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Abstract. b-diversity represents the compositional variation among communities from site-to-site,

linking local (a-diversity) and regional (c-diversity). Researchers often desire to compare values of b-
diversity across localities or experimental treatments, and to use this comparison to infer possible

mechanisms of community assembly. However, the majority of metrics used to estimate b-diversity,
including most dissimilarity metrics (e.g., Jaccard’s and Sørenson’s dissimilarity index), can vary simply

because of changes in the other two diversity components (a or c-diversity). Here, we overview the utility

of taking a null model approach that allows one to discern whether variation in the measured dissimilarity

among communities results more from changes in the underlying structure by which communities vary, or

instead simply due to difference in a-diversity among localities or experimental treatments. We illustrate

one particular approach, originally developed by Raup and Crick (1979) in the paleontological literature,

which creates a re-scaled probability metric ranging from�1 to 1, indicating whether local communities are

more dissimilar (approaching 1), as dissimilar (approaching 0), or less dissimilar (approaching �1), than
expected by random chance. The value of this metric provides some indication of the possible underlying

mechanisms of community assembly, in particular the degree to which deterministic processes create

communities that deviate from those based on stochastic (null) expectations. We demonstrate the utility of

this metric when compared to analyses of Jaccard’s dissimilarity index with case studies from disparate

empirical systems (coral reefs and freshwater ponds) that differ in the degree to which disturbance altered

a-diversity, as well as the selectivity by which disturbance acted on members of the community.
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INTRODUCTION

Recent interest in the patterns of species

diversity and community composition across

space has resurrected the concept of b-diversity
(e.g., Whittaker 1960, 1972), which quantifies the

variation in the composition of species from site-

to-site, originally defined as the ratio between

local (a) diversity and regional (c) diversity (b ¼
a/c). b-diversity can be a useful metric when

trying to understand patterns of species diversity

across spatial scales (e.g., Veech et al. 2002, Crist

and Veech 2006, Jost 2007, Tuomisto 2010a, b,

Anderson et al. 2011), and for example, can allow

inference about the relative importance of com-

munity assembly processes such as those that are
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more deterministic (niche-related) relative to
those that are more stochastic (e.g., Condit et al.
2002, Tuomisto et al. 2003, Gilbert and Lechowicz
2004, Dornelas et al. 2006, Chase 2007, 2010).
Unfortunately, a large number of the metrics and
statistical analyses used to estimate b-diversity
are confounded, are not always directly compa-
rable, and may not produce conceptually mean-
ingful values (Jost 2007, Jurasinski et al. 2009,
Tuomisto 2010a, b, Anderson et al. 2011). For
example, one of the biggest problems associated
with analyses of b-diversity is that using either a
multiplicative (c ¼ a 3 b) or additive (c ¼ a þ b)
partition, b-diversity is linked to variation in c
and a by definition, thus making statistical
comparisons of b-diversity among sites or re-
gions confounded by coincident variation in a or
c (e.g., Wilson and Shmida 1984, Lande 1996,
Koleff et al. 2003, Jost 2007, Tuomisto 2010a, b).

There has been recent debate regarding appro-
priate ways to create a-independence in the
evaluation of b-diversity (e.g., Baselga 2010, Jost
2010, Ricotta 2010, Veech and Crist 2010a, b).
Although we do not intend to engage directly in
this debate, we emphasize that because all three
diversity components (a, b and c) are intercon-
nected, any two of the three components will be
statistically dependent on one another, regardless
of the diversity measure (e.g., Ricotta 2010).
Thus, if there is a change in some factor that
influences the number of species that can coexist
in any given site (e.g., local disturbance, produc-
tivity, predators), influencing a-diversity, it is
unclear whether a change in b-diversity is due to
differences in the underlying assembly processes
that create b-diversity (e.g., deterministic versus
stochastic factors), or instead due to differences
that result because the factor of interest changed
the level of a-diversity, necessarily causing a
concomitant change in b-diversity (e.g., Vellend
2004, Vellend et al. 2007, Chase 2007, 2010, Chase
et al. 2009). To illustrate with a simple example, if
the average number of species per site (a)
decreases via random local extinctions (e.g.,
ecological drift due to a decrease in habitat size)
without a proportional change in regional (c)
diversity (e.g., if the number of localities is very
large), a change in b will be detected even though
there has been no change in the ecological
differences or amount of dispersal among locali-
ties.

For an empiricist who wants to compare
patterns of b-diversity among sites and infer
possible mechanisms, a statistical null modeling
approach (sensu Gotelli and Graves 1996) pro-
vides a straightforward and versatile way to
discern to what degree changes in observed b-
diversity are influenced by random changes in a-
diversity (e.g., Connor and Simberloff 1978, Raup
and Crick 1979, Crist et al. 2003, Vellend 2004,
Dornelas et al. 2006, Freestone and Inouye 2006,
Chase 2007, 2010, Vellend et al. 2007, Belmaker et
al. 2008, Leprieur et al. 2008, Chase et al. 2009,
Lepori and Malmquist 2009, Smith et al. 2009). A
null modeling approach in this context essential-
ly asks: ‘‘what would b-diversity look like with a
completely random assembly process, given a
and c-diversity?’’ With this null-expected distri-
bution in hand, one can then ask: ‘‘does the
observed b-diversity deviate from the null
expectation, and if so, by how much?’’

In this article, we focus on an approach that is
relevant for studies that use (dis)similarity
metrics based on presence-absence data compar-
isons between two communities (e.g., Jaccard’s or
Sørenson’s dissimilarity metrics). These dissimi-
larity metrics are often used as an estimate of b-
diversity (e.g., Vellend 2001, Koleff et al. 2003).
We first illustrate how one of the most commonly
used metrics to estimate b-diversity, Jaccard’s
dissimilarity index, is strongly influenced by the
number of species that live in each site (e.g., a-
diversity) and the number of species that live in
the regional species pool (c-diversity). As such, a
large number of studies that have compared such
dissimilarities among communities that vary in
a-diversity can not discern whether the differ-
ences in dissimilarity actually result from differ-
ences in the compositional variation among local
communities, or just due to differences among
those communities in a-diversity. We next over-
view one particular null modeling approach that
allows the quantification of the degree to which
pairwise community dissimilarity differs from
that which would be expected by random chance
alone. We conclude with a discussion of the
utility and limitations of this approach, and point
toward a family of related approaches that will
allow a more thorough investigation of the
mechanisms underlying patterns of community
compositional differentiation across sites.
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A null expectation for community (dis)similarity
when a-diversity varies

First, we illustrate how the value of incidence-
based pairwise (dis)similarity indices such as
Jaccard’s index depend on a-diversity. That is,
when comparing among regions (or habitat
types, experimental treatments, time periods,
etc.), changes in (dis)similarity cannot be disen-
tangled from changes in a-diversity among those
regions unless this dependence is explicitly
considered (Fig. 1). For two samples with a1
and a2 species selected with equal probability
from a pool of c-species, the expected number of
shared species (SSexp) is an accelerating function
of a-diversity: SSexp ¼ a1a2/c (Connor and
Simberloff 1978). From this, we can calculate a
null expected Jaccard’s similarity index (Jexp) (a
similar approach can be used for other incidence-
based dissimilarity metrics) by

Jexp ¼
SSexp

a1 þ a2 � SSexp

:

When a1 ¼ a2 for any given c, the null
expectation is an accelerating positive relation-
ship between a and Jexp; Jexp¼ 1 when a¼ c (Fig.

1). When a1 6¼ a2, a three-dimensional surface
gives the null Jexp (not shown).

From Fig. 1, it is apparent how the most
popular incidence-based metrics of dissimilarity
(dissimilarity ¼ 1 � similarity) that depend on
SSobs (e.g., Jaccard’s and Sørenson’s dissimilarity
index, or other related metrics; e.g., Koleff et al.
2003) are strongly contingent on variation in a-
diversity. When a is variable, for example when
comparing among habitats or experimental
treatments, or even when comparing among
studies with different sample size, comparisons
of incidence-based dissimilarity metrics cannot
discern whether differences in dissimilarity are
due to changes in the underlying structuring of
community composition across sites, or instead
simply due to changes in a-diversity. A null
model approach can provide a straightforward
way to discern whether species compositional
differences among sites result from changes in a-
diversity, or from forces causing communities to
be more, or less, dissimilar than expected by
random chance.

Estimating deviations from the null expectation
Given the three components of a diversity

partition, a, b, and c-diversity, a null model
generally holds the values of two of those
components constant (e.g., a and c-diversity),
and can be used to ask what the value of the third
component (e.g., b-diversity) would be expected
by random chance. A randomization test can
then be used to compare the observed values
relative to the expected values to detect devia-
tions that would indicate changes in b-diversity
that are not due to changes in a-diversity. These
deviations can be in either direction, whereby b-
diversity is either higher or lower than expected
by chance given a-diversity and a regional
species pool.

Although the exact form of the null model and
associated tests will depend, to some degree, on
the nature of the data and of the question being
asked, the general principles are the same. For
example, one could observe that average dissim-
ilarity among pairs of local communities is
greater for one group of communities than
another, but if a-diversity was smaller among
the more dissimilar communities, this result is
expected by random chance alone (see Fig. 1). A
null model is needed to discern whether the

Fig. 1. The expected relationship between the local

richness (a-diversity) in a pair of communities and the

Jaccard’s index of similarity (dissimilarity ¼ 1-similar-

ity), for the case where richness is equal in each local

community (a1 ¼ a2). Line traces the average of 999

replicates per a value, generated by sampling from a

pool of 50 species with equal abundances.
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difference in dissimilarity deviates from random
expectation given the changes in a-diversity, and
the results may indicate possible underlying
mechanisms of community assembly. That is,
communities that either are more, or less, similar
than expected by chance can indicate some
degree of determinism in the community assem-
bly process (e.g., Chase 2007, 2010, Chase et al.
2009).

Here, we overview one method, known as the
Raup-Crick metric (Raup and Crick 1979), that
can provide some information on the degree to
which pairwise communities are more different
(or more similar) than expected by chance. As
such, this metric allows one to develop hypoth-
esis tests about the relative magnitude of the
differences between observed and expected
communities. Although the Raup-Crick metric
was initially expressed as a similarity, we focus
on it as a dissimilarity; to be consistent with the
concept of b-diversity—we refer to this metric as
bRC (Vellend et al. 2007) (the R code we provide
in the online supplement also allows the calcu-
lation of similarity if desired). In this case, rather
than representing dissimilarity among pairwise
communities per se, as in most metrics of b-
diversity, the bRC metric expresses dissimilarity
among two communities relative to the null
expectation. Specifically, if SS1,2 is the observed
number of shared species between localities 1
and 2, containing a1 and a2 species, respectively,
bRC uses a randomization approach to estimate
the probability of observing .SS1,2 given repeat-
ed random draws of a1 and a2 species from a
known species pool (Fig. 2). For this null model
to be most useful, knowledge of the species pool
from which potential species are drawn is
important.

In this section, we provide a step-by-step
overview of the bRC calculations. We do this
because (1) the metric was introduced in the
paleontological literature, and has rarely been
used in ecology (a search of the ISI Web of
Knowledge Science Citation Index database on
12/22/2010 shows fewer than 25 citations of the
paper from ecological studies; ,1 per year); (2)
some of the decisions required to implement the
calculations have not always been transparent,
but can significantly alter the results; (3) the
programs available for calculating the traditional
Raup-Crick metric—PaST (Hammer et al. 2001)

and the current Vegan Package of R (Oksanen et
al. 2011)—appear to have some critical limita-
tions, which we address below. For any given a1

and a2, bRC compares SSobs to the distribution of
SSexp values produced by a null model. We
assume the use of presence-absence data. Al-
though the bRC calculation uses SSobs and SSexp,
instead of a similarity metric, precisely equiva-
lent results would be generated by any similarity
metric based on SSobs, such as Jaccard’s or
Sørenson’s dissimilarity index. In the online
supplement, we provide annotated R code that
can be used to perform these analyses.

� Step 1. Calculate the observed a1, a2, and SSobs. For
any given pair of sites, a1 and a2 are the number
of species observed in each site, and SSobs is the
number of species that the two sites share in
common.
� Step 2. Calculate the total number of species in the
‘‘species pool’’ among all sites, and the proportion of
sites each species occupies (its ‘‘occupancy’’). These
are calculated from all of the sites in the data set
of interest (not just the two sites under
consideration).
� Step 3. Calculate the distribution of SSexp values.
Randomly draw a1 and a2 species at random
from the ‘‘species pool’’. The probability of a
species being drawn is proportional to its
among-site occupancy. Repeat this procedure
at least 1000 times (ideally more).

� Step 4. Compare SSobs with the distribution of SSexp.
Sum the number of random draws in which
SSexp . SSobs and one-half of the random draws
in which SSobs ¼ SSexp, and divide the sum by
the total number of random draws. This is an
estimate of the probability of observing SSobs or
fewer shared species given random draws from
the species pool.
� Step 5. Standardize the metric to range from�1 to 1.
Subtract 0.5 from the value from step 4, and
multiply by 2.

Step 5 represents our primary modification of
the original Raup-Crick metric (other than
expressing it as a dissimilarity rather than
similarity), by re-scaling it to vary from �1 to 1.
A value of 0 represents no difference in the
observed (dis)similarity from the null expecta-
tion; a value of 1 indicates observed dissimilarity
higher than the expected in any of the simula-
tions (communities completely more different
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Fig. 2. The relationship between the local richness in a pair of communities (a1, a2) and the expected number of

shared species between them (SSexp) for a) the case where a1¼ a2, and b) all possible combinations of a values,

which produces a three-dimensional surface, but is otherwise the same as in panel a. The null expectation is

shown as a solid black line in panel a, along with histograms showing the distribution of SSexp for five values of

pairs of a values (5, 25, 35, 40, 45) (based on 999 randomizations), demonstrating how the distribution is

approximately normal when a¼ c/2, but has reduced variance and increased skewness as a approaches 0 or c.
Calculations for bRC for two hypothetical cases of the observed number of shared species are shown. In the area

below the solid line communities share fewer species than expected and therefore have high bRC, while above the

solid line more species are shared than expected, corresponding to low bRC. These bRC calculations are not shown

in the three-dimensional version of panel b simply for clarity.

v www.esajournals.org 5 February 2011 v Volume 2(2) v Article 24

CHASE ET AL.



from each other than expected by chance), and
vice versa for a value of �1 (communities
completely less different [more similar] than
expected by chance).

The main limitations of existing software
implementations of the Raup-Crick metric are
as follows: In the current Vegan package of R
(Oksanen et al. 2011), the distribution of SSexp is
calculated analytically by a hypergeometric
distribution. As such, every species in the
regional pool is given equal weight, including
species that are listed with zero abundances.
Disregarding species frequencies has a large
effect on value of the bRC. It may be possible to
use a Fisher noncentral hypergeometric distribu-
tion to incorporate a weighted species pool,
however the simulation approach we take is
more flexible. In the PaST (PAleontological
STatistics) program (Hammer et al. 2001), it
appears that steps 1–4 are identical to ours,
except that a maximum of only 200 randomiza-
tions are performed in step 3. This limited
number of randomizations results in low power
to distinguish differences in the degree by which
sets of communities that differ from the null
expectation (e.g., when two groups of communi-
ties both differ from the null expectation, values
of bRC quickly converge on 1 [or �1] with fewer
randomizations); this limitation is especially
severe for species rich communities.

For our implementation of bRC, one could ask
whether SSobs for a pair of communities is
significantly different from the null expectation
by assessing whether jbRCj . 0.95 (two-tailed
test, alpha ¼ 0.05). Such differences would
indicate whether a given pair of communities
share fewer (approaching 1) or more (approach-
ing�1) species than expected by random chance.
More commonly, however, values of bRC are
calculated for all pairwise combinations of
communities, and these can be analyzed using
the same set of statistical methods as the many
other pairwise indices of dissimilarity (Tuomisto
2010a, b, Anderson et al. 2011).

Mean bRC among habitats, experimental treat-
ments, or time periods will be close to 0 when
community assembly is highly stochastic and
dispersal is high among communities, and will
approach �1 when deterministic environmental
filters shared across sites create highly similar
communities (Chase et al. 2009, Chase 2010).

Alternatively, bRC will be closer to 1 if determin-
istic environmental filters favor dissimilar species
compositions, for example, if there were strong
biotic structuring forces creating very different
communities on adjacent sites (e.g., checkerboard
distributions determined by competitive interac-
tions; Diamond 1975), or if dispersal among sites
is very low, leading to dispersal limitation.

It is worth noting that the influence of
environmental filtering and dispersal limitation
on bRC (or any b-diversity metric) will depend on
the sampling scale. If environmental filtering is
strong, sites with similar environmental condi-
tions should be more similar than expected (bRC

, 0), while sites with dissimilar environmental
conditions should be less similar than expected
(bRC . 0). Likewise, when dispersal limitation is
strong, nearby pairs of sites will be more similar
than expected (bRC , 0), whereas distant pairs of
sites will be less similar than expected (bRC . 0).

Caveats and considerations
bRC is explicitly conditioned upon variation in

a-diversity, and thus provides a more appropri-
ate metric than other measures of dissimilarity
for comparing the dissimilarity among commu-
nities that vary in a-diversity (e.g., Jaccard’s or
Sørenson’s dissimilarity index). However, all
metrics of b-diversity and associated null model
analyses have limitations, and bRC is no excep-
tion.

Specifying the regional species pool.—In practice,
the species pool is typically characterized as the
set of species (and their frequencies across
localities) observed during the sampling of a
given set of localities. However, the size of the
pool will depend on the number of localities
sampled (Gotelli and Colwell 2001), and corre-
spondingly, the deviation of SSobs from SSexp will
depend on the accuracy of the estimation of the
species pool. Additionally, the choice of how to
define the regional species pool will often have to
be tailored to the question being addressed. For
example, if within-habitat bRC is being compared
among habitats that differ in the set of species
that can live there for deterministic reasons, the
choice of whether to include only the species that
live in a particular habitat type, or whether to
include the species that live in each habitat type
will strongly influence the value of the bRC (see
Gotelli and Graves 1996, Kraft et al. 2008,
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Cornwell and Ackerly 2009 for related discus-
sions). bRC values will be closer to 0 (small
deviation from the null-expectation) if the species
from only that habitat are included in the species
pool used to calculate SSexp, relative to the case
where species from multiple habitat types are
included in the species pool. At the same time, it
is not advisable to use a regional species pool
that is so large (e.g., all of the species of a
particular group across biogeographic zones)
that all communities would have exceptionally
low bRC values. While resolution of the regional
species pool issue is beyond the scope of the
present paper, a simple ‘rule of thumb’ for
including a species in the regional species pool
to generate meaningful interpretations of bRC

would be to include those species that can
possibly colonize a given site within a reasonable
time period. Furthermore, it is worth keeping in
mind that each alternative designation of the
regional pool essentially asks a different research
question, so therefore consistency or discordance
in results among different pool designations (as
well as those that do and do not disentangle a-
diversity) can provide insight into ecological
questions. For example, to examine the role of
dispersal limitation in creating patterns of com-
munity dissimilarity relative to environmental
features, one could compare whether community
compositional dissimilarity deviates from the
null expectation at relatively small scales (when
the regional pool is constrained to that observed
in a given set of sites) to the deviation obtained
when the regional pool incorporates a larger
number of species that could potentially colonize
a site, but only very rarely do so. There are some
instances where one might want to include
species in the pool that are not observed in the
sampled communities, but known to be present.
The R-code we provide in the online supplement
does not currently allow for the pool to be higher
than those species that in at least one of the
samples, but this could certainly be modified if
the investigator feels that it is useful. However,
we note that while increasing the size of the
species pool will increase the absolute magnitude
of the deviation from the null expectation, it will
not generally influence the relative deviations
among pairs of communities.

Species occupancies.—We suggest that the pro-
portion of sites occupied by each species should

be incorporated into the null model calculations
of SSexp (though this can be bypassed in the R-
code we provide) (see also Connor and Simberl-
off 1978, Raup and Crick 1979). If all species are
considered equally likely to occupy a given site
in the null model, SSobs will often be much
greater than SSexp, and bRC will be more negative
(see Gotelli and Graves 1996, Kembel and Hub-
bell 2006, Hardy 2008 for related discussion). A
potentially difficult question concerns how to
incorporate occupancies of species when there
are multiple habitat types (or treatments within
an experiment). Species will likely vary in their
degree of occupancy of patches across different
habitat types, if, for example, a species occupies a
large proportion of the available sites in habitats
in which it is favored, and many fewer sites in
habitats that it is less favored. Here, if one wants
to include occupancies into the calculation of
SSexp, and include both habitat types, it would be
essential to ensure a relatively equal sampling
effort on both of the habitat types, so that
occupancies would be representative of the entire
region (Vellend et al. 2007).

Power to detect differences at low and high a-
diversity.—Despite its advantages, bRC, and in
fact all pairwise dissimilarity metrics, suffer from
some undesirable (and unavoidable) properties
when a-diversity is either low or very high
relative to the species pool. The problems stem
from the fact that SSexp must take an integer
value, and the number of theoretically possible
values of SSexp can be quite small in some cases
(Fig. 2a). For example, if min(a1, a2)¼ 5, there are
only six possible values of SSexp: 0, 1, 2, 3, 4 and
5. For the hypothetical case where the number of
species in the species pool is 50, a1¼ a2¼ 5, and
species are equal in their occupancies of sites, the
minimum possible SSexp (0) is in fact a highly
probable outcome of the null model (probability
. 0.55). Thus, there is low power to detect any
deviation from the null expectation in such cases.
This is an inherent property of metrics that rely
on species presence-absence information, and
cannot be remedied by any kind of quantitative
correction or analysis, but must be kept in mind
when making such calculations. One solution is
to down-weight the influence of any such values
in downstream analyses based on the full matrix
of pairwise dissimilarities.
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An illustration of the utility of null models in b-
diversity studies

To illustrate the importance of null models in
addressing hypotheses regarding b-diversity and
the possible mechanisms by which it is created,
we show data from two disparate studies that
both examined the effects of disturbance on
patterns of community structure (Chase 2007,
Anderson et al. 2011). In the first case, data were
collected from experimental freshwater ponds,
ten of which were controls, and ten of which
were subjected to drought in the middle of the
experiment (Chase 2007). Although drought
decreased a-diversity somewhat (data not
shown), it had a marked influence on b-diversity
as measured using Jaccard’s dissimilarity index,
with ponds exposed to drought being much
more similar to one another compositionally than
control ponds (Fig. 3a). bRC values on this dataset
show that communities in the drought ponds
were more similar than expected by chance
relative to the control ponds (Fig. 3b), suggesting
that changes in b-diversity were not simply due
to a random influence of drought on species in
each locality, and instead likely resulted because
drought imposed a systematic ecological filter
that removed a subset of species in each of the
communities exposed to drought (Chase 2007).

In the second case, data were collected from 10
transects collected before and after an El Nino
induced coral bleaching event from Indonesia
(Warwick et al. 1990) and re-analyzed using a
variety of b-diversity metrics in Anderson et al.
(2011). Following the bleaching event, there was
a marked decrease in a-diversity (data not
shown), and a large increase in b-diversity, as
measured using Jaccard’s dissimilarity index
(Fig. 3b). However, there were no differences in
bRC values before and after the bleaching event
(Fig. 3d) (see also Anderson et al. 2011). The
contrast between the results for Jaccard’s dissim-
ilarity index, which suggest a large increase in b-
diversity after the disturbance, and the bRC

results, which suggest no change in b-diversity
relative to the null expectation once the effect of
disturbance on a-diversity was considered, em-
phasize the importance of this approach.

Comparing the effects disturbance in these
disparate systems simultaneously using metrics
that are a-dependent (e.g., Jaccard’s dissimilarity
index) and a-corrected (e.g., bRC) allows one to

delve into the possible classes of mechanisms by
which disturbance acts on these communities. In
the coral reefs, disturbance appears to have acted
primarily through random sampling effects,
where there was no difference bRC before and
after the coral bleaching event. Alternatively, in
the ponds, drought disturbance acted more
deterministically, such that bRC was considerably
lower in the ponds that experienced drought
relative to the control ponds. Similar inferences
can be made when comparing patterns of b-
diversity among communities that differ in other
factors that may influence a-diversity, such as
predators (Chase et al. 2009), pathogens (Smith et
al. 2009), or productivity (Chase 2010).

CONCLUSIONS

Ecologists have become increasingly interested
in the patterns of, and processes leading to, the
site-to-site (or time to time) compositional differ-
entiation among localities—b-diversity—but
have also increasingly recognized problems with
its definition and analysis (e.g., reviewed in
Tuomisto 2010a, b). The bRC approach allows
one to disentangle variation in community
compositional dissimilarity across sites from
variation in the a-diversity of those sites as long
as those sites are embedded in the same regional
species pool. As such, the bRC metric can be used
to address the question ‘does the compositional
variation among communities differ from a null-
expectation?’ (Condit et al. 2002, Dornelas et al.
2006), and the related ‘to what degree do
communities deviate from the null expectation,
and how do abiotic or biotic factors influence this
deviation?’ (e.g., Chase 2007, 2010, Chase et al.
2009, Smith et al. 2009).

Although we espouse the bRC approach as a
useful metric, there are several different ways to
implement null models in order to make infer-
ences about patterns of b-diversity. The specific
form of the null model will depend critically on
the question being asked, as well as the scope of
the data being analyzed. The bRC metric is
appropriate when comparisons are made among
communities that can reasonably be considered
to be a part of the same regional species pool.
However, when comparisons of b-diversity
among biogeographic regions that vary in the
size of the regional species pool (e.g., along
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latitudinal gradients) are of interest, a related, but

distinct null-modeling approach (e.g., Crist et al.

2003, Crist and Veech 2006) will be needed to

disentangle the relative contributions of a-diver-
sity and c-diversity to variation in b-diversity.

ACKNOWLEDGMENTS

Discussions with T. Knight were instrumental in the

early development of these ideas, and comments from
N. Sanders, N. Swenson, H. Tuomisto, H. Cornell, T.

Crist, R. Ptacnik, and three anonymous reviewers

improved this manuscript. This work was conducted
as part of the ‘Gradients of b-diversity’Working Group

supported by the National Center for Ecological
Analysis and Synthesis, a Center funded by NSF
(Grant #EF-0553768), the University of California,
Santa Barbara, and the State of California. JMC and
KGS’s research was also supported by Washington
University and the National Science Foundation (DEB
0816113). NJBK was supported by the NSERC CRE-
ATE Training Program in Biodiversity Research.

LITERATURE CITED

Anderson, M. J. et al. 2011. Navigating the multiple
meanings of b diversity: a roadmap for the
practicing ecologist. Ecology Letters 14:19–28.

Baselga, A. 2010. Multiplicative partition of true

Fig. 3. Non-metric multi-dimensional scaling (MDS) ordinations based on Jaccard’s Index (a, c) and bRC (b, d)

for two studies examining the effects of disturbance on patterns of b-diversity. Left panels (a, b) represent data
from 20 experimental ponds, ten of which were subjected to experimental drought conditions, and ten of which

were controls (data from Chase 2007). Right panels (c, d) represent data from ten transects of coral species

composition from off of the Tikus Islands, Indonesia (data from Warwick et al. 1990) sampled prior to (1981) and

following (1983) an El Niño bleaching event (modified from Anderson et al. 2011).

v www.esajournals.org 9 February 2011 v Volume 2(2) v Article 24

CHASE ET AL.



diversity yields independent alpha and beta
components; additive partition does not. Ecology
91:1974–1981.

Belmaker, J., N. Shashar, Y. Ziv, and S. R. Connolly.
2008. Regional variation in the hierarchical parti-
tioning of diversity in coral-dwelling fishes. Ecol-
ogy 89:2829–2840.

Chase, J. M. 2007. Drought mediates the importance of
stochastic community assembly. Proceedings of the
National Academy of Sciences (USA) 104:17430–
17434.

Chase, J. M. 2010. Stochastic community assembly
causes higher biodiversity in more productive
environments. Science 328:1388–1391.

Chase, J. M., E. G. Biro, W. A. Ryberg, and K. G. Smith.
2009. Predators temper the relative importance of
stochastic processes in the assembly of prey
communities. Ecology Letters 12:1210–1218.

Condit, R. et al. 2002. Beta-diversity in tropical forest
trees. Science 295:666–669.

Connor, E. F., and D. Simberloff. 1978. Species number
and compositional similarity of the Galápagos flora
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