Xt11 5 Xt f(Xt, Yt).

Model f(Xt, Yt)
Single species

equilibrium

1
2
3
4
5

1 1 l (1 2 (Xt 1 bYt)/K)
l 3 exp{2c(Xt 1 bYt)}
l/{1 1 c(Xt 1 bYt)}
l/{1 1 (Xt 1 bYt)b}
l/{1 1 c(Xt 1 bYt)}b

K
ln(l)/c
(l 2 1)/c
(l 2 1)1/b

(l1/b 2 1)/c

Notes: The interspecific competition coefficient is b, which
represents the effect of species Y on species X, relative to
intraspecific competition. The maximum population growth
rate from a low density in all models is l. The parameters b
and c are empirical constants used to set the carrying capac-
ities; these parameters affect the responses to competition but
do not have clear biological meanings. Model 5 was used
with b 5 2, in order to distinguish it from model 3.

are not the only possibilities for investigating com-
petition. Antonovics and Fowler (1985) used a ‘‘hex-
agonal fan’’ experimental design, in which plants of
two species were placed at increasing distances from
each other in two overlapping hexagonal arrays. This
generates a space-efficient array where individual
plants have from one to six neighbors of the competing
species and grow at a range of densities, so that this
experimental design could also be used for fitting and
parameterizing models. Unfortunately, because each
plant serves as both a focal individual and a neighbor,
the treatments in this design are not independent, which
means that the results of standard statistical analyses
must be interpreted with caution. Another limitation is
that experimental designs such as this, which create a
range of competition treatments by using overlapping
arrays (e.g., Veevers and Boffey 1979), can only be
used for sessile organisms such as plants, and for a
relatively limited range of densities.

Gibson et al. (1999) reviewed 10 yr (1984–1993) of
greenhouse studies on plant competition in 11 ecolog-
ical journals and found that substitution designs (re-
placement series) were the most common design used,
representing 35% of the total 107 studies and 20% (3
of 15) of the studies in Ecology. Additive designs were
a close second in frequency of use. I reviewed issues
of Ecology from 1994 to 1999, and found 43 experi-
mental studies of competition among plants, animals,
or microorganisms. Only six studies (14%, mostly on
plant competition) used substitution designs, so per-
haps the repeated criticisms of this experimental design
are beginning to take hold. The majority of the studies
(23) used additive designs, increasing or decreasing the
density of interspecific competitors and recording the
response of a focal species. Four studies used experi-
mental designs that were more difficult to classify, such
as multigenerational chemostat experiments for com-
peting algae (Huisman et al. 1999). The remaining ten
studies used some form of response surface, usually a
factorial design with two or three densities of each
competitor, but only one analyzed the data from a re-
sponse surface by fitting an explicit model (Juliano
1998). The remainder of the studies using response
surface designs, and almost all of the studies using
additive designs, used ANOVA to look for the simple
presence of effects of competition, rather than esti-
mating a strength of competition. Thus, although re-
sponse surface experimental designs are perhaps more
frequently used now than two decades ago, they are
not being used to their full potential.

RESPONSE SURFACE DESIGNS FOR MODEL

SELECTION AND PARAMETER ESTIMATION

Picking a response surface design to evaluate
alternative models

In this section, I discuss general guidelines for al-
locating experimental effort among regions of a sur-

face, so as to distinguish among competing models and
select a functional form that best fits the data. The
details of how to select an appropriate model for the
data are beyond the scope of this paper, but can be
found in many books (e.g., Dobson 1990, Edwards
1992, Christensen 1997, Hilborn and Mangel 1997,
Burnham and Anderson 1998). Regardless of which
models do fit the data well, a poor choice of experi-
mental design or allocation of effort will make it dif-
ficult, if not impossible, to distinguish among the pos-
sibilities.

The resources and time available will limit the size
of any experiment, and thus it is important to consider
how effort should be expended efficiently to contrast
a set of alternative models or to estimate model pa-
rameters (in the following section). In some cases the
maximum number of organisms available at one time
might limit the size of the experiment, so that there is
a choice between using few replicates with a higher
mean density, or more replicates with lower mean den-
sities. In other cases the number of different treatments
(and/or replicates) is limiting, because of the difficulty
of constructing cages or plots where the competitors’
densities can be manipulated.

Table 1 lists five different competition models that
are commonly used in ecological investigations. All
five models consist of a pair of recursive equations that
describe the relationship between the densities of two
species in consecutive generations (Xt and Xt11). For
simplicity I have only shown the equation for a focal
species, X, competing with a species Y, and have not
shown the analogous equation for species Y. These
models share certain parameters to describe population
dynamics and the effects of competition: the population
growth rate, l, a parameter that sets the carrying ca-
pacity, K or c, and the per capita strength of interspe-
cific competition, b. The competition coefficient b typ-
ically measures the strength of interspecific competi-
tion relative to intraspecific competition, which is im-
plicitly given a strength of one. Thus if b equals zero
there is no interspecific competition, whereas b equal
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TABLE 2. The experimental effort required for each of the
three response surface experimental designs.

Design Individuals Cages

Replicates
needed for

similar
individual

effort

Replicates
needed for

similar cage
effort

A
B
C
D
E

360
180

90
45

105

35
35
35

8
18

1
2
4
8
3

1
1
1
4
2

Note: The individual effort is the number of individuals of
each species required for the complete design, and the cage
effort is the number of experimental units (i.e., cages, plots,
or ponds) required for the complete design.

to five means that each individual of species Y has an
effect equivalent to the intraspecific competition from
an additional five individuals of species X on the per-
formance of species X (e.g., recruitment, survivorship,
or yield).

These models can be broadly grouped into two fam-
ilies based on their basic functional forms. Models 1
(May and Oster 1976) and 2 (Ricker 1954, May 1974)
predict a linear effect of density on the population
growth rate, whereas models 3 (Law and Watkinson
1987), 4 (Leslie 1958), and 5 (Hassell and Comins
1976) predict nonlinear effects of density, proportional
to an inverse power of the previous generations’ den-
sities. Model 5 contains one more parameter than the
other models, and thus has slightly more flexibility in
describing the effects of intraspecific and interspecific
densities. Models 3 and 4 can be viewed as simplified
versions of model 5. Models 1 and 2 are often used as
discrete versions of the continuous Lotka-Volterra
competition equations. Model 5 (Hassell and Comins
1976) and reduced versions of this model have been
found to provide a good fit to data from several com-
petition experiments (e.g., Bullock et al. 1994, 1995,
Inouye 1999b) and have been widely used in theoretical
studies of competition. Other functional forms for com-
petition models are, of course, possible.

A plot of the density of the focal species in gener-
ation t 1 1 (Xt11) as a function of the densities of the
focal species and the competitor in generation t (Xt and
Yt), describes a surface. Because the different func-
tional forms of these equations imply different mech-
anisms for the way individuals gather and compete for
resources, each of the models describes a different sur-
face even when given the same parameter values (al-
though the exact interpretation of the parameters may
differ among models). For example, according to the
discrete logistic and Ricker models (models 1 and 2),
populations of the focal species that are above the car-
rying capacity in one generation will fall below the
carrying capacity in the following generation, whereas
the Hassell and Comins model (model 5) and its var-
iations all predict a monotonic return to the carrying
capacity. This difference in model behavior above car-
rying capacity will be discussed again in the section
on parameter estimation.

Distinguishing among different models that describe
the effects of intraspecific and interspecific density is
equivalent to distinguishing among the shapes of the
surfaces described by the models. Where the heights
of two surfaces are identical, the models that describe
those surfaces cannot be differentiated. Conversely,
data from densities of Xt and Yt where models make
different predictions are informative. Thus, in order to
show where experimental effort is more informative, I
calculated the geometric mean of the absolute differ-
ences among all pairs of model responses for densities
of Xt and Yt, using the five models in Table 1. The
geometric mean is more appropriate than the arithmetic

mean for this purpose because it gives greater weight
to small differences between models. Any (X, Y) treat-
ment for which two different models predict the same
response will yield a geometric mean difference of
zero, regardless of the magnitudes of the differences
with respect to other models. To calculate the geometric
means, surfaces for the five models from Table 1 were
generated using identical parameters for each model.
Model 1 has the unrealistic feature that it predicts neg-
ative densities of the focal species in response to high
densities of either the focal species or competitor.
Therefore, when the predicted response for model 1
was negative, it was set equal to zero. For model 5 the
parameter b was set equal to 2 in order to distinguish
it from model 3.

Using response surface designs to estimate
model parameters

To compare the efficiency of the six experimental
designs from Fig. 2, I simulated data sets based on each
design and then compared the parameter estimates from
these simulations to the known parameters used to gen-
erate the data. I generated the simulated data using
competition models 2–5 in Table 2 and all six exper-
imental designs from Fig. 2, avoiding model 1 because
of its unrealistic feature of returning negative popu-
lation densities. For the most part, these simulations
assume that the proper form of the competition model
for estimating the parameters was known, which sep-
arates the model selection process from the parameter
estimation. In practice, model selection and parameter
estimation are integrated.

The simulations were repeated using either similar
‘‘individual effort’’ or equal ‘‘cage effort’’ (Table 2),
and with two levels of added error. For equal individual
effort, the number of replicates of each treatment in a
design was adjusted so that the total number of indi-
vidual competitors required for each design was equal
(360 individuals of each species). To create equal cage
effort the number of replicates of each design was ad-
justed so that the total number of treatments 3 repli-
cates was equal. For studies of plant competition, these
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FIG. 3. Geometric mean differences among model pre-
dictions (Xt11) for combinations of densities of the two com-
petitors (Xt and Yt), using the five different models in Table
2. For all models the growth rate l 5 2.5, the single species
carrying capacity 5 10, and b 5 1.5. The dotted line shows
equilibrium densities for species X. Small values indicate den-
sities for which model surfaces have similar values, and thus
data could not easily distinguish among models. Large values
indicate densities where model surfaces differ most. Density
is the number of individuals per unit area.

replicates may of course be plots or pots instead of
cages. Balancing the amount of experimental effort re-
quired for each design by changing the degree of rep-
lication ensures that differences in their ability to es-
timate parameters are due to the allocation of treat-
ments to different densities, and not to unequal re-
sources for different designs. There will always be a
tendency for larger experiments with more replication
to yield more information, given similar experimental
designs.

Data sets were simulated by first calculating the ex-
pected densities of a species X in generation 1, given
the densities of X and a competitor Y in generation 0.
The expected density for each replicate was then mul-
tiplied by a log-normally distributed random variable
with a mean of 1 and a standard deviation of s. Log-
normally distributed error is commonly observed in
real data sets (Krebs 1999), and ensures that all of the
densities are positive numbers. For each simulated data
set, I found the maximum-likelihood parameter esti-
mates for the appropriate model (Edwards 1992), using
log-transformed data and assuming normally distrib-
uted error (Splus 4.0, Mathsoft, Seattle, Washington,
USA). The baseline simulations used l 5 2, b 5 1.5,
a single-species carrying capacity of 10, and s 5 0.1.
To investigate the sensitivity of the results to the choice
of model parameters, additional simulations were con-
ducted with the Ricker competition model (model 2),
using additional values for l (1.5, 2, 3, 4), b (1, 1.5,
3), and s (0.05, 0.1, 0.3). I chose to concentrate on the
Ricker model because it has been widely used in the-
oretical and empirical investigations and its properties
are relatively well understood (Hastings 1997). To in-
vestigate the robustness of parameter estimates to the
choice of competition model used to fit the data when
the true model is unknown, in some cases the data sets
were generated using one competition model and pa-
rameters were estimated using likelihoods for a dif-
ferent model.

RESULTS

Using response surface designs for evaluating
alternative models

Fig. 3 shows contours for the geometric mean dif-
ference among all pairs of the five models in Table 1,
with l 5 2.5, carrying capacity 5 10, and b 5 1.5.
There are two cases when all models have similar pre-
dictions, and thus data cannot distinguish among them.
When the focal species is at a very low density, all of
the models predict that the focal species will remain
at a low density, and do not have divergent predictions
regardless of the density of interspecific competitors.
The second case occurs when the population growth
rate of the focal species is zero, i.e., at an equilibrium
density. This set of densities is described by the line
Yt 5 (carrying capacity 2 Xt)/b (the joint equilibrium
for both species is a point, not a line). Regions that

have high densities of both the focal species and the
competitor relative to the carrying capacity, or inter-
mediate densities of the focal species and low densities
of the competitor relative to carrying capacity, are more
informative for distinguishing among models (Fig. 3).
Of course, to know whether a density is high or low
relative to the carrying capacity it is necessary to have
treatments with a range of densities, so the exact in-
formation value of a single treatment depends on the
other treatments in the experimental design.

The population growth rate, l, has no effect on the
shape of the contours in Fig. 3, although higher growth
rates do lead to larger absolute differences among mod-
el predictions. Changes in the competition coefficient,
b, or the carrying capacity affect the location of the
line describing the equilibrium densities. This alters
the exact location of the contours, but the overall shape
of the surface in Fig. 3 is unchanged (results not
shown), and can be recovered by rescaling the axes
relative to the carrying capacity or b. The range of
different competition models that are commonly used
in ecological studies tend to have functional forms sim-
ilar to the ones used to generate Fig. 3, and thus the
general shape of the contours in Fig. 3 are relatively
robust to the exact choice of competition models used
in the analysis (results not shown).

If the carrying capacities and competition coeffi-
cients for the competitors were known a priori, it would
be possible to design an experiment to distinguish
among models that allocated effort optimally; however,
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TABLE 3. Parameter estimates from simulations of the six designs (A–F) shown in Fig. 2.

Noise Parameter True value A B C

s 5 0.1
s 5 0.1
s 5 0.1

s 5 0.3
s 5 0.3
s 5 0.3

s 5 0.1
s 5 0.1
s 5 0.1

ln(l)
ln(c)
b

ln(l)
ln(c
b

ln(l)
ln(c)
b

0.693
0.069
1.5

0.693
0.069
1.5

0.693
0.069
3.0

0.693 6 0.052
0.069 6 0.003
1.504 6 0.081

0.696 6 0.155
0.069 6 0.010
1.528 6 0.269

0.692 6 0.051
0.069 6 0.003
3.015 6 0.146

0.693 6 0.051
0.069 6 0.005
1.526 6 0.172

0.681 6 0.147
0.068 6 0.019
1.741 6 1.318

0.693 6 0.036
0.069 6 0.005
3.008 6 0.206

0.692 6 0.052
0.070 6 0.007
1.572 6 0.367

0.692 6 0.139
0.068 6 0.036
2.698 6 3.316

0.692 6 0.026
0.069 6 0.007
3.037 6 0.304

s 5 0.1
s 5 0.1
s 5 0.1

ln(l)
ln(c)
b

1.396
0.139
1.5

1.386 6 0.051
0.139 6 0.003
1.500 6 0.038

1.388 6 0.036
0.139 6 0.005
1.503 6 0.058

1.388 6 0.026
0.139 6 0.006
1.502 6 0.078

Notes: Results are shown as the mean 6 1 SD of 500 maximum likelihood estimates. The distributions of parameter
estimates are approximately normal, except for designs B, C, and D with s 5 0.3. These simulations were run using designs
with similar organism effort, and used the Ricker model to generate the data and fit the maximum-likelihood estimates.

in ecological research this information is typically un-
known. Fig. 3 suggests that it is important to include
a relatively broad range of densities of the focal spe-
cies. Cousens (1991) states that the choice of densities
for treatments in a response surface design can be ar-
bitrary, but suggests that the densities of each species
be spaced according to a geometric series rather than
evenly spaced. According to Fig. 3, an evenly spaced
distribution of treatments may be preferable. Using a
geometric series places the highest density of treat-
ments at low densities of each species, where data are
less informative. An evenly spaced distribution of
points ensures that more treatments will have a high
density of each species, and increases the chance that
some treatments will be above the (unknown) carrying
capacity of the focal species. Picking some treatments
with densities of competitors that are at the upper end
of naturally observed densities will both maximize the
expected differences among alternative models of com-
petition, which aids in model selection analyses, and
improve the odds of detecting any significant effects
of competition. On the other hand, for accurate param-
eters estimates of population growth rates it is helpful
to use some treatments with densities below the car-
rying capacities (cf. designs C and F, Table 3, Fig. 4).

Clearly, for purposes of distinguishing among mod-
els of competition, using treatments with a broad range
of densities is desirable, but this may not be feasible
in cases where experimental effort is limited by the
number of organisms available to the researcher rather
than the number of experimental units (i.e., cages or
plots). Given limited experimental effort, using a broad
range of densities may also conflict with a desire for
increased replication of each density treatment. Note
that, in order to fit a model to the data from a response
surface experimental design, it is not strictly necessary
to replicate treatments. On the other hand, in order to
estimate some common measures of lack of fit, or to
analyze results with an ANOVA approach instead of a

likelihood or regression based approach, some repli-
cation is required.

Comparison of parameter estimates for
six response surface designs

The mean and standard deviation of 500 maximum
likelihood estimates of the competition coefficient b
from the Ricker model, given the baseline parameters
and using similar cage effort, are shown in Fig. 4. Note
that the error bars in Fig. 4 show the standard deviation
of the 500 maximum-likelihood estimates, as opposed
to a measure of the confidence interval for each indi-
vidual maximum-likelihood estimate. The results for
estimates of the model parameters using different initial
parameter values, and using equal organism effort, are
given in Table 3. When the simulations contained rel-
atively little added noise (s 5 0.1, lines 1–3, 6–12),
parameter estimates from all six of the response surface
designs were on average very accurate. While the mean
parameter estimates were close to the true values used
for the simulations, the estimates based on some ex-
perimental designs were more variable than the esti-
mates from others. With higher levels of noise, param-
eter estimates were increasingly variable and less ac-
curate, especially for designs B, C, D, and E (Table 3,
lines 4–6). Increasing b led to increases in the standard
deviations of the parameter estimates, whereas increas-
es in l led to decreases in the standard deviations of
the parameter estimates (Table 3).

For all of the competition models, estimates of the
competition coefficient (b) from experimental designs
that included treatments with higher densities and cov-
ered a larger area had lower variance (results for the
Ricker model shown in Fig. 4, Table 3). Thus estimates
based on simulations of designs A and F, which cover
higher densities, always had the smallest variance,
though which of these two designs was best depended
on the competition model being used (results not
shown). For the Ricker model, with larger amounts of
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TABLE 3. Extended.

D E F

0.697 6 0.071
0.069 6 0.006
1.525 6 0.208

0.679 6 0.201
0.068 6 0.024
1.909 6 1.668

0.694 6 0.050
0.069 6 0.006
3.017 6 0.262

0.688 6 0.061
0.069 6 0.004
1.514 6 0.105

0.706 6 0.190
0.070 6 0.013
1.545 6 0.368

0.693 6 0.061
0.069 6 0.004
3.014 6 0.195

0.695 6 0.039
0.069 6 0.003
1.506 6 0.093

0.690 6 0.110
0.069 6 0.010

1.5204 6 0.264

0.691 6 0.030
0.069 6 0.003
3.010 6 0.124

1.390 6 0.049
0.139 6 0.006
1.499 6 0.068

1.387 6 0.061
0.139 6 0.004
1.503 6 0.053

1.385 6 0.031
0.139 6 0.003
1.497 6 0.035

FIG. 4. Parameter estimates 6 1 SD of the maximum-
likelihood estimates for the six experimental designs (A–F)
in Fig. 2, using similar cage effort. The true value for b 5
1.5, s 5 0.1. The distributions of parameter estimates are
approximately normal.

added noise, the mean estimate from design C, which
uses the lowest densities among the experimental de-
signs in Fig. 2, was off by a factor of almost two and
the estimates were highly variable (Table 3, lines 4–
6). In fact, experimental design C consistently provided
the worst parameter estimates for all of the competition
models used to generate and fit the data, emphasizing
the utility of at least a few high-density treatments. For
the Ricker model, this same pattern was observed when
the simulations were run using designs with similar
cage effort, but designs B, C, D, and F performed
slightly less well than shown in Table 3 since they had
fewer replicates compared to the simulations with sim-
ilar individual effort (results not shown).

When estimating the population growth rate, l, all
six of the experimental designs provided accurate es-
timates, regardless of the competition model being
used. Unlike the estimates of the competition coeffi-
cient, in this case estimates from design C generally
had the smallest variance while those for experimental
designs A, D, and E, which have fewer replicates at
lower densities, returned more variable estimates. For
the parameter c, used to set the carrying capacity, the
ranking of parameter estimates was similar to the re-
sults for the competition coefficient estimates. All six
experimental designs provided estimates that were rel-
atively accurate, and designs that included higher den-
sities (A and F) had smaller error bars, while parameter
estimates based on design C had the largest variance
and bias.

These results are robust to the choice of competition
model used to simulate and analyze the data. The same
qualitative ranking of the six experimental designs’
performance was observed when data were simulated
and analyzed using any of the competition models, with
designs A and F providing the best parameter estimates.
When data were simulated using models 3–5, but fit
using the Ricker model, the qualitative rankings of the
designs were still similar despite using different models
to generate and fit the data, with designs A and F pro-
viding the best parameter estimates and design C the
worst. The estimates of the competition coefficient, b,

were quite accurate, but the estimates of the population
growth rate and carrying capacity were less so. The
rankings for designs B, D, and E were more variable,
although in absolute terms there were no large differ-
ences among their performance. When data were sim-
ulated using the Ricker model, models 3–5 could not
provide meaningful parameter estimates. This is be-
cause at densities above carrying capacity in one gen-
eration, the Ricker model returns densities below car-
rying capacity the following generation. Models 3–5
cannot duplicate this feature of the population dynam-
ics, and thus fits very poorly the data from a Ricker
model.

DISCUSSION

Establishing a strong connection between theoretical
and empirical approaches requires considering exper-
imental design, to ensure that experimental effort is not
wasted collecting data that cannot test theoretical pre-
dictions. In order to fit explicit competition models,
which can help shed light on the mechanisms of com-
petition and estimate interspecific competition coeffi-
cients, it is necessary to use a response surface design.
The results of this study provide some general guide-
lines for using response surface experimental designs
more efficiently.

The results in the first section suggest that for dis-
tinguishing among competing models describing the
effects of intraspecific and interspecific competition,
some combinations of densities of the two competitors
are more informative than other combinations. In par-
ticular, commonly used models differ most in their pre-
dictions for densities of a focal species above carrying
capacity, and at intermediate densities of a competitor.
Treatments with a focal species at low densities are
still useful for estimating model parameters but are not
as informative for contrasting different models. If pilot
data are available to suggest the magnitude of the car-
rying capacity of the focal species and effects of the
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competitor, the method outlined in the first section can
be used to guide more efficient allocation of experi-
mental effort. In the absence of data from pilot studies,
these results support the recommendation to include at
least a few densities near the maximum densities ob-
served in the field, assuming this is logistically feasible.
While densities above those observed in the field may
be even more informative for distinguishing among al-
ternative models, this only aids inferences if the range
of models being considered actually includes at least
one model that accurately describes competitive inter-
actions at both high and low densities.

The results described in the second section also dem-
onstrate the importance of allocating some experimen-
tal effort to treatments where the focal species is at a
relatively high density, since these designs returned the
most accurate estimates of the competition coefficients.
Simulations such as those presented here could also be
used to conduct power analyses, either for post hoc
interpretation of results, or preferably to guide choices
among alternative experimental designs before the ac-
tual experiment is done. When data were simulated
with a larger amount of added noise, only analyses of
data sets generated using response surface designs A
and F (Fig. 2) were able to accurately recapture the
original parameter values (Fig. 4), especially when es-
timating competition coefficients and carrying capac-
ity. Design A is a factorial design, whereas design F
is a set of substitution designs with different total den-
sities. What both of these designs have in common is
that the focal species is at a density relatively far above
its carrying capacity in some of the treatments. To es-
timate the population growth rate it is useful to have
treatments at low densities, where the population has
the largest growth response. Overall, response surface
design F appears to be a good choice for several rea-
sons: it uses some high densities and thus returns ac-
curate estimates of b and c, but also uses more low
density treatments and thus is good at estimating l,
too. Furthermore, design F requires fewer individuals
than a fully factorial design using higher densities, be-
cause it omits treatments where both species are at high
densities.

While designs with a wide range of densities are
better for both model selection and parameter esti-
mation, a factorial experimental design using only two
combinations of densities, one high and one low, may
be a poor choice compared to an experimental design
that also includes an intermediate density treatment.
Competition models often describe nonlinear surfaces,
and in order to capture these nonlinearities it is nec-
essary to use experimental designs with more than two
densities. Given limited experimental effort, adding
more treatments to an experimental design will often
require decreasing replication of each treatment. This
tradeoff is not always favorable from the perspective
of the current standard analysis, an ANOVA based in-
vestigation of the presence or absence of an effect of

competition, but can aid analyses that use a GLM or
likelihood-based framework to fit models and estimate
the magnitude of competitive effects.

The competition models discussed in this paper re-
late densities across consecutive generations, and have
been applied successfully to both animal and plant
competition (e.g., Bullock et al. 1994, 1995, Inouye
1999b). Experiments that cover multiple generations
can take advantage of alternative experimental designs
and analyses, which substitute many observations of a
single set of populations (time series) for single ob-
servations of many populations (a replicated short-term
experiment). Short-term plant competition experi-
ments, or others that last only a fraction of a generation
and relate a starting density to a final yield, can be
analyzed with a range of competition models that use
functional forms not considered here (e.g., Connolly
et al. 1990, Connolly 1997). However, fitting these al-
ternative models to data still requires a response surface
approach. These models were not covered here because
translating from short-term effects on yield or growth
to long-term predictions of population dynamics can
be problematic. Switching units from initial densities
(counts) to final size (weight or length) can also cause
problems interpreting the results of competition ex-
periments, regardless of the experimental design being
used, by introducing a size-dependent bias in the results
(Connelly 1996, 1997, Gibson et al. 1999).

Conclusions

Despite the major limitations of interpreting the re-
sults of experiments that use substitution designs, such
experiments continue to appear in the primary litera-
ture, and have been used in popular ecology textbooks
for illustrating the effects of competition (e.g., Begon
et al. 1990). The repeated criticisms of substitution
designs over the past two decades (Inouye and Schaffer
1981, Firbank and Watkinson 1985, Connolly 1986,
Snaydon 1991, Connolly and Wayne 1996, Gibson et
al. 1999) are hopefully beginning to deter their use.
Additive designs are still appropriate for a range of
important basic and applied questions, but, because
they cannot be used for fitting explicit models, they are
less useful for linking theoretical and empirical ap-
proaches than experiments using response surface de-
signs. Data from a response surface experimental de-
sign are well suited for evaluating the fits of alternative
models and are also able to provide estimates and con-
fidence intervals for the model parameters.

Competition experiments that use response surface
experimental designs seem to remain rare for two main
reasons. First, fitting models to the data from such ex-
periments is slightly more complicated than the anal-
ysis of additive designs. However, current statistical
packages now make it relatively simple to estimate
model parameters from data, using either generalized
linear models or maximum-likelihood methods, and to
compare the fit of multiple models. Second, response
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surface experiments are perceived as requiring a pro-
hibitive amount of effort (e.g., Cousens 1991, Goldberg
and Scheiner 1993). The results presented here dem-
onstrate that even response surface experiments with a
relatively low number of replicates or combinations of
densities are able to provide good parameter estimates,
especially if pilot data can be used to guide subsequent
experiments.
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