Edaphic properties enable facilitative and competitive interactions resulting in fairy circle formation

Michael D. Cramer, Nichole N. Barger and Walter R. Tschinkel

Vegetation in dryland ecosystems is commonly organised into spatial patterns (Aguirar and Sala 1999, Lejeune et al. 1999, Couteron and Lejeune 2001, Rietkerk et al. 2002, Deblauwe et al. 2008), including bands, spots or gaps that occur in otherwise continuous vegetation (Deblauwe et al. 2011). This range of vegetation patterns is hypothesized to emerge due to the interactions between local-scale positive (i.e. facilitative) and longer-range negative (i.e. competitive) feedbacks (Lejeune et al. 1999, Couteron and Lejeune 2001). This unifying theory of vegetation patterning is supported by many mathematical models that replicate the pattern formation, albeit through differing but non-mutually exclusive mechanisms (reviewed by Borgogno et al. 2009, Meron 2012).

The competitive and facilitative interactions generating vegetation patterning are for resources that include nutrients and light, but considering the dryland context of many vegetation patterns, are likely for water (Rietkerk and van de Koppel 2008). Competitive interactions between vegetation clumps may deplete water between the clumps resulting in bare ground, whereas runoff from bare ground may be intercepted by vegetation, increasing the soil moisture in the vegetation patch and providing facilitative feedbacks within the clump (Meron 2012). Runoff may be especially important in contributing to pattern formation where both biological and physical soil crusts reduce surface infiltration of water (Eldridge et al. 2000). Transport of water towards vegetation clumps through root interception and water potential gradients also plays a role in pattern formation (Barbier et al. 2008). The interplay between these competitive and facilitative feedbacks results in greater biomass in a region of facilitation with declining biomass away from the zone of facilitation. This change in biomass has been used as a diagnostic feature of emergent vegetation pattern (Rietkerk et al. 2000).

The ‘fairy circles’ found in southern Africa (reviewed by van Rooyen et al. 2004) and more recently in Australia (Getzin et al. 2016) are a striking example of a vegetation pattern. Fairy circles are characterized as regularly spaced, roughly circular barren patches that occur in grasslands (referred to as the matrix) inland (ca 100 km) of the southwest African coast between southern Angola and northern South Africa and also in the Pilbara region of Australia (Getzin et al. 2016). Although the impressive regularity of the pattern has

Millions of generally regularly spaced, roughly circular barren patches called fairy circles occur in a narrow band ca 100 km inland of the south-west African coast. These generally have conspicuously taller peripheral grasses in a shorter grass matrix. The origins of these fairy circles are controversial, but one possibility is that they are self-organizing emergent vegetation patterns that are the consequence of interplay between positive (facilitative) and negative (competitive) interactions between grasses. We hypothesized that the coarse textured sand on which fairy circles occur creates a hydraulically and nutritionally connected landscape, in which neighbouring fairy circles competitively influence each other over several metres, while providing opportunity for focusing of resources around the peripheral grasses. To test our hypotheses we conducted three main groups of analyses: 1) we measured grass biomass to assess facilitative and competitive effects of the component grasses; 2) across a region with fairy circles we measured the size and density of fairy circles and correlated that with water infiltration rates into soil; 3) we measured the capacity of soil to conduct water pulses and 15N tracers. We found evidence of facilitative interactions in the periphery of the fairy circles and competitive suppression of the matrix grass proximal to the periphery. Across the region, fairy circle size was positively correlated with soil infiltration rates and negatively with precipitation. This suggests that fairy circles emerge in soils with high capacity for water flux that enables landscape hydraulic connectivity. Water- and 15N-pulse experiments showed that edaphic resources were highly mobile, moving up to 7.5 m over a period of 1–3 weeks. We concluded that the evidence is consistent with an emergent vegetation pattern explanation for the origins of fairy circles and that the circles are more closely associated with a highly connective edaphic environment, rather than with particular biota.

Ecography 40: 1210–1220, 2017
doi: 10.1111/ecog.02461
© 2016 The Authors. Ecography © 2016 Nordic Society Oikos
Subject Editor: Thorsten Wiegand. Editor-in-Chief: Miguel Araújo. Accepted 23 August 2016
contributed to global interest in fairy circles, this regularity is contingent on both the homogeneity of the landscape (i.e. absence of drainage lines, rocky outcrops, etc.) and the existence of a high density of fairy circles (Cramer and Barger 2013). In Namibia fairy circles are restricted to a narrow climatic regime with mean annual precipitation (MAP) of 50–150 mm and soils that are coarse textured sands (Cramer and Barger 2013) with high infiltration rates (Moll 1994). Although strikingly similar in appearance, the African and Australian fairy circles differ in a number of respects. Australian fairy circles occur in a wetter (MAP = 327 mm), but highly variable rainfall area (MAP range: 37–619 mm), and on clay-rich soils with low infiltration rates (Getzin et al. 2016). Although similar in spatial distribution and appearance, mechanisms of fairy circle formation in Namibia and Australia likely differ (Getzin et al. 2016). Following this, we restrict further discussion of this spatial pattern to the Namibian fairy circles.

The generally barren interior of Namibian fairy circles is commonly surrounded by peripheral grasses that are taller than the matrix grassland (van Rooyen et al. 2004). Although this band of taller peripheral grass around fairy circles is common, the rings do also form without the distinctive taller peripheral grasses (Tschinkel 2012). The Namibian fairy circles are dynamic with a lifespan of ca 60 yr (Tschinkel 2012) and the average size of fairy circles decreases with increasing rainfall (Cramer and Barger 2013). This and the fact that competitive interactions between grasses in an arid ecosystem are likely to be, at least partially, for water has led to the suggestion that fairy circles are an example of vegetation gap patterns that form as a result of competitive interactions between grasses (van Rooyen et al. 2004, Tschinkel 2012, 2015, Cramer and Barger 2013), similar to the formation of gaps in vegetation in Niger (Barbier et al. 2006, 2008). The regularity of fairy circle distribution in the landscape and the correlation of fairy circle size with distances apart are also consistent with the notion of plant–plant interactions as the major vegetation-patterning mechanism (Getzin et al. 2015a, b, Juergens et al. 2015a, b). Furthermore, mathematical models of fairy circles based on plant–plant interactions reliably reproduce fairy circle size, shape and distribution as well as the changes in fairy circles with variation in precipitation (Tlidi et al. 2008, Fernandez-Oto et al. 2014, Getzin et al. 2015a, b, 2016, Zelnik et al. 2015).

The hypothesised vegetation-patterning mechanism for fairy circle formation requires that the fairy circles are able to interact with each other over distances of up to 13 m (Getzin et al. 2015a, b). Although runoff may occasionally occur under extremely high intensity precipitation events (Cramer and Barger 2013), the sandy soils associated with fairy circles have little to no biological soil crusts and exceptionally high infiltration rates (ca 1290 mm h⁻¹; Moll 1994). Hydraulic conductance of soils is commonly assessed from surface infiltration, for which typical values are 1–5 mm h⁻¹ for clay, and < 30 mm h⁻¹ for sand (Brouwer et al. 1988), although higher values have been recorded (e.g. 360 mm h⁻¹ for desert soil in Arizona, Lyford and Qashu 1969). The exceptionally high infiltration rates on fairy circle soils led Cramer and Barger (2013) to propose that rather than runoff, sub-surface flow of water driven by water gradients setup by deep peripheral grass roots in coarse sand may enable competition between fairy circles for resources and consequently spatial patterning. Evidence for such long-range sub-surface water flows is, however, lacking.

Apart from the exceptionally arid conditions in areas where Namibian fairy circles occur, the association with coarse textured aeolian sand also results in exceptionally low nutrient concentrations in the soil (Cramer and Barger 2013). Considering the sandy nature of the soil where fairy circles occur and the low organic carbon concentrations (ca 0.037%), it is likely that nutrients are highly mobile with water in the soil. Nutrient mass-flow is a critical mechanism for the delivery of nutrients to plant roots, especially in circumstances where soil has low binding capacity for nutrients (Cramer et al. 2009). Indeed, Cramer and Barger (2013) found that soil N concentration was inversely related to fairy circle size, distance apart and landscape occupancy. As a consequence it is likely that competitive interactions in fairy circles are not only for water, but also for nutrients.

The ecological mechanisms for the origin of fairy circles are currently contentious (Getzin et al. 2015a, b, Juergens et al. 2015). An alternate hypothesis for the origin of fairy circles to the vegetation-patterning hypothesis is that termites generate the pattern by feeding on grasses (Moll 1994, Juergens 2013, 2015, Juergens et al. 2015, Vlieghe et al. 2015). Based on the vegetation-patterning hypothesis, however, we hypothesized (Supplementary material Appendix 1, Fig. A1) that the size and density of fairy circles is linked to characteristics of the soils that enable grasses to competitively interact with each other for water and nutrients over distances exceeding the radius of the root zone, which is typically < 1 m (Cramer and Barger 2013, Juergens 2013). To test this hypothesis we measured: 1) facilitative and competitive effects on grass biomass and root density (inferred from soil respiration) between fairy circle peripheries and the matrix; 2) the variation of soil hydraulic properties with fairy circle size and density across a fairy circle landscape; 3) the hydraulic conductance of the soil by monitoring the flux of water added to the soil and the mobility of soil nutrients by measuring plant acquisition of ¹⁵N from depots remote from the plants. The evidence presented provides support for competitive and facilitative interactions determining grass biomass and also provides a potential mechanism for long-range (i.e. several metres) interactions between fairy circles that determines their size and spacing.

Methods and material

Study site

Sampling was carried out in the NamibRand private nature reserve (24.949°S, 16.040°E, 1000 m elevation) during Feb–Mar in 2014 and 2015 in the pro-Namib Desert ca 110 km from the coast. The study site lies between the aeolian Namibian sand sea in the west and Great Namibian Escarpment in the east (Fig. 1). All necessary permits were obtained for the described study, which complied with all relevant regulations (Permit 1854, Ministry of Environment and Tourism; Permit NNRNP/P/2014/01, NamibRand Nature reserve). The reserve soil is red Kalahari sand with vegetation dominated by Stipagrostis obtusa, S. uniplumis...
and *S. ciliata* of the Poaceae. Rain is concentrated in summer, peaking in Feb with 62% falling in Jan–Apr. Herbivores that commonly occur in the grasslands include oryx, zebra, springbok, ostrich, hartebeest.

Measures of the variation in plant biomass, soil CO₂ flux and water and ¹⁵N transport (see below) were conducted at a single site within the reserve (24.964°S, 15.974°E). Infiltration measures were carried out across the reserve (Fig. 1) to document the variability of fairy circle size and soils.

Grass canopy volumes and biomass

For each of six pairs of fairy circles (randomly selected) within a single area (24.964°S, 15.974°E), the distance between peripheries was measured and a line stretched taught between peripheries (Fig. 2). Plants were excavated in the periphery at either end of the transect, at 25% (quartile), the mid-point and 75% (quartile) along the transects (Fig. 2). We were careful to recover all the coarse roots of the plants down to a depth of 40 cm, but this misses much of the fine root biomass. From trenches dug alongside peripheral grasses we know that the roots extend to a depth of up to 0.9 m, but coarse roots were only observed on the side-walls of the excavations within 0.4 m of the plants, whereas sparse finer hair-like roots were observed up to ca 0.9 m from the peripheral plant stems in barren circles. The canopy heights, widths and longest root lengths (coarse roots) of the plants were recorded and the plants bagged for biomass measurements. The collected plant material was separated into root and shoot components and dried at 70°C for 96 h prior to weighing. The fragile dried root sheaths were then removed from the roots by crumbling them by hand in a plastic bag. The root material was then re-weighed.

Independent of the transects, grass clump densities on the periphery of circles and in matrix were also measured. For each fairy circle (*n* = 10) within a single area (24.964°S, 15.974°E) the perimeter of the circle was measured by laying
a tape along the peripheral grass. This line was used to count
the number of tussocks on the periphery of each circle. The
number of plants in 1 m² quadrats (n = 10) in the matrix
(equidistant from 2 neighbouring circles) were counted. The
heights and canopy widths of 5 plants were measured for
each circle and also for each 1 m² quadrat to allow estimation
of canopy volumes.

Soil CO₂ efflux

Soil respiration was measured as an indicator of soil biotic
activity along four independent transects running from
the barren interior, through the periphery and into the
grassland matrix at the same site at which grass biomass
was measured (24.964°S, 15.974°E). A LI-6400 portable
infra-red gas analyser (LI-COR Biosciences, NE, USA)
with a Licor soil respiration cuvette (Licor 6400-09) was
used to measure soil CO₂ efflux between 8 am and 11 am
(Feb 2014). The rim of the soil cuvette was inserted 1 cm
into the soil and allowed to equilibrate for 5 min prior to
conducting soil CO₂ efflux measurements. For each measure-
ment, the soil temperature was measured over a 0 to 20 cm
depth with a Licor soil temperature probe (mean 30.5°C).
The CO₂ efflux measurements were taken thrice at a cuvette
CO₂ concentration of 400 µl l⁻¹ over a range of 10 µl l⁻¹ and
averaged.

Soil infiltration rates and textural analysis

We measured soil water infiltration by taking a single
measurement at each of 35 sites across the nature reserve,
varying from having no fairy circles to having highly regu-
lar densely packed fairy circles (e.g. Supplementary mate-
rial Appendix 1, Fig. A2). These sites were all close to roads
and were chosen to represent the variability of fairy circles
across the reserve. Infiltration was measured following the
method of Herrick et al. (2005) using a single ring infiltro-
meter (12.8 cm diameter). Briefly, the soil was wetted with
400 ml of water applied to the surface through a towel, prior
to insertion of the infiltrometer into the soil to a depth of
3 cm. The infiltrometer was loaded with 400 ml water
using a plastic sheet to reduce soil surface disturbance, and
then the reservoir replenished using a Mariotte’s bottle
(McCarthy 1934) to keep a constant head of pressure. The
change in volume over time was recorded and the infiltration
rate calculated as in Herrick et al. (2005). At each site a soil
sample was taken to 30 cm depth with an auger. By augering
deeper, the depth of a calcrete layer was measured if present
at < 50 cm depth (depths ranged between 8 and 50 cm).

For each sample collected (n = 35), soil particle size
distributions were analysed thrice using a Malvern Mastersizer
2000 (Malvern Instruments, Malvern, UK) on < 1 mm sieved
soils suspended in water and ultrasonically dispersed, stirred
and introduced to the laser diffraactometer with a Malvern
Hydro 2000G wet dispersion unit. The organic material that
floated to the surface was removed by hand. Each sample was
subjected to 180 s ultrasonic dispersal to ensure complete
disaggregation of particles. The average proportion of the soil
particles in each size class were recorded and plotted. These
size classes were then summed into categories representing
clay, silt and sand (and sand sub-classes), according to the
Wentworth grain size chart (Williams et al. 2006).

A multiple regression model for infiltration rate against
soil texture and environmental variables, including mean
annual precipitation (MAP) and temperature (MAT) and
normalised difference vegetation index (NDVI) and each of
their respective quadratic terms, was developed in R (R
Development Core Team). The inclusion of MAT, MAP and
NDVI were based in the assumption that these may relate to
vegetation density and decomposition and thus soil carbon
and consequently infiltration rates. The model was simplified
though backward simplification following the procedure
outlined by Crawley (2007). In this model the soil texture
and NDVI variables were logit transformed. The simplified
model retained only sand, MAT and MAP.

Environmental data

Monthly rainfall data were obtained from 45 stations within
the NamibRand reserve for the period 2004–2014. These
data were averaged over the decade and the calculated MAP
subject to interpolation across longitude and latitude using
cubic splines according to Akima (1978) implemented in the
‘akima’ package in R. We produced our own interpo-
lated rainfall measures because global interpolated datasets
(Hijmans et al. 2005) poorly represent the variation in
rainfall across this region due to the highly stochastic nature
of rainfall. Mean annual temperatures (MAT) were obtained
from Hijmans et al. (2005) for the period 1950–2000 (ca
1 km² resolution) using the ‘raster’ package in R. Normalized
difference vegetation index (NDVI) is a measure of the
density of chlorophyll contained in vegetative cover. The
annual average NDVI were obtained for southern Africa
from eMODIS TERRA produced by US Geological Survey
Earth Resources Observation and Science Center through
time series smoothing (Swets et al. 1999) of data collected
between 2001 and 2010 (250 m spatial resolution). These
data were sampled for the locations of the infiltrometers
using the ‘raster’ package in R.

Fairy circle size, shape and density

At each site where infiltration measurements were made
and soil samples collected, we traced the outline of fairy
circles using the line tool in Google Earth. We checked all
available Google Earth imagery for fairy circles at each site
and used the clearest image from the period 2010–2012,
Corresponding to a relatively wetter period, on the basis
that changes in fairy circles over such a short period are
small to non-existent. All visible circles were delineated in
an area of 2.25 ha centred on the infiltration site. The
lines were converted to polygons and analysed using the
‘rgdal’ and ‘spatstat’ packages in R. The fairy circle density,
average polygon area, diameter and perimeter and average
minimum distance between neighbouring polygons were
calculated for each site. The shape index (i.e. compactness,
SI) was calculated as a measure of the departure of fairy
circle shape from a circular plan, as

\[SI = \frac{\text{perimeter}}{2\sqrt{\pi \times \text{area}}} \]

Fairy
circle periphery lengths were related to infiltration rate and environmental variables using a multiple regression model in R. This model initially included the infiltration rate, MAT, MAP, logit transformed depth of calcrite layer, logit transformed NDVI, and each of their respective quadratic terms, but backward simplification following the procedure outlined by Crawley (2007) resulted in retention of only infiltration rate and MAP.

Water pulse conduction

At one site (24.964°S, 15.974°E), water ‘depots’ were created inside a fairy circle and independently in the matrix between fairy circles by depositing a large volume of water in the soil. Water flux from these depots was monitored over a 1 month period. Three circles within a 1 ha area were equipped with Decagon 10HS soil water probes (Decagon Devices, Pullman, WA, USA) buried at 20 and 50 cm depth on 23 Feb 2014. The probes were located in the matrix, periphery and the interior of the fairy circles. To install the probes a hole was augured to below the required depth, the insertion depth marked using a meter rule, and the probe inserted horizontally in the sidewall of the augured hole. The augured hole was then filled with the material taken from the hole (first out, last in). The probes were connected to Decagon Emb5 loggers set to record once every 4 h. On 27 Feb 2014 at 16:00 h 20 l of water was poured into a 9 cm diameter pipe placed in an augured hole extending to 50 cm depth resulting in wetting of the soil from surface. Two independent water depots were established, one in the matrix at 4.5 m from the periphery of a circle and the other in the interior of a separate fairy circle, 3 m from its periphery. Both water depots were ca 0.5 m from a set of probes at that location.

15N labelling and analyses

At one site (24.964°S, 15.974°E), 15N soil ‘depots’ were established by introducing a solution containing 15N at varying distances into both the matrix and fairy circle from peripheral grasses and the uptake of 15N by the peripheral grasses monitored. A 20 l solution containing 2.2 g of 98 atom% (i.e. percentage of total N that is 15N) of 15NH415NO3 (Sigma-Aldrich, Johannesburg, South Africa) in water was prepared and 1 l of this poured into a 9 cm diameter pipe inserted into an augured hole to 20 cm depth. These depots of 15N were established in the matrix on 21 Feb 2014 at 1, 2.2 and 4.5 m from the periphery of a circle (n = 5), and within fairy circles 1.5 and 3 m from their periphery (n = 5). A stake marked the peripheral grass clump closest to the 15N-depot. After 7 d (1 Mar 2014), 1 month (19 Mar 2014) and 5 months (8 Jul 2015) the youngest green leaves were harvested from the marked grass clumps. The foliar material was dried in an oven at 70°C for 48 h and then milled in a Wiley mill using a 0.5-mm mesh and subjected to mass spectrometer analysis for leaf δ15N and δ13C values. The milled leaf samples (2.1–2.2 mg) were weighed into tin capsules (Elemental Microanalysis, Devon, UK) and combusted in a Thermo Flash EA 1112 series elemental analyzer and the gasses were fed into a Delta Plus XP isotope ratio mass spectrometer (Thermo Electron Corporation, Milan, Italy). Two in-house standards and one International Atomic Energy Agency standard were used to calibrate the results.

Results

Evidence of facilitative and competitive dynamics

The height and diameters of Stipagrostis ciliata grasses that mostly comprise the fairy circle periphery are much larger than those of the mixture of S. ciliata, S. uniplumis and S. obtusa grasses in the matrix (Table 1). We measured all plants regardless of species, and thus these measures reflect both the species compositional shift and an environmental gradient between periphery and matrix. These heights and diameters translate to more than an order of magnitude difference in plant volume (assuming a cylindrical volume). Although the density of smaller matrix grasses is much higher than that of the peripheral grasses, when combined with the canopy volume estimate this yields a 5-fold larger canopy volume per area on the fairy circles (including the barren area in the estimate) relative to the matrix (Table 1). Across the landscape with an average canopy volume of 24 ± 1 l m⁻² (i.e. volume per ground area), the canopy volume was 3.2-fold greater on the fairy circles than in the landscape as a whole.

The whole-plant dry weights of peripheral grasses were ca 10-fold greater than those at the quartile (25%) and midpoints of the inter-fairy circle distance between neighbours.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Fairy circle</th>
<th>Matrix</th>
<th>Landscape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (m)</td>
<td>0.36 ± 0.01</td>
<td>0.13 ± 0.01</td>
<td>0.25 ± 0.01</td>
</tr>
<tr>
<td>Diameter (m)</td>
<td>0.40 ± 0.01</td>
<td>0.08 ± 0.01</td>
<td>0.24 ± 0.01</td>
</tr>
<tr>
<td>Canopy volume (L)</td>
<td>46 ± 4</td>
<td>0.9 ± 0.2</td>
<td>24 ± 2</td>
</tr>
<tr>
<td>Plant density (# m⁻²)</td>
<td>1.6 ± 0.1</td>
<td>24.6 ± 3.7</td>
<td>21.2 ± 3.2</td>
</tr>
<tr>
<td>Canopy volume per area (l m⁻²)</td>
<td>75 ± 7</td>
<td>15 ± 2</td>
<td>24 ± 1</td>
</tr>
<tr>
<td>Canopy volume relative to landscape</td>
<td>3.17 ± 0.29</td>
<td>0.63 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>
Fairy circles was thus used as an estimate of the amount of peripheral grass and the size of fairy circles. At the site where we measured canopy volumes and investigated 15N transfer between fairy circles and water fluxes (24.964°S, 15.974°E), SI is 1.140 ± 0.011 (n = 151 fairy circles). At this site fairy circle landscape occupancy is 14.7% with 30.8 circles ha$^{-1}$ and the average fairy circle area is 40.0 ± 1.6 m2 with a diameter of 6.9 ± 0.14 m and a perimeter of 25.1 ± 0.7 m. These circles are 5.7 ± 0.2 m apart (representing the average minimum distance between the peripheries of neighbouring circles) and 12.9 ± 0.3 m apart (centroid to centroid).

Soil CO$_2$ and H$_2$O efflux

Soil CO$_2$ and H$_2$O efflux (i.e. evaporation) was low at all points across the transects, despite 10 mm of rainfall one week prior to the measurements (Fig. 3). The CO$_2$ and H$_2$O efflux were undetectable at the centre of the circles (no data obtained), and very low at points further than 1 m from the periphery. The CO$_2$ efflux in the matrix was ca 50% of that on the periphery, broadly consistent with the lower root mass of matrix than peripheral grasses (Fig. 2). Water efflux was also highest at the periphery and lowest in the centre of the fairy circle.

Fairy circle size and shape

Fairy circles are not actually circular when closely inspected (Supplementary material Appendix 1, Fig. A2). The lack of circularity is due to convoluted perimeters, but not to elongation in any particular direction. The shape index (SI) of fairy circles is 1.152 ± 0.014 (n = 29 sites), indicating a 15% greater perimeter length than that expected for a circular structure of equivalent area. The peripheral length of the fairy circles was thus used as an estimate of the amount of peripheral grass and the size of fairy circles. At the site where we measured canopy volumes and investigated 15N transfer between fairy circles and water fluxes (24.964°S, 15.974°E), SI is 1.140 ± 0.011 (n = 151 fairy circles). At this site fairy circle landscape occupancy is 14.7% with 30.8 circles ha$^{-1}$ and the average fairy circle area is 40.0 ± 1.6 m2 with a diameter of 6.9 ± 0.14 m and a perimeter of 25.1 ± 0.7 m. These circles are 5.7 ± 0.2 m apart (representing the average minimum distance between the peripheries of neighbouring circles) and 12.9 ± 0.3 m apart (centroid to centroid).

Figure 3. Variation in soil (A) CO$_2$ and (B) H$_2$O efflux with position along transects (n = 4 transects) from the barren area inside a fairy circle (grey panel, negative distances from periphery) into the matrix (clear panel, positive distances from periphery). Points represent mean and bars SE. Different letters indicate significant differences determined by one-way ANOVA followed by post-hoc Tukey tests.
Soil conduction of water pulses

The capacity of the soils to rapidly transport water over long distance (ca 7.5 m) was demonstrated by injection of water pulses followed by tracking soil moisture at sites remote from the pulse (Fig. 5). There was a strong diurnal fluctuation in soil water content registered at all probes and depths that was only temporarily suppressed at the probe closest to the pulse of water (Fig. 5). Addition of water to a site in the matrix was registered as a pulse change in soil water by a water probe at 20 cm depth closest to the site of introduction within hours of the introduction. Within 4 d the probes located on the fairy circle periphery 4.5 m from the water pulse and those within the fairy circle 6 m and 7.5 m from the pulse all registered an increase in soil water content. Similarly, 4 d after the pulse of water was applied in the centre of a fairy circle a change in soil water content was detected 1.5 m from pulse (closer to the periphery), 3 m from pulse (on the periphery) and 5.2 and 7.5 m from the pulse (in the matrix). The probes in the matrix located at 2.2 m from the matrix-pulse and 5.2 m from the fairy circle-pulse, which were both in a location similar to the quartile position (Fig. 2), registered either a small or no change in soil water content. We speculate that these probes were in a soil zone with low soil water content as a consequence of vegetation demand, and/or not in hydraulic contact with the remainder of the soil. Probes at 50 cm depth recorded only small changes in soil water in response to the pulse, except for the probe closest to the pulse (data not shown).

15N uptake by periphery grasses

15N tracers supplied at varying distances from the fairy circle peripheries were detected within peripheral grass foliar tissue within 7 d of application (Fig. 6). The foliar d^{15}N values of peripheral grasses remote from the 15N injection point (control) were confined to relatively narrow limits and varied little between repeated samplings (7 d, 1 and 5 months). 15N depots located 1 m from peripheral grasses resulted in considerable increases in d^{15}N within 7 d, and this signal persisted to the 5-month sampling, which took place in the middle of the dry winter period. Likewise, there was significant enrichment of the peripheral foliar d^{15}N from 15N placed 2.25 and 4.5 m into the matrix, demonstrating transfer of the isotope to the peripheral grass. There was also enrichment from 15N

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>SE</th>
<th>Beta</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>6281</td>
<td>1787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>498</td>
<td>95</td>
<td>0.63</td>
<td><0.001</td>
</tr>
<tr>
<td>MAT</td>
<td>−22</td>
<td>9</td>
<td>−0.29</td>
<td>0.024</td>
</tr>
<tr>
<td>MAP</td>
<td>−31</td>
<td>12</td>
<td>−0.32</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Soil conduction of water pulses

The capacity of the soils to rapidly transport water over long distance (ca 7.5 m) was demonstrated by injection of water pulses followed by tracking soil moisture at sites remote from the pulse (Fig. 5). There was a strong diurnal fluctuation in soil water content registered at all probes and depths that was only temporarily suppressed at the probe closest to the pulse of water (Fig. 5). Addition of water to a site in the matrix was registered as a pulse change in soil water by a water probe at 20 cm depth closest to the site of introduction within hours of the introduction. Within 4 d the probes located on the fairy circle periphery 4.5 m from the water pulse and those within the fairy circle 6 m and 7.5 m from the pulse all registered an increase in soil water content. Similarly, 4 d after the pulse of water was applied in the centre of a fairy circle a change in soil water content was detected 1.5 m from pulse (closer to the periphery), 3 m from pulse (on the periphery) and 5.2 and 7.5 m from the pulse (in the matrix). The probes in the matrix located at 2.2 m from the matrix-pulse and 5.2 m from the fairy circle-pulse, which were both in a location similar to the quartile position (Fig. 2), registered either a small or no change in soil water content. We speculate that these probes were in a soil zone with low soil water content as a consequence of vegetation demand, and/or not in hydraulic contact with the remainder of the soil. Probes at 50 cm depth recorded only small changes in soil water in response to the pulse, except for the probe closest to the pulse (data not shown).

15N uptake by periphery grasses

15N tracers supplied at varying distances from the fairy circle peripheries were detected within peripheral grass foliar tissue within 7 d of application (Fig. 6). The foliar d^{15}N values of peripheral grasses remote from the 15N injection point (control) were confined to relatively narrow limits and varied little between repeated samplings (7 d, 1 and 5 months). 15N depots located 1 m from peripheral grasses resulted in considerable increases in d^{15}N within 7 d, and this signal persisted to the 5-month sampling, which took place in the middle of the dry winter period. Likewise, there was significant enrichment of the peripheral foliar d^{15}N from 15N placed 2.25 and 4.5 m into the matrix, demonstrating transfer of the isotope to the peripheral grass. There was also enrichment from 15N
The relationship between soil infiltration rates and fairy circle size indicates an association of fairy circles with soil properties that are conducive to long-range (several metres) hydraulic and nutrient transfer. The capacity for these transfers was demonstrated by both water and 15NH$_3$ mobility within the soil. These data are consistent with the vegetation-patterning hypothesis of fairy circle origins, and establish that the conditions required for this mechanism of formation are present at a site where fairy circles occur. This does not, however, represent a test of the formation mechanism.

Peripheral grasses are commonly larger than matrix grasses, although this is not necessarily the case for all fairy circles (Tschinkel 2012). In some circumstances this size differential is associated with different species, but in others the same species occurs on the periphery as on the matrix. The peripheral grass canopy volume was considerably greater (3.17-fold, Table 1) than the average for the landscape. The depots placed in the fairy circles at 1.5 and 3 m from the periphery. When the injection point was in the fairy circles, the δ^{15}N values of the peripheral grasses had a number of outliers, some with very high δ^{15}N values.

Discussion

The variation in vegetation biomass and shoot:root allocation between the fairy circle periphery and matrix provides evidence for either or both facilitation (between peripheral grasses) and competitive interactions (i.e. between periphery and barren areas of fairy circles and between periphery and matrix). This variability in biomass (over tens of metres; Getzin et al. 2015a, b) occurs despite dense fairy circles at the study site occurring in an extremely homogenous (i.e. both between fairy circles and matrix and at the landscape scale) edaphic environment that mostly comprises deep aeolian sands (Cramer and Barger 2013). The relationship between soil infiltration rates and fairy circle size indicates an association of fairy circles with soil properties that are conducive to long-range (several metres) hydraulic and nutrient transfer. The capacity for these transfers was demonstrated by both water and 15NH$_3$ mobility within the soil. These data are consistent with the vegetation-patterning hypothesis of fairy circle origins, and establish that the conditions required for this mechanism of formation are present at a site where fairy circles occur. This does not, however, represent a test of the formation mechanism.

Peripheral grasses are commonly larger than matrix grasses, although this is not necessarily the case for all fairy circles (Tschinkel 2012). In some circumstances this size differential is associated with different species, but in others the same species occurs on the periphery as on the matrix. The peripheral grass canopy volume was considerably greater (3.17-fold, Table 1) than the average for the landscape. The
ca 10-fold higher total biomass of plants on the periphery than at the quartile location in matrix was also associated with significantly higher (2.3-fold) shoot:root ratios. Since light competition is unlikely in this high-light environment with extremely sparse grass canopies, higher biomass and shoot:root ratios on the periphery may represent a response to a less stressful environment (Chapin 1980) generated through a lack of competition from the interior of the barren fairy circles. In contrast, competitive interactions in the matrix may require greater root investment for survival than on the periphery. For example, increased allocation to rooting systems in response to water limitation enables greater access to water (Robinson et al. 2010). Thus the variation in grass biomass and shoot:root ratios between periphery and matrix are consistent with competitive interactions, particularly between the periphery and the adjacent matrix grasses.

The greater biomass of the peripheral grasses may also be considered a consequence of short-range facilitation. In dry-land spatial vegetation patterning, facilitation is commonly caused by interception of surface runoff, soil water diffusion or sediment deposition to vegetation clumps (Meron 2012, Zelnik et al. 2015). In the case of Namibian fairy circles, however, competitive exclusion of grasses from the centre of the fairy circle likely allows the peripheral grasses to grow larger through maintenance of a resource (i.e. water and nutrient) reservoir. Once a fairy circle has formed, it may be rare that environmental conditions are sufficiently favourable for grasses to be able to invade the barren fairy circles. Although grass seedlings do commonly establish within the barren area of fairy circles following rains, they rarely survive the following dry period. Thus individual peripheral grasses may benefit from cooperative exclusion of competitive grasses from the barren fairy circle and focussing of resources from the fairy circle into the peripheral band through water and nutrient diffusion powered by grass consumption (Zelnik et al. 2015). Resources flowing outwards from the barren fairy circle are likely to be largely intercepted by the deep-rooted peripheral grasses, resulting in matrix grasses adjacent to the peripheral grasses experiencing intense competition.

As demonstrated by water- and 15N-pulses, resources from both the barren fairy circle and the matrix area meet the water and nutrient requirements of the larger peripheral grasses. The demand of these larger peripheral grasses likely dominates resource fluxes in the landscape due to the concentration of plant biomass on the fairy circle periphery (Table 1). Furthermore, it has been commonly shown that larger deep-rooted species, including grasses, engage in hydraulic redistribution (i.e. lift) of water into surface soils (Leffler et al. 2005). Hydraulic redistribution by peripheral grasses is likely to contribute to growth on the periphery and may also contribute to explaining the greater surface flux of water from the periphery (Fig. 3B) where root biomass was focused, as evident from both plant biomass (Fig. 2) and CO$_2$ fluxes (Fig. 3A). The sparse canopy of the grasses, including those on the periphery, thus does not serve to reduce evaporation from the soil. This is in contrast to the reduced evaporative flux of water from soil under the peripheral vegetation of a gap pattern in a shrubland in Niger (Barbier et al. 2008). Thus the concentration of biomass on the fairy circle periphery results in the peripheral grass functioning as a sink for resources from the fairy circle and also from the matrix, potentially resulting in competition between neighbouring fairy circles for resources and consequently the regular spacing of fairy circles documented by Getzin et al. (2015a, b).

Since grass root lengths and radial extents are relatively restricted (<1 m; Juergens 2013) and surface runoff is rare (Cramer and Barger 2013), competitive interactions over distances greater than 1 m requires resource mobility in the soil. The exceedingly high infiltration rate in sites with fairy circles relative to global norms indicates high capacity for hydraulic transfer in the soil. This is also demonstrated by the water-pulse experiments that show water movement over distances of up to 7.5 m over days to weeks. The transfer of 15N to peripheral grasses within 7 d over distances of 3 m from inside a fairy circle and 4.5 m from the matrix (Fig. 6) additionally indicates significant capacity for mobility of N through the sand. This mobility of N is probably powered by water flux through soils with very low clay and carbon contents, and thus binding capacity for nutrients. Since the fairy circles are, on average, at least 5.7 m apart at the study site used for water and 15N depot experiments, the capacity for water and N movement to the periphery from the matrix over these distances indicates that the fairy circles and the matrix in the vicinity of fairy circles are hydraulically and nutritionally connected.

The positive association of fairy circle perimeter lengths (as a measure of fairy circle size) with soil infiltration rates indicates that regionally, fairy circles are larger when the infiltration rates are higher, but decreases with increasing MAP. Fairy circle occurrence in south-western Africa (including Namibia) was previously also negatively related to...
MAP (Cramer and Barger 2013). The main determinant of infiltration rate is the proportion of the soil that is the sand content, which allows the development of larger fairy circle perimeters in low rainfall areas. The association of fairy circle size with infiltration rates is consistent with the requirement of vegetation-patterning that neighbouring fairy circles interact with each other in order for them to attain highly regular patterning (Getzin et al. 2015a, b). High soil water conductivity was also identified as a crucial component in a model of fairy circle formation (Zelnik et al. 2015).

Conclusion

Namibian fairy circles occur in an arid context on soils with exceedingly high infiltration rates and low nutrient holding capacities. We conclude that Namibian fairy circles are an example of an emergent vegetation spatial pattern that arises from soil hydraulic and nutritional characteristics that enable relatively long-range (several metres) resource transport within the soil, rather than from the particular grass species that form the circles, or the flora and fauna that inhabit the circles. This soil-hydraulic mechanism is not the only mechanism forming such vegetation gap-patterns, which also occur in shrublands due to differential soil surface evaporation (Niger; Barbier et al. 2008) and in grasslands due to surface runoff (Australia; Getzin et al. 2016).

Acknowledgements — We are grateful for funding from National Geographic Grant #9539-14 to Nichole Barger. We are grateful to Quintin and Vanessa Hartung, Nils Odendaal and other staff at the NamibRand Nature reserve for accommodating and enabling this research. Nicholas Hanley and Edward Chirwa provided technical assistance and mass spectrometer analysis was conducted by Ian Newton in the Dept of Archeometry (Univ. of Cape Town).

References

Getzin, S. et al. 2015b. Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia. – Erophy 38: 1–11.

Juergens, N. et al. 2015. Weaknesses in the plant competition hypothesis for fairy circle formation and evidence supporting the sand termite hypothesis. – Ecol. Entomol. 40: 661–668.

