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Abstract

Background: Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and
energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs.
This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue
typical of non-avialan dinosaurs.

Methodology/Principal Findings: We report that Archaeopteryx long bones are composed of nearly avascular parallel-
fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings
dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds.
Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds.
Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and
other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth
rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all
endothermic vertebrates.

Conclusions/Significance: The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with
retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply
feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms
occurred later in the group’s history.
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Introduction

The genesis of birds was a key event in vertebrate history. The

descendants of these animals have dominated aerial niches from

the Late Mesozoic until today, where they are the most speciose

amniote clade (,10,000 species) [1,2]. Skeletal, feather, and

behavioral evidence conclusively place birds within the evolution-

ary radiation of theropod dinosaurs, rightly making birds the only

living dinosaurs [2–4]. Growth patterns, revealed through long

bone osteohistology can be traced phylogenetically through this

transition and used as a proxy for inferring physiological changes.

Non-avialan dinosaur bones show a characteristic well-vascular-

ized, rapidly formed woven-fibered matrix that is often interrupted

by growth lines [5–7] (Figure 1). Similar broad-scale histological

attributes have been reported in Mesozoic bird lineages close to

the base of the avialan tree [8–11] (Figure 1). This has contributed

to the paradigm that dinosaurian physiology is ancestral for

Avialae as a whole. (Although, whether that condition was

comparable to living birds is a subject of debate [6,12–15].)

We used dissecting microscopy to directly examine the long

bone periosteal and fracture surfaces spanning the entire size

range of Archaeopteryx (Eichstätt, Munich, Ottmann & Steil,

London, and Solnhofen specimens; Table 1), the oldest known

bird [16]. (Note: we follow Chiappe’s (2) interpretation that all

specimens are referable to a single species, Archaeopteryx lithographica;

see Materials and Methods.) In the two largest individuals

delamination of cortical bone consistent with growth line interfaces

were found, as anticipated (Figure 2). However, all specimens

unexpectedly showed exceptionally sparse longitudinal vasculari-

zation visible on the periostal surfaces and within the semi-

transparent bones (Figure 3). Furthermore, transversely running

fracture faces showed a circumferential fabric characteristic of the

dense lamellar or parallel-fibered bone-types of living non-

dinosaurian reptiles [17].
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These observations conflict with the hypothesis that dinosauri-

an-type growth physiology is primitive for the first birds.

Alternative explanations are: 1) Archaeopteryx grew aberrantly, 2)

basalmost avialan growth was substantially decelerated, perhaps in

response to the reallocation of resources from growth to powered

flight, or 3) that current phylogenetic resolution of histological

character states are insufficient to correctly infer the basalmost

avialan condition.

To test these hypotheses we used a comparative phylogenetic

approach. We were given the opportunity to study the long bone

histology of a juvenile specimen of Archaeopteryx (The Munich

Specimen, BSPG 1999 I 50; Figure 4) from which we describe the

taxon’s peculiar osseous microstructure. We also sampled the

successive crownward lineages, Jeholornis (another very primitive

long-tailed avialan; [18]), and Sapeornis (the primitive short-tailed

avialan that retains three fingers and teeth; [19]), to provide

broader representation of avialan histology in truly basal lineages

(Table 1). (Initial studies utilized the histology of Rahonavis, that was

once thought to occupy a similar position [5,20] but is now

considered a non-avialan dinosaur [21,22]; and the birds

Confuciusornis, Enantiornithes, and Patagopteryx [5,9,20,23] that are

now placed well crownward from the basal avialan node [24].)

Interpreting our basal avialan findings in a phylogenetic context

spanning the avialan transition also necessitated broader histolog-

ical sampling of the proximate outgroup maniraptoran clades,

Oviraptorosauria and Deinonychosauria ([22,24]; Figure S1).

Initial examinations across the avialan transition had either no

samples ascribed to these clades, or just one representative –

Figure 1. Long bone histology of a non-avialan dinosaur and a
Mesozoic bird viewed with polarized microscopy. (A) The
femoral microstructure of the small alvarezsaurrid, Shuvuuia deserti
(IGM 100–99) is compared to the tibial histology (B) of the Early
Cretaceous avialan, Confuciusornis sanctus (IVPP V11521). Both show
well-vascularized bone owing to the presence of numerous primary
vascular canals (large black structures), and woven fibered matrix
characterized by oblong, randomly oriented osteocyte lacunae
(numerous small black structures). Arrows point to growth lines in
the form of a line of arrested growth (left) and an annulus (right). Scale
bars = 0.5 mm (A) and 0.1 mm (B).
doi:10.1371/journal.pone.0007390.g001

Table 1. Specimen identifications and sizes.

Taxon Specimen Number(s) Max. Femoral Length (mm)

Citipati osmolskae IGM 100–1004* 405

Conchoraptor gracilis IGM 97–212* 250

Caudipteryx zoui IVPP 11819* 149

Troodon formosus MOR 748* 483

Byronosaurus jaffei IGM 100–984* 150

Troodontidae (undescribed) IGM 100/1129* 84

Troodontidae (undescribed) IGM 100–1323* 80

Utahraptor ostrommaysi BYUVP 15465* 600

Velociraptor mongoliensis IGM 100–982* 184

Mahakala omnogova IGM 100–1033* 76.2

Sapeornis chaoyangensis LPM B00166* 80

Jeholornis prima IVPP 13274*, IVPP 13353* 75

Archaeopteryx lithographica JM 2257, BSPG 1999 I 50* 65.7

BMMS 500, BMNH 37001

Ottmann & Steil—uncataloged

TSMHN 6928/6929**

WDC-SG-100**

HMN 1880/1881**

Maxberg—uncataloged**

8th Exemplar—uncataloged**

*Histologically sampled. **Examined using research photographs from colleagues and/or through high-resolution research casts. Institution designations: BMMS =
Bürgermeister-Müller Museum, Solnhofen; BMNH = Museum of Natural History, London; BSPG = Bayerische Staatssammlung für Paläontogie und Geologie, Munich;
BYUVP = Brigham Young University Earth Science Museum, Provo; HMN = Museum für Naturkunde, Humboldt-Universität, Berlin; IGM = Institute of Geology,
Mongolian Academy of Sciences, Ulaanbaatar; IVPP = Institute of Vertebrate Paleontology and Paleoanthropology, Beijing; JM = Jura Museum, Eichstät; LPM =
Shenyang Normal University, Shenyang; MOR = Museum of the Rockies, Montana State University, Bozeman; TSMHN = Teyler-Museum Haarlem; WDC = Wyoming
Dinosaur Center, Thermopolis.
doi:10.1371/journal.pone.0007390.t001

Archaeopteryx Growth

PLoS ONE | www.plosone.org 2 October 2009 | Volume 4 | Issue 10 | e7390



Troodon [7,23] or Unenlagia [5]. The large size of these

deinonychosaurs (,50–100 kg; [22]) is a potential problem for

predicting the basal condition for Avialae as scaling has a strong

influence on histological pattern [17,25–29]. Dinosaurs are no

exception [7,27,28] and it has recently been shown that basal non-

avialan deinonychosaurs were actually miniaturized (,1 kg) and

this size is primitive for Paraves (Deinonychosauria + Avialae)

[22]. These data demonstrate the need for broader sampling (both

phylogenetically and inclusive of scale) among outgroup clades.

Finally, because tissue formation rates can reveal developmental

rates [9,30] we used the growth series for Archaeopteryx to

independently test the hypothesis that non-avialan dinosaurian

growth rates were ancestral for birds. The results were compared

to expectations for same-sized non-avialan dinosaurs [31] and

extant precocial birds [32].

Results

Our analysis reveals that femoral histological patterning is

correlated with size, and forms a scale-dependent continuum

within Maniraptora (Figure 5). Moving from larger to smaller

forms among the non-avialan dinosaurs, vascular complexity

simplifies (plexiform to circumferential to longitudinal/reticular to

longitudinal) and randomness in bone fiber orientation diminishes

(woven to parallel-fibered). Deep cortical growth lines are variably

present, but up to five exist in larger forms and no more than two

in the smallest taxa. Femoral porosity decreases (11.32 to 1.26%)

(Figure 6). Most notable from our analysis is that the smallest

deinonychosaur taxon we sampled, Mahakala, (76 mm femoral

length, [22]) lacks fibro-lamellar bone, but rather has reptilian-like

parallel-fibered bone and shows sparse longitudinal vascularization

(Figure 5).

Like Mahakala, histological analysis revealed that the femoral

diaphysis of Archaeopteryx (BSPG 1999 I 50) is almost entirely

composed of parallel-fibered bone with longitudinally oriented

vascular canals (Figure 7). The latter are even more sparsely

distributed (porosity 0.68%). Deep intracortical growth lines (lines

of arrested growth and/or annuli) are absent in this young

specimen [33]. A thin layer of endosteal bone is locally present.

Haversian bone tissue was not found. The fibular metaphysis

showed comparable primary bone histology, and compacted

endosteal bone. The longitudinal vascular canals pervade

throughout the semi-translucent cortices of the long bones.

Partially formed canals manifest themselves as the conspicuous

grooves seen at the periosteal surfaces (Figure 7).

Jeholornis shows parallel-fibered bone and longitudinal vascular-

ization like Archaeopteryx and the small deinonychosaur Mahakala

(Figure 8). Woven bone is only locally present where the cortex is

thickest. Femoral porosity is greater (1.7%) in this slightly larger

Figure 2. Skeletal elements from the largest known Archaeop-
teryx specimen showing cortical delamination. Femora, tibiae,
fibulae, pubes, and gastralia from the Solnhofen specimen (BMMS 500),
are shown. The brown cortical layer of the left femur (inset box) is
superior to the light gray underlying bone layer that is exposed where
the former flaked-off. This is consistent with a growth line interface.
These thin, hypermineralized osseous layers partition the more fibrous
zonal tissues and act as planes of weakness where exfoliation can occur.
doi:10.1371/journal.pone.0007390.g002

Figure 3. Fibrous surface texture and longitudinal vascular
canals visible within the cortices of Archaeopteryx long bones.
(A) Tibial diaphysis from the smallest known Archaeopteryx, the Eichstät
specimen (JM 2257) showing sparse longitudinal vascularization in the
form of parallel striae. Comparable immature texture and patterning is
found in the major long bones throughout the Archaeopteryx growth
series. For example, it is seen in the tibiae of the moderately larger
Munich specimen (BSPG 1999 I 50) shown in (B), and in the largest
known individual (The Solnhofen specimen, BMMS 500) shown in (C).
Scale bars = 1.5 mm.
doi:10.1371/journal.pone.0007390.g003
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taxon than Archaeopteryx. A single deep intracortical growth line is

present in the largest individual (Figure 8). The even larger avialan

Sapeornis shows primarily woven bone matrix and a mix of

longitudinal and reticular vascularization similar to small ovir-

aptorosaurs (e.g., Caudipteryx) and similar-sized deinonychosaurs

(e.g., IGM 100/1323). Femoral porosity (1.3%) is also greater than

that of Archaeopteryx. A single deep cortical growth line bounded by

parallel-fibered bone separates growth zones in this sub-adult

specimen (Figure 8).

The histological patterning (Figure 5) and porosity (Figure 6) of

the basalmost birds Archaeopteryx, Jeholornis, and Sapeornis conforms to

expectations based on the maniraptoran and deinonychosaur size

continua. This supports the presence of a more complex size-

dependent non-avialan histology but one that is nonetheless

primitive for Avialae. Our results demonstrate that by the paravian

diversification, when Archaeopteryx-sized dinosaurs evolved, parallel-

fiber bone and reduced porosity was expressed.

Our growth analysis (see Materials and Methods) suggests that the

known Archaeopteryx specimens span approximately 428 days in

development (Figure 9). Maximal growth rates were in the range of

1.87 to 2.2 g/day across that span. These rates compare favorably

with the expectations of 1.83 to 1.87 g/day for a same-sized non-

avialan dinosaur (Figure 9) [31]. Asymptotic body mass was between

approximately 895 and 928 g and somatic maturity appears to have

been reached during the second to third years of life (Figure 9). The

same timing is predicted for Jeholornis and Sapeornis based upon growth

zone counts. These values are also consistent with expectations

for outgroup non-avialan dinosaurs of comparable size [6].

Discussion

Our discovery that the long bones of Archaeopteryx are composed

of slow growing, reptilian grade, parallel-fibered bone is surprising.

Well-vascularized woven bone was expected. The finding of the

same peculiar matrix and vascular pattern in the slightly more

derived bird Jeholornis indicates that the Archaeopteryx histology was

not aberrant, but is typical of the basal avialan condition. The

moderate increase in porosity in the birds Jeholornis and Sapeornis is

concurrent with increased size, as is the predominance of woven

matrix in the latter taxon.

Collectively the histological suites seen in the basalmost birds

match expectations for same-sized taxa in the maniraptoran

histological continuum. They provide compelling evidence that

the non-avialan dinosaur growth pattern was inherited in totality

and is typical of basal birds nearest to the Archaeopteryx node. This

adds a physiological attribute to the long list of anatomical and

behavioral attributes showing that birds are dinosaurs and that

many early birds were typically very dinosaur-like [2–4].

Furthermore, it underscores that it is imperative to accommodate

scaling when making phylogenetically grounded inferences about

evolutionary changes in growth physiology through osseous

histology [7].

The absence of available small outgroup taxa prior to this

analysis likely hindered the detection of the precise relationship

between body size and histology among paravians. Optimizing

histological type within a broad sampling of maniraptoran

theropods encompassing a diversity of sizes reveals multiple

occurrences of the parallel-fiber suite within Paraves (Figure S2).

Parallel-fiber bone growth, therefore, is not unique to Avialae.

This is independent evidence that early avialan growth was neither

novel, nor aberrant, but rather one end on the primitive

histological continuum detailed above.

The ramifications of these findings for early avialan life history

and physiology are considerable. For instance it has been recently

speculated based on tissue characteristics (e.g. growth lines [5,20],

vascularization and fiber patterning [5,9,20]), broad size distribu-

tion (in Archaeopteryx; [2,34]), and apparent age cohorts (in

Confuciusornis; [35]) that growth in the first birds was slower than

most same-sized living birds (Neornithes) which mature in just

days to weeks [36]. However the estimates for the fossil birds range

broadly from as little as two months to unspecified numbers of

years.

We find more constrained estimates, whereby somatic maturity

in the three basalmost lineages of birds occurred during the second

and third years of life. Evidence for this includes: 1) the finding of

exceptionally slow growing bone tissues suggesting prolonged

development relative to living birds, 2) estimates that Archaeopteryx

somatically matured in no less than 970 days (Figure 9) (there were

375 days in a Late Jurassic year; [37]), 3) growth lines that not only

bridge the paravian record, but attest to developmental stoppages

and multi-year development among the basalmost birds, and 4)

histological character suites that meet expectations for same-sized

non-avialan theropods known to mature in no less than two years

[6].

Figure 4. Slab and counterslab of the Munich Archaeopteryx (BSPG 1999 I 50). Cortical samples were extracted from the fracture faces of
broken elements. (A) Main slab with arrows showing where femoral samples were extracted. (B) Counterslab showing where the fibula was sampled.
Scale bar = 5 cm.
doi:10.1371/journal.pone.0007390.g004
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Aside from anatomical differences such as long bony tails, clawed

hands, and teeth, the slow development of the first birds would have

made their biology appear unfamiliar to ornithologists. In most

comparable-sized volant birds, juveniles and sub-adult sized animals

are present for only a small fraction of the year as growth rates are

remarkably rapid [1,36]. In basalmost birds, actively growing

juveniles would change imperceptibly week to week, and sub-adults

would be present year-round. This slow development might also

have prolonged their time to fledging (However what the volant

capability was of early birds like Archaeopteryx remains conjectural

[13,16,38–41].) Among same-sized living precocial birds individuals

are typically earthbound for 3–6 weeks before becoming volant.

Assuming that the age of the smallest Archaeopteryx specimens

approximates when these animals first took flight across the

Solnhofen lagoons, we can deduce that this milestone would have

occurred no later than about 18 weeks (Figure 9).

Accurately estimating the adult size of basal birds is critical for

studies of taxonomy, development, comparative physiology,

ecology, heterochrony, flight biomechanics, and collectively the

evolution of avialan success. This measure is known for Jeholornis

and Sapeornis from specimens showing extensive neurocentral and

braincase fusion. However for Archaeopteryx, our best representative

of the initial avialan condition, adult size has remained ambiguous

[33]. These animals have been variably described in the

professional and lay public literature as robin, grackle, pigeon,

magpie, small gull, crow, and chicken-sized. Quantified estimates

of body mass have varied between 200 g and 600 g [39,40].

Nevertheless, allometric scaling and skeletal fusion analyses have

inferred that none of the known specimens are somatically mature

and allude to a quantitatively larger endpoint [33]. Our

histological and textural examinations showing that immature

bone is still prevalent in the largest specimens strongly supports

this (Figure 3), as do inferences from the growth curve that none

are asymptotic individuals (Figure 9). The deinonychosaur

histological continuum provides a new means to estimate the

taxon’s upper bound. It is unlikely that Archaeopteryx had a femoral

Figure 5. Cladogram for the Maniraptora showing character mapping of primary femoral histological types with respect to scale.
The specimens are viewed with polarized microscopy. Each is oriented with the periosteal surface towards the top of the figure. Five histological
character suites (I.–V.) are present. The attributes composing each suite appear below the figure and are denoted by (black and/or gray horizontal
bars). For example: Maniraptoran Type I shows longitudinal vascularizaton, parallel-fibered matrix, and low porosity. Lines stemming from the bottom
the histological images trace to the representative histological suites for each taxon. The character suites show intracladal scale dependence with
respect to femoral length. The basal avialans conform to expectations of same-sized non-avialan maniraptoran outgroups. Phylogenetic hypothesis
based on ref. 22.
doi:10.1371/journal.pone.0007390.g005
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length exceeding 75 mm as a shift to a more porous histology and

perhaps woven matrix would have been evident (Figure 5).

Femoral lengths of 70–75 mm translate to adult mass estimates of

822–1009 g, which can be analogized to the common raven

(Corvus corax) for size [42].

Physiologically modern birds are endothermic and characteris-

tically have among the highest relative growth rates and basal

metabolic rates among extant animals [32]. Maximal growth rates

strongly correlate with basal metabolic rate [32,43]. Erickson and

colleagues [31,44,45] have shown that whole body maximal

growth rates for non-avialan dinosaurs are within the range

expected for endotherms. These rates however are not typical of

living birds. Rather they are nearer the lower bound for

endotherms, and are more in line with animals such as marsupials

[32,43]. (Notably, kiwi (Apteryx), the living birds that show relative

growth rates [46] most closely approaching the non-avialan

dinosaurian condition, also have exceptionally low metabolic rates

[47].) Since basal avialan body size, bone histology, and growth

Figure 6. Maniraptoran femoral porosity shown with respect to scale. Intracortical transverse plane porosity from the histological sections
was quantified (See Materials and Methods). These data are plotted with respect to femoral length. Data for non-avialan taxa are denoted by black
diamonds. The regression equation describes only their distribution. The blue lines bound the 95% confidence interval. The red diamonds represent
the basalmost avialans studied here. Note: their data are encompassed by the maniraptoran confidence interval and that for sister taxon
Deinonychosauria (not shown).
doi:10.1371/journal.pone.0007390.g006

Figure 7. Histological section of an Archaeopteryx femur (BSPG 1999 I 50) viewed with polarized microscopy. (A) Parallel-fibered bone is
found throughout the cortex as shown by the flattened, circumferentially oriented, lenticular osteocyte lacunae (tiny black structures) and matted
bone fabric (lower left). (B) Primary longitudinal vascular canals are few (large black circular structures). These are occasionally found incompletely
formed at the periosteal surface (arrow) and are responsible for the fibrous surface texture of the elements and long striae seen deep within the
bones of all known individuals. Scale bar = 0.75 mm.
doi:10.1371/journal.pone.0007390.g007
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rates (as evidenced by Archaeopteryx and assumed for Jeholornis and

Sapeornis through continuum matching) were retained from

dinosaurian ancestry we can infer that these animals had a similar

metabolism. This suggests that the initial conquest of the air was

achieved using lower metabolic rates than are characteristic of

today’s avian flyers. It appears that the closest non-avialan relatives

of birds were physiologically preadapted for powered flight and

only anatomical adaptations were involved when birds first

ventured into the air.

The stereotypical ideal of Archaeopteryx as a physiologically

modern bird with a long tail and teeth has come under scrutiny in

the last decade [2–4]. The present findings, based on the first

direct histological evidence for Archaeopteryx and other basalmost

birds, shows incontrovertibly that these animals were very

primitive, similar to their non-avialan dinosaur precursors –

Archaeopteryx was simply a feathered and presumably volant

dinosaur. Theories regarding the subsequent steps that lead to

the modern avian condition need to be reevaluated in a scale

dependent manner to help understand what is turning out to be a

complex evolutionary story.

Materials and Methods

The taxonomic history of Archaeopteryx is complex, with almost

every specimen having been assigned to a different species or even

genus at some time (see [2] and [16], for recent reviews). However,

Houck et al. [33] and Senter and Robins [48] argued that

differences in proportions in nearly all specimens are explained by

allometric developmental scaling. Other differences might be

explained as sexual, or individual variation [2]. Thus, pending a

more detailed revision of the taxonomy of Archaeopteryx, we agree

with Chiappe [2] that all specimens are referable to a single

species, Archaeopteryx lithographica.

The Munich specimen of Archaeopteryx (BSPG 1999 I 50) is

preserved as slab and counterslab (Figure 4). From the fracture

faces of the long bones we extracted minute cortical chips

spanning the periosteal to endosteal surfaces (Figure 4; Figure S3).

These included diaphyseal samples from the femur (the standard

Figure 8. Femoral histology of the basal birds Jeholornis and
Sapeornis viewed with polarized microscopy. (A) In Jeholornis
(IVPP 13353), parallel-fibered bone matrix similar to that of Archaeop-
teryx makes up the cortex. However porosity is greater as in Mahakala.
A growth line that locally varies between a line of arrested growth and
an annulus is shown (arrow). (B) In the larger Sapeornis (LPM B00166),
the matrix is primarily woven-fibered and shows a mix of longitudinal
and reticular vascularization. Avascular parallel-fibered bone brackets a
line of arrested growth (arrow) in this sub-adult specimen. Scale bar
= 0.15 mm
doi:10.1371/journal.pone.0007390.g008

Figure 9. Growth depictions for Archaeopteryx. (Left) The size and estimated age for all ten specimens are depicted. The growth curves are
based upon age and size estimates (diamonds) for the eight specimens where femoral length is known. The dashed line represents the best fit for the
unconstrained statistical analysis with hatchling and adult size undefined. The solid line represents the best fit when hatchling and adult size are
constrained. (Right) The maximal growth rates from these analyses (1.87–2.2 g/day; hollow diamond) fit expectations (1.83–1.87 g/day; [31]) for
same-sized non-avialan dinosaurs (solid line) – animals that grew like slow growing endotherms, here compared to marsupials (M). The Archaeopteryx
estimates are three times lower than typical rates for extant precocial land birds (5.7 g/day; P], 15 times lower than alticial land birds (28.6 g/day; A),
and four times higher than typical rates for extant reptiles (0.46 g/day; R) [32]. Specimens designations: Ei = Eichstäat, Mu = Munich, 8th = 8th

Exemplar, Te = Teyler, Th = Thermopolis, Be = Berlin, Ma = Maxberg, O&S = Exemplar der Familien Ottmann & Steil, Lo = London, So =
Solnhofen.
doi:10.1371/journal.pone.0007390.g009
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for comparative growth analyses in dinosaurs [5,6] and a

metaphyseal/diaphyseal sample of the fibula (an element that

commonly preserves the majority of the growth record in

theropods [6,49]). Transverse plane histological slides were made

and viewed with polarizing and reflectance microscopy and the

microstructure described [50]. The periosteal fabric (seen in actual

specimens and in research casts and photos, Table 1) and vascular

patterning visible throughout the semi-translucent bones and on

long bone fracture faces show that the juvenile histology of the

Munich specimen is found throughout the growth series (Figure 3).

This is not unexpected because all known Archaeopteryx are young

individuals spanning a developmentally very limited range [33].

Diaphyseal histological sections and measurements of femora

were then made for: the basal avialans Jeholornis prima and Sapeornis

chaochengensis; the oviraptorids Citipati osmolskae, Conchoraptor gracilis,

and Caudipteryx zoui; and the deinonychosaurs: Mahakala omnogovae,

Utahraptor ostrommaysi, Deinonychus antirrhopus, Velociraptor mongoliensis,

Troodon formosus, Byronosaurus jaffei, and two undescribed Mongolian

troodontids (Table 1). The histology for deep cortical primary

bone formed during early development was described. Intracor-

tical transverse plane porosity was quantified using NIH Image J

(Version 1.41o; National Institutes of Health, Bethesda, Mary-

land). Character mapping and phylogenetic optimization of these

data was conducted using TNT version 1.0 [51] on a phylogeny

adapted from Turner et al. [22] for Coelurosauria. From this we:

1) inferred the effects of scaling on histological patterning with

femoral length as a size standard, 2) predicted the primitive

character state for Paraves, and 3) inferred whether evolutionary

changes occurred across the transition.

Because the Archaeopteryx specimens are young individuals that

fortuitously span middle development [33] it was possible to

estimate age differences between individuals and speculate on

Archaeopteryx growth rate during the exponential stage of develop-

ment. This was achieved using neontologically derived tissue

formation rates, similar to the means described by Sander and

Tückmantel [30] for aging sauropods. Differences in antero-

posterior femoral midshaft diameter relative to the Munich

specimen were determined throughout the growth series. (In

specimens with uncrushed femora the ratio of femur length to

diameter ranges from 13.47–13.67 across ontogeny (Eichstätt-

London specimens). The mean ratio of 13.62 was used to deduce

the diameter for the Solnhofen specimen (BMMS 500).) Radial

tissue formation rates derived from femora in living birds [52,53]

were divided into these measurements and the age differences

deduced. Positive correlations between tissue formation rates and

body size among homologous elements are evident in birds

[52,53]. Sustained radial formative rates for the matching

histological type to Archaeopteryx avian femora is 2.5 um/day in

Archaeopteryx-sized birds (e.g. 880 g Mallard ducks; Anas platyr-

hynchos). Rates as high as 4.2 um/day occur in very large taxa (e.g.

90 kg Ostrich, Struthio camelus) for femora showing the same

vascularizaton pattern, however the matrix is woven-fibered. The

former value was used.

Body mass of the large Solnhofen specimen (BMMS 500) was

determined using the femoral and tibial regression equations for

galliforms (‘‘poor flying birds’’) from Alexander [54]. The

Developmental Mass Extrapolation scaling principle [6,44] was

used to infer specimen masses and coupled with the age differences

to model growth rates throughout development. We first used

maximum likelihood to fit a logistic equation with normal error

distribution to the growth data for the eight Archaeopteryx specimens

for which femoral length is known (mass = (a*exp[b*age])/

(c+exp[b*age]) + d, a = 752.6, b = 0.0118, c = 274.2, d = 145.7,

r2 = 0.964). This growth curve projects an estimated hatchling

mass of 148 g, an adult mass of 898 g, and a maximal daily growth

rate of 2.2 g/day. Because the projected hatchling mass from this

maximum likelihood estimate is biologically implausible, we used

comparisons with other taxa and our histological observations to

construct informative prior distributions for hatchling and adult

mass and calculated a Bayesian estimate of Archaeopteryx growth.

Specifically, a 39.6 g estimate for a full-term egg mass was

obtained from the regression analysis of Blueweiss [55]. A similar

size of 53 g was predicted using the femoral dimensions for a near

term Gobipteryx minuta (IGM 100/1291) scaled up to account for the

larger size of Archaeopteryx. The femoral histological continuum [see

results] predicts that Archaeopteryx had a femoral length that was less

than 75 mm otherwise the histology seen in larger paravians

would have been expressed. The largest known Archaeopteryx is

683 g and the slightly larger paravians, which have a modified

histology owing to scale dependence, place full adult size at less

than 1009 g. Based on these estimates we used informative priors

for hatchling mass of approximately 43610 g (d = Normal[20,

sd = 5]) and an adult mass of 8956165 g (a = Normal[875,

sd = 82.5]). This prior distribution for adult mass allows for a

large range of plausible adult sizes, whereas the estimated

hatchling size is constrained to a smaller range. Maximum daily

growth rate was unconstrained, as we used uninformative priors

for parameters b and c(Gamma [0.01, 0.01]). The Bayesian

analysis provided similar results to the unconstrained maximum

likelihood fit, but more plausible posterior estimates of hatch-

ling size (41.4 g) and adult size (928 g) and a slightly lower esti-

mate of maximal growth rate at 1.87 g/day (a = 907671.5,

b = 0.008260.0008, c = 43.6625, d = 21.165, means6sd, r2 =

0.942). The results of these growth analyses were compared with

predictions for same-sized non-avialan dinosaurs and extant

precocial birds.

Statistical analyses were conducted using R 2.9.0 (R Develop-

ment Core Team; R Foundation for Statistical Computing,

Vienna, Austria) and WinBUGS 1.4.3 [56].

Although it is plausible that hatchling Archaeopteryx initially grew

using woven bone as has been shown in enantiornithines [11,20],

this would have had negligible affect on the maximal growth rate

estimates made here since the studied specimens span the entire

exponential stage of development (Figure 9). Furthermore, very

little development occurred prior to the size obtained by the

Eichstätt specimen (JM 2257), just 78 grams. So individual

longevity estimates would be diminished by no more than

approximately 24–30 days from initial woven bone formation.

Conversely, growth stoppages in the largest Archaeopteryx specimens

would have contributed to moderately higher longevity estimates

for these specimens and slightly lower maximal growth rate

estimates. This would bolster the overall conclusion that basal

avialans were not growing like living precocial birds (see results).

Supporting Information

Figure S1 Preferred topology for Maniraptora used in the

present study. Tree topology is derived from the phylogenetic

analyses of Turner et al. [22]. Taxa listed in bold are those for

which we obtained histological data.

Found at: doi:10.1371/journal.pone.0007390.s001 (1.19 MB

DOC)

Figure S2 Optimization of fiber types on femoral length.

Optimization of bone fiber-type on maniraptoran phylogeny.

Woven bone fiber-type is widespread among maniraptorans. Note

that minimally two, but perhaps three, independent acquisitions of

parallel fiber bone occurred in the small paravians Mahakala,

Archaeopteryx, and Jeholornis.
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Found at: doi:10.1371/journal.pone.0007390.s002 (1.14 MB TIF)

Figure S3 Long bone chips extracted from the Munich

Archaeopteryx (BSP 1999 I 50).

Found at: doi:10.1371/journal.pone.0007390.s003 (2.52 MB TIF)
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