
New Statistical Methods for Allometry with Application to Florida Red-Winged Blackbirds
Author(s): James E. Mosimann and Frances C. James
Source: Evolution, Vol. 33, No. 1, Part 2 (Mar., 1979), pp. 444-459
Published by: Society for the Study of Evolution
Stable URL: http://www.jstor.org/stable/2407633 .
Accessed: 13/09/2011 14:27

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for the Study of Evolution is collaborating with JSTOR to digitize, preserve and extend access to
Evolution.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=ssevol
http://www.jstor.org/stable/2407633?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


Evolution, 33(1), 1979, pp. 444-459 

NEW STATISTICAL METHODS FOR ALLOMETRY WITH APPLICATION TO 
FLORIDA RED-WINGED BLACKBIRDS 

JAMES E. MOSIMANN AND FRANCES C. JAMES1 
Division of Computer Research and Technology, National Institutes of Health, 

Bethesda, Md. 20014 and Ecology Program, National Science Foundation 

Received September 28, 1977. Revised April 5, 1978 

Allometry, the association of size and 
shape in populations of organisms, is the 
subject of an extensive literature (Reeve 
and Huxley, 1945; Gould, 1966, 1975; 
Spielman, 1973; Sprent, 1972; Thorpe, 
1976). In this paper we present new sta- 
tistical methods for the study of size and 
shape, and use these methods to study the 
morphology of red-winged blackbirds, 
Agelaius phoeniceus, breeding in Florida. 

We use definitions of size and shape 
variables that permit the study of the en- 
tire statistical distribution of a given vari- 
able. We offer these methods as an alter- 
native to classical methods based on the 
allometric equation in which relations are 
summarized in single coefficients reflect- 
ing at best the mean trend of shape with 
some size variables. Our alternative goal 
is to determine visually and geometrically 
meaningful size and shape variables 
which permit the direct study of the as- 
sociation of size and shape. 

This paper is in two parts. In the first 
part we discuss definitions of size and 
shape variables and summarize statistical 
results which include exact tests for size- 
shape associations (Mosimann, 1970, 
1975a, 1975b). In the second part we use 
these methods to study geographic varia- 
tion in red-winged blackbirds in Florida. 

Throughout we consider the following 
situation: N individuals are independently 
sampled from some population. For each 
individual there are k positive measure- 
ments, all in the same units, say milli- 
meters. For the i-th individual we then 
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have the "data" vector xi = (xi1, * *Xik). 
The distribution of these data vectors 
in the population is given by the posi- 
tive random vector X = (X1, , Xk). 
For the purpose of developing statis- 
tical tests we assume that X has a multi- 
variate lognormal distribution. However, 
some general results where the positive 
random vector X has an arbitrary distri- 
bution are presented first. 

THE SHAPE AND SIZE OF A DATA VECTOR 

Our approach is to conceptualize each 
sample data vector x as a pair of vari- 
ables: (1) a "shape vector" variable, Z(x), 
which identifies the positively-directed ray 
from the origin on which x lies, and (2) a 
scalar "size" variable which identifies how 
far from the origin x is found on that pos- 
itively-directed ray. A size variable G(x): 
(1) has as its value some positive real num- 
ber and (2) exhibits the homogeneity prop- 
erty G(ax) = aG(x) for all positive x and 
all a > 0. If now we divide each element 
of x by G(x) we obtain a shape vector 
x/G(x) = Z(x). Examples of size variables 
are xi, ,xX, (11x,)llk. Examples of shape 
vectors are ratios x/xi, proportions x/lxi 
and X/(JXlllk). The norm (Ix12)1"2 is a size 
variable, and the direction cosine vector 
X/(IXi2)"12 is a shape vector. Two data 
vectors xi and xj are said to have the same 
"shape" if one is a scalar multiple of the 
other; that is xi = axj for some a > 0. 
Since the direction cosine vector XI(IXi2)112 
is a shape vector, then two data vectors 
have the same shape if and only if they 
have the same direction cosines; that is, 
if and only if they lie on the same posi- 
tively-directed ray from the origin in k- 
dimensional Euclidean space. This is con- 
sistent with Huxley's (1932) and Reeve 
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and Huxley's (1945) use of the allometric 
equation: x2 = ax,b, where (x1, x2) are si- 
multaneous measurements on two parts of 
an individual. When b = 1, there is 
"isometry" (Reeve and Huxley, op. cit.); 
that is, no shape change. In fact then any 
two points (x1i, x12) and (x21, x22) which 
satisfy the equation must lie on the same 
ray, and therefore have the same shape. 

IN THE POPULATION AT MOST ONE 
SIZE VARIABLE CAN BE INDEPENDENT 

OF SHAPE 

The population is represented by the 
positive random data vector X, or equiv- 
alently by an associated random shape 
vector Z(X) and size variable G(X). The 
lack of association of size and shape in the 
population is the condition that Z(X) be 
statistically independent of size G(X). 
"Isometry with respect to size G" is the 
statistical independence of some (every) 
random shape vector Z(X) and size G(X). 
For example, if the ratio vector XlXk is 
independent of (JX)llk, the geometric 
mean, then we have isometry with respect 
to the geometric mean. We briefly state 
theoretical results whose exact statements 
and proof are given elsewhere (Mosimann 
1970, p. 937; 1975a, pp. 209-210). 

If size G is independent of some shape 
vector (say XIiX) then G is independent 
of every shape vector. Thus if G = X1 is 
independent of the proportion vector 
X/IX it must also be independent of ra- 
tios X/Xi, direction cosines X/(ZX2)1"2, etc. 
Because of this result we can speak un- 
ambiguously of the independence of shape 
and size, G. On the other hand assume 
shape varies and suppose a size variable 
G is independent of shape. Then no other 
size variable can be independent of shape. 
Thus if X1 is independent of shape then 
none of the size variables X2, .X, (IX2)1"2, 
etc. can be independent of shape. The 
independence of G and shape implies that 
no other size variable is independent of 
shape, and the only exception is virtually 
no exception at all; namely, if H is a size 
variable such that for some a > 0, 

Prob(H = aG) = 1, then H is also inde- 
pendent of shape. 

Since in the population, shape can be 
independent of at most one size variable, 
it will never be surprising to find associ- 
ations of size and shape in biological stud- 
ies and there is no necessary reason for 
shape to be related in a similar fashion to 
two different size variables. 

BUT IN THE SAMPLE, SHAPE COULD 
APPEAR TO BE INDEPENDENT OF MORE 

THAN ONE SIZE VARIABLE 

We add that one can construct theoret- 
ical distributions in which shape may be 
"almost" independent of more than one 
size variable. For example, suppose all 
positive probability is on a single ray from 
the origin, so that shape is constant and 
thereby independent of all size variables. 
Then let shape vary just a little about this 
single ray. Then shape is nearly indepen- 
dent of several size variables so that for 
biological purposes one could say that sev- 
eral size variables were unrelated to 
shape. Samples from such a population 
might show no significant association of 
shape with any of several size variables. 

THE CHOICE OF A SIZE VARIABLE 
IS IMPORTANT 

In allometric work prior to 1970 there 
was virtually no recognition that isometry 
depends critically on the choice of a size 
variable. One standard approach to test- 
ing isometry implicitly chooses the geo- 
metric mean as a size variable (Mosimann, 
1970, p. 938). Historically isometry was 
defined in terms of the allometric equation 
with b = 1. Under this deterministic 
model with b = 1, all data vectors x = 
(x1, x2) fall on the same ray from the or- 
igin, and shape is constant and indepen- 
dent of all size variables as just noted 
above. However in all biological studies, 
shape varies and the data vectors never 
all lie in the same ray. When this happens 
shape can be independent of at most one 
size variable. To discuss isometry one 
must speak of isometry with respect to a 
specified size variable. 
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THE INDEPENDENCE OF SHAPE AND 
SIZE IN A LOGNORMAL POPULATION 

We now assume the random data vector 
X has a multivariate lognormal distribu- 
tion. Let Yi = log Xi, i = 1, * *, k. Then 
the log data vector Y = (Yl, * *, Yk) has 
a multivariate normal distribution. Now 
consider the shape vector XlXk. Its log 
vector is (Y 1 - , , Yk-1 - Yk, 0) = 

Q*, say. Q* is a linear transformation of 
Y, and therefore Q* itself has a multi- 
variate normal distribution (in turn im- 
plying that XlXk has a lognormal distri- 
bution). 

Now consider some size variable G. 
Shape (every shape vector) is independent 
of G if and only if XlXk is independent of 
G, and this latter is true if and only if Q* 
is independent of log G. 

Whenever log G is a linear combination 
of Y (that is log G = laiYi) then log G 
is normally distributed and G is lognor- 
mally distributed. Then Q* and log G 
jointly follow a multivariate normal dis- 
tribution. In this case Q* and log G are 
independent if and only if the multiple 
correlation coefficient of Q* with log G is 
zero. Thus whenever log G = laiYi, the 
hypothesis that shape is independent of G 
is equivalent to the hypothesis that the 
multiple correlation of Q* with log G is 
zero. 

Some remarks are appropriate. The in- 
dependence of shape and size variables 
like Xi, or (X,Xj)1/2 or any geometric 
means (IlXi)"s, where there are s coordi- 
nates in the product, may be tested exactly 
since in each of these cases log G = X aiYi. 
(Since G is a size variable, lai = 1 but 
some ai's may be zero or negative.) Also, 
not every shape vector is lognormal (e.g. 
X/IX), but X/IX is independent of G 
whenever XlXk is. 

HOW TO TEST FOR ISOMETRY WITH 
RESPECT TO A LOGNORMAL 

SIZE VARIABLE 

Suppose that G is lognormal so that 
log G = X ajYj. Now consider N inde- 
pendently sampled data vectors xi = 

(Xili 
. *, Xik), i = 1,* * *, N, of k measure- 

ments each, as in part 1. Each data vector 
is a realization of the random vector X 
which is assumed to have a multivariate 
lognormal distribution. Take logarithms 
of each measurement (base 10 or base e) 
obtaining yi = (yil, - - Yik), i = 1,* *. , N. 
Each of these vectors is then a realization 
of Y which under the assumption has a 
multivariate normal distribution. For 
each yi calculate (Yil - Yik,* * * Yi(k-1) - 

Yik, klj ajyij) i = 1,. * N. Each of 
these vectors is a realization of the random 
vector (Y1 - Yk, , Yk-1 - Yk, log G). 
The sample multiple correlation coeffi- 
cient R of the random vector (Y1 - 

Yk .. Yk-1 - Yk) with log G is then 
used to calculated the F statistic 

F(k - 1, N - k) = 
[R2/(1 - R2)]/[(k - 1)(N - k)], 

to test the hypothesis that the population 
multiple correlation coefficient is zero (An- 
derson, 1958, pp. 89-92). This hypothesis 
is equivalent to "shape is independent of 
size G" or "X is isometric with respect to 
G." Furthermore this sample F-value oc- 
curs as standard output for multiple 
regression using the General Linear 
Models procedure of SAS, the Statistical 
Analysis System (Barr et al., 1976), when 
log G is used as the "dependent" variable, 
and Yi - Yk, i = 1, , k - 1, as "in- 
dependent" variables. The F-value (mean 
square model)/(mean square error) is in 
fact the desired statistic for testing that the 
population multiple correlation coefficient 
is zero, and hence that shape is indepen- 
dent of the size variable G. The calcula- 
tions are illustrated in the Appendix. 

THIS MULTIPLE CORRELATION 
COEFFICIENT MEASURES THE RELATION 

OF 
SHAPE AND SIZE 

More important than the test for asso- 
ciation of shape with size is the measure- 
ment of the degree of such association. 
The multiple correlation coefficient above 
provides a measure which does not de- 
pend on the particular choice of log-shape 
vector used. Let Q = (Y1 - Yk,***, 
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Yk-1 - Yk). Any log-shape vector which 
is linear in Y will have the same multiple 
correlation coefficient of log shape with 
log size as Q. More generally, any inver- 
tible linear function of Q, say U = QA, 
also represents log-shape, since (1) Q = 
UA-1 gives back Q, and (2) taking anti- 
logs of the elements of Q gives the original 
shape vector and hence potentially any 
other shape vector. 

The multiple correlation coefficient of 
Q with log G will be the same as that of 
U with log G since this coefficient is the 
ordinary correlation coefficient of log G 
with that linear combination of Q which 
has maximal correlation with log G. Since 
U is a linear combination of Q, and con- 
versely, both have the same multiple cor- 
relation coefficient with log G. One con- 
sequence is that any such U may be used 
in place of Q in the test procedure of the 
previous section. 

THE COMPLEXITY OF ALLOMETRIC 
HYPOTHESES 

There is a great deal of complexity to 
the formulation of allometric hypotheses 
even apart from the choice of size vari- 
ables (cf. Mosimann, 1975 a, 198-199). The 
independence of shape and size in k dimen- 
sions does not imply the independence 
of shape and size in (k - 1) dimensions, 
nor conversely. Let X be multivariate 
lognormal. Then of the two statements 
(1) k-dimensional shape is independent of 
(JIkX)lIk (2) (k - 1)-dimensional shape 
is independent of (J22k-iXl)(k1-) both may 
be simultaneously true, both false, or 
either true while the other is false. To see 
this let X be the covariance matrix of Y, 
the logarithms of X, and denote by ti the 
sum of the elements in the i-th column of 
E. Then statement (1) is true if and only 
if all column totals are equal: ti = t, i = 
1,***, k (Mosimann, 1970). 

Next denote the first (k-1) coordinates 
of X by X1, with its logarithms, Y1. De- 
note the covariance matrix of Y1 by 11. 
This comprises the initial (k - 1) row and 

column elements of E. Let si be the sum 
of the elements in the i-th column of Ii. 
Then statement (2) is true if and only if 

= s, i = 1, , k- 1. It is possible to 
have X such that (1) and (2) are both false, 
true, or either is true separately. 

Nor does the complexity of allometric 
hypotheses stop here. There are k differ- 
ent (k - 1)-dimensional shape vectors de- 
pending on the choice of a coordinate Xi 
which is dropped. The independence of 
(k - 1)-dimensional shape and size for one 
choice does not imply such independence 
for another choice. 

For example consider male and female 
map turtles, Graptemys geographica, 
which were studied by Mosimann (1958, 
Fig. 2.9). (His conclusions are verified by 
retesting with the new methods here.) 
Carapace length (L) increases relatively 
faster than either width (W) or height (H), 
but width and height maintain the same 
ratio. Given the data vector (H, W, L), 
three-dimensional shape (H/L, W/L, 1) is 
not independent of "volume" (LWH)I3, 
since W/L and H/L decrease with increas- 
ing size. However for (H, W), two-dimen- 
sional shape (H/W, 1) is independent of 
"cross section" (HW)"2. On the other hand 
for (H, L), two-dimensional shape (H/L, 
1) is not independent of "transverse sec- 
tion," (HL)"2. 

SEPARATE STATISTICAL ANALYSES OF 
SIZE AND SHAPE VARIABLES 

The association of shape with size is but 
one facet of studies of size and shape vari- 
ables. In connection with such studies, it 
may be of interest to study variation in a 
log size variable (like Yi) or a log shape 
variable alone (e.g. Yi - Yk). Under the 
lognormal assumption for X, both Yk and 
Yi - Yk are univariate normal variables. 
Standard statistical techniques (like the 
analysis of variance) may be applied to 
either. The advantages of the distinct def- 
initions of size and shape variables used 
here are that they permit study of the en- 
tire distributions of the relevant random 
variables. 
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GEOGRAPHIC VARIATION IN SIZE 
IN BIRDS, INTRODUCTION 

In a study of geographic variation in 
wing length (size) in twelve species of 
birds over the United States, all showed 
an increase in wing length northward and 
westward from Florida (James, 1970). 
The twelve species, which included the 
downy woodpecker Dendrocopus pubes- 
cens, blue jay Cyanocitta cristata, white- 
breasted nuthatch Sitta carolinensis and 
meadowlark Sturnella magna, were of di- 
verse morphology, habitat and diet. Thus 
the common geographic trend in size is not 
likely to be explained by factors which 
differ among these species. 

In the eastern and central states the pat- 
tern of size variation even reflects topo- 
graphic features such as the Appalachian 
Mountains, the Ozark and Edwards pla- 
teaus, and the valley of the Mississippi 
River. Most data were available for the 
downy woodpecker, and its wing length 
was correlated with climatic indices com- 
bining temperature and humidity, partic- 
ularly wet-bulb temperature. Other species 
showed similar relations (James, 1970, 
Tables 7, 8). These observations, together 
with consideration of King and Farner's 
(1964) equilibrium model for heat loss in 
an individual bird, led to an empirical re- 
formulation of Bergmann's Rule as 

"Intraspecific size variation in ho- 
meotherms is related to a combina- 
tion of climatic variables that in- 
cludes temperature and moisture. 
Small size is associated with hot hu- 
mid conditions, larger size with cool- 
er or drier conditions. " 

This idea is an extension of the observa- 
tions of Hamilton (1958, 1961) for vireos 
and is consistent with the findings and 
conclusions of Power (1969) for the red- 
winged blackbird in the Great Plains. 
While not proof of cause and effect, and 
not without exceptions (Niles, 1973), the 
relationships provide evidence that the 
thermoregulatory consequences of size are 
important determinants of species that ex- 
hibit geographic variation. 

Others do not believe that climatic fac- 
tors are very important in determining 
such geographic variation in size. For ex- 
ample, Rosenzweig (1968) found that 
mammalian carnivores tend to be larger 
at higher latitudes, in colder areas and in 
deserts, a result consistent with the above 
studies. However he interpreted the neg- 
ative correlation of size with actual evapo- 
transpiration in tundra and deserts to 
mean that the low productivity of the 
plants in these regions (and presumably 
the unpredictable supply of prey) made 
large size advantageous. McNab (1971) 
and Rosenzweig (1966) also reject the 
Bergmannian interpretation in favor of 
one based on predator size. MacArthur 
(1958), Schoener (1965), Cody (1973) and 
Hespenheide (1973) have championed the 
thesis that the size of a species is at least 
partly determined so as to maximize dif- 
ferences among related species coexisting 
in a given area, thereby reducing inter- 
specific competition. 

These explanations are not mutually ex- 
clusive. While we cannot test the various 
explanations here, we would like to state 
that any explanation for birds should be 
consistent with the following: 

(1) Variation may change within a few 
decades at a single locality. Thus Pow- 
er (1970a) shows changes in wing 
length and width of the lower mandi- 
ble in breeding red-winged blackbirds 
at localities in central Canada and in 
the central United States over periods 
of about 20 years. 

(2) A species may show rapid differentia- 
tion in the course of expanding its 
range. The house sparrow, introduced 
into North America in the middle of 
the 19th century shows the same de- 
gree of geographic variation in mor- 
phology as native species (Johnston 
and Selander, 1964, 1971, 1973). 

(3) A number of North American species 
of diverse morphology and habits 
show gradual changes in wing length 
with the smallest extreme in the south- 
east and increases northward and 
westward. Secondary variations with- 



STATISTICAL METHODS FOR ALLOMETRY 449 

TABLE 1. Arithmetic means of measurements (mm) and weight (gm) for the 12 geographic blocks. 

Bill Bill Leg Tail Wing 
Number depth length length Length length Weight 

Geographic in block Xl x2 X3 X4 X5 (Grams) 
block with 

block Fe- Fe- Fe- Fe- Fe- Fe- Fe- 
number* Male male Male male Male male Male male Male male Male male Male male 

24-81 1 5 9 8.2 7.3 22.9 19.4 46.7 42.3 89.2 69.6 115.2 92.2 53.5 36.7 
26-80 2 52 67 8.7 7.5 23.6 19.8 48.1 42.7 82.9 67.6 108.1 89.0 47.2 32.1 
26-81 3 8 9 8.7 7.4 23.8 19.8 48.8 43.5 86.4 70.1 111.1 91.4 51.1 34.8 
26-82 4 6 5 8.7 7.8 23.2 19.9 48.8 42.4 87.3 70.4 113.3 92.1 51.5 36.0 
28-80 5 14 12 8.6 7.6 23.2 19.5 48.8 42.7 89.3 70.3 114.3 90.9 52.4 33.0 
28-81 6 42 42 9.1 7.6 23.8 19.4 49.3 43.7 87.9 70.3 113.9 92.3 52.4 35.2 
28-82 7 10 6 9.2 7.8 23.1 19.7 48.6 43.2 88.7 71.3 114.9 93.7 55.4 36.2 
29-82 8 11 18 8.8 7.6 23.4 19.5 49.0 43.5 87.5 70.9 114.2 93.7 56.1 38.3 
29-83 9 15 17 9.3 7.7 23.1 19.6 49.0 43.1 87.0 69.4 114.2 93.5 54.0 34.9 
30-82 10 8 18 9.1 7.6 23.3 19.3 48.2 42.8 90.1 70.0 114.6 93.6 55.5 34.5 
30-84 11 10 6 9.0 7.9 23.5 19.8 48.4 43.5 87.0 70.7 115.9 94.7 56.4 37.2 
30-87 12 7 6 9.5 8.1 23.6 19.9 48.8 43.2 88.7 72.9 117.2 96.7 58.5 36.1 

* Latitude and longitude of the southeastern corner of the 1-degree block followed by block number used in Figure 2 

in this overall pattern conform to a 
surprising extent to changes in topog- 
raphy, such as the Appalachian Moun- 
tains, the Mississippi River, and the 
Ozark and Edwards plateaus (James, 
1968, 1970). 

Because of these three points we do not 
believe that interspecific competition and 
predation are prime sources of the ob- 
served geographic size variation in birds. 
At a minimum we believe that climatic 
sources warrant further study. 

Whatever explanation is offered, our 
methods permit the study not only of size 
variation but of associated shape variation 
and hence offer more facts for interpre- 
tation than currently available. 

RED-WINGED BLACKBIRDS IN FLORIDA 

The red-winged blackbird, Agelaius 
phoeniceus, is one of the most abundant 
and widespread species of bird in North 
and Central America. In connection with 
a study of crop depredation, the U.S. Fish 
and Wildlife Service collected a number 
of them at 99 localities in Florida during 
the breeding seasons of 1964, 1965 and 
1966. In an initial analysis presented by 
Howe, Laybourne and James (1977), the 
specimens were organized into seven geo- 
graphic units, defined partly on the basis 
of Howell and Van Rossem (1928) who felt 

that four populations deserved subspecific 
recognition, primarily based on a south- 
ward trend to paler females. Considering 
only morphological data, Howe et al. (op. 
cit.) described a pattern of gradually in- 
creasing size (wing length, weight) in the 
seven regions from southeastern to north- 
western Florida. Weights and wing 
lengths of red-winged blackbirds pub- 
lished elsewhere (Ridgway, 1902; Ama- 
don, 1956) indicate that this trend contin- 
ues throughout the eastern and central 
United States. These findings are consis- 
tent with those of Power (1969, 1970a, 
1970b), who applied multivariate tech- 
niques in a detailed study of morphologi- 
cal variation in red-winged blackbirds in 
the Great Plains. The pattern of variation 
in Mexico and Central America is cur- 
rently under study by Dickerman and 
Hardy (Dickerman, 1965; Hardy and 
Dickerman, 1965). 

ORGANIZATION OF THE DATA 

Taking the Florida data set and divid- 
ing the state of Florida into 1-degree lat- 
itude-longitude blocks, we consider birds 
within a block together. Each block is ap- 
proximately 65 miles on a side, but some 
contain little land mass. Blocks with fewer 
than five individuals of either sex are ex- 
cluded, leaving 12 blocks (Table 1, Fig. 
1) and a total of 188 adult males and 215 
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FIG. 1.-Means of wing length and bill depth for 
adult red-winged blackbirds for 12 one-degree lati- 
tude-longitude blocks in Florida. In tables, in other 
figures, and in the text, block A is referred to as 
"Eastern Everglades" and block B as "Central Flor- 
ida. " 

adult females. Two blocks have sufficient- 
ly large numbers of birds of both sexes to 
permit a study of variation within them. 
The "Eastern Everglades" block (A in Fig. 
1) has 52 males and 67 females collected 
between 260 and 270 north latitude and 800 
and 810 west longitude. Most are from the 
vicinity of Fort Lauderdale. The "Central 
Florida" block (B in Fig. 1) has 42 males 
and 42 females collected between 280 and 
290 north latitude and 810 and 820 west 
longitude. Most are from the vicinity of 
Orlando. 

Measurements were made by Roxie 
Laybourne from museum study skins now 
held by the United States National Mu- 
seum of Natural History. There are five 
measurements (in mm) for each bird: bill 
depth (at nostril), X1; bill length (exposed 
culmen), X2; toe plus tarsus length, X3; 
tail length, X4; and wing length (chord), 
X5. We let X = (X1, * *,dX5) and denote 
the respective logarithms by YR = log10Xi, 
il= 1,b *-, 5. In addition we have the 
weight of each bird. 

The mean measurements for the blocks 
show that in bthh sexes wing length, tail 

length, and bill depth all increase regular- 
ly across Florida from southeast to north- 
west, with their smallest extreme (except 
for bill depth) in the Eastern Everglades 
(lat. 26, long. 80). The weight data show 
this same general pattern (Table 1, Fig. 
1). Note also that mean wing length de- 
creases from west to east at all latitudes 
and that birds of the southernmost block, 
in the Florida Keys (24, 81) are similar in 
weight and wing length to those of middle 
and northern Florida. 

THE MULTIVARIATE LOGNORMAL 
ASSUMPTION 

Our bird measurements are all positive 
variables, and it is natural to use a prob- 
ability distribution for positive random 
variables, like the lognormal, in their 
analysis. In Figure 2, log (bill length/bill 
depth) is plotted against log wing length, 
and 95% ellipses are fitted to the data un- 
der the assumption of a normal distribu- 
tion for these log variables. The ellipses 
describe the points rather well. In Figure 
3, following the example of Jolicoeur and 
Heusner (1971), we briefly examine the 
consequences of choosing a bivariate log- 
normal, as opposed to normal, distribu- 
tion for (tail length, wing length) = (X4, 
X5). Illustrated are the data for males 
from the Eastern Everglades and Central 
Florida blocks, together with 95% ellip- 
ses. Also drawn (dashed lines) are the an- 
tilog curves of the 95% ellipses fitted to 
the log data, (Y4, Y5). There is little dif- 
ference due to either choice. 

Our preference for the lognormal model 
is based on the following: (1) it is a model 
for positive measurements; (2) it affords 
considerable theory for allometry since ra- 
tios are lognormal if the original measure- 
ments are; (3) it allows the statistical pro- 
cedures we have outlined, which are exact 
under the model; (4) it describes our data 
at least as well, perhaps better, than the 
normal model. 

ANALYSIS OF VARIANCE OF SIZE AND 
SHAPE VARIABLES 

Geographic variation in various log size 
and log shape variables was examined for 



STATISTICAL METHODS FOR ALLOMETRY 451 

FEMALES MALES 

0.48- 

0.44- 

0.40 t- A _ Eastern E asterns 
_J Everglades Everglades 

6J Central Florida 

E5 0.36 12 Noth enteral Florida Z 1 Florida Keys 
0 0.48 - 2 Eastern Everglades 
0- 

ui 0 .8 vegld6 Central Florida 
cr 12 Northwestern Florida 2 

0 36 
2 0.44 - 

2 0 

0. 6 8 6 o.l 
1.92<1.96 20 100 

i 0.40 49090 

lenth Y51n1ilsae(ogbl eghlgbl 

12 ~~~~~~~12 

0.36 

0 
Eastern 

>d 0o e Everglades al 
/ ~~~~~~~Florida 

0.44- 

0.40- 

0.36 Central Mlrd Means of 12 Florida Florida Blocks 

1.92 1.96 2.00 2.04 2.08 2.12 

Y5 LOG WING LENGTH, LARGER WING 

FIG. 2.-The relationship between size (log wing 
length, Y5) and bill shape (log bill length/log bill 
depth, Y2 - Y1) for (a) the Eastern Everglades and 
Central Florida populations, (b) means of the 12 
Florida blocks identified by block number in Table 
1 and (c) both a and b, showing that the interlocality 
trend is not a reflection of the within-locality varia- 
tion. Ellipses are 95% equal frequency ellipses cal- 
culated from the appropriate covariance matrices, 
using the appropriate values of Hotelling's T. 

each sex separately over the 12 Florida 
blocks (188 males, 215 females). For each 
variable, variance component estimates 
were obtained from a one-way analysis of 
variance (Table 2). The between-block 
component is an estimate of the variance 
of the means across blocks, and hence a 
measure of the geographic variation. Each 
analysis presupposes that the within-block 
error variance is constant over the 12 
blocks, but major conclusions will not be 
disturbed by some departure from this as- 
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FIG. 3.-The relationship between tail length, X4, 
and wing length, X5, for males from the Eastern 
Everglades and Central Florida blocks. Solid-line 
ellipses are 95% equal frequency ellipses calculated 
from the covariance matrix of (X4, X5). Dashed line 
curves are the antilog of the 95% equal frequency 
ellipses calculated from the covariance matrix of the 
log measurements (Y4, Y5) using Hotelling's T2. 
There is little difference in the respective curves. 

sumption. (Each variable in Table 2 is 
normally distributed whenever the data 
vector X is lognormally distributed.) 

We first consider log size variables in 
Table 2. Most of these show considerable 
geographic variation in both sexes. How- 
ever, the variation in log (toe plus tarsus) 
length, Y3, is negligible, and there is no 
significant variation in log bill length, Y2. 
Log bill depth, Y1, shows considerable 
geographic variation. This is greater for 
males (between, 2 13; within, 222) than for 
females (between, 78; within, 230). For 
each sex, log wing length, Y5, has a be- 
tween component which is larger than its 
within component. This high between/ 
within ratio supports the traditional use 
of wing length as a variable apt to show 
geographic variation. Log weight has a 
high between/within ratio for males, but 
a much lower ratio for females. This and 
the high within-block variance for females 
(1,315) show weight to be an unreliable 
indicator of size in breeding-season fe- 
males. 

Various log-shape variables are given in 
Table 2. Log (tail length/wing length), 
Y4-Y5, shows no significant geographic 
variation in males, and only negligible 
such variation in females, even though 
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TABLE 2. Variance components between and within localities for various log size and log-shape variables. 
Components estimated using one-way analysis of variance are given separately for males and females. For 
between-block components significance from zero is indicated by **, .01 level; and *, .05 level. All component 
entries must be multiplied by 10f to obtain the actual variance estimates. 

Log Size Variables 

Log toe Log Log 
Log Log plus geometric geometric 
bill bill tarsus Log tail Log wing mean mean Log 

depth length length length length (Y, + ... of bill weight 
YV Y2 Y3 Y4 YV + Y5)/5 (Y, + Y2)/2 (gms) 

Males 
Between 12 blocks 213** 13 19** 155** 148** 57** 60** 923** 
Within block 222 232 144 335 127 66 129 580 

Females 
Between 12 blocks 78** 9 15** 77** 113** 30** 19** 673** 
Within block 230 227 146 244 86 65 150 1,315 

Log Shape Variables 

Log (Toe Log (Tail Log (Toe 
Log (Bill plus tarsus length/Toe Log (Bill Log (Bill plus tarsus Log (Tail 
length/ length/Bill plus tarsus depth/Wing length/Wing length/Wing length/Wing 

Bill depth) length) length) length) length) length) length) 
Y2- Y, YV3-V2 V4- Y3 1,-V, 5 2-V 5 V3- Y5 Y4-V Y 

Males 
Between 12 blocks 212** 12 111** 135** 197** 108** 10 
Within block 391 346 475 354 319 239 175 

Females 
Between 12 blocks 99** 48** 39** 40** 180** 78** 13** 
Within block 314 301 352 294 271 190 137 

both log tail length and log wing length 
showed considerable geographic varia- 
tion. A relatively constant wing/tail ratio 
may be important in flight. In contrast, 
log ((toe plus tarsus) length/wing length), 
Y3- Y5, shows considerable geographic 
variation. Recall that log (toe plus tarsus) 
length showed only negligible geographic 
variation, while log wing length showed 
considerable such variation. Whatever 
adaptations to perching and hopping are 
reflected in toe plus tarsus length, varia- 
tion in this length does not follow closely 
variation in wing length, and a range of 
ratios can occur. Finally, log (bill length/ 
bill depth), Y2 - Y1, shows considerable 
geographic variation which is associated 
with geographic variation in log bill 
depth, but not log bill length. 

Briefly, geographic variation is consid- 
erable in wing length, tail length, bill 
depth, and weight, but absent or negligi- 
ble in bill length and toe plus tarsus 

length. Wing length is a good size variable 
to use in studying geographic variation, 
since it is easy to visualize and has a high 
between/within variance component ratio. 

THE ASSOCIATION OF FIVE- 
DIMENSIONAL SHAPE WITH SIZE 

Next we will consider the association of 
size and shape within the Central Florida 
and Eastern Everglades blocks and also 
geographically across the 12 blocks. 

For each of the two within-block anal- 
yses the test procedure of part one is fol- 
lowed directly. For example, for females 
from the Central Florida block, there are 
42 data vectors each with five measure- 
ments (N = 42, k = 5). For geographic 
associations of size and shape there is a 
between-block analysis for each sex. For 
each sex and each of 12 blocks the means 
of the log measurements (Y1, * , Y5) are 
found. For each sex there are then 12 data 
vectors (N = 12, k = 5). The procedure 
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TABLE 3. Five-dimensional size-shape associations in Florida red-winged blackbirds. Entries are the mul- 
tiple R2 of log five-dimensional shape (Yl - Y5, V2 - Y5, V3 - Y5, Y4- Y5) with the given log size 
variable, as well as with log weight. Significance from zero is indicated by *, .05 level and *, .01 level. 

Log geometric 
mean Log geometric 

(V1 +... mean of bill Log wing Log bill Log 
+ Y5)/5 (Y, + Y2)12 length Y5 length Y2 weight 

Males 
Between Florida Blocks .73* .89** .87** .65 .78* 

N = 12 
Eastern Everglades .28** .71** .5 1** .79** .07 

N= 52 
Central Florida .15 .50** .66** .71** .05 

N = 42 

Females 
Between Florida Blocks .80* .87** .91** .62 .51 

N = 12 
Eastern Everglades .12 .47** .46** .70** .17* 

N = 67 
Central Florida .17 .76** .40** .84** .21 

N = 42 

of section 8 is followed with these 12 mean 
vectors as data vectors. 

First consider the association of five- 
dimensional shape with the size variables: 
wing length, X5; bill length (culmen), 
X2; geometric mean of all measurements 
(ll5X,)115 and geometric mean of the bill 
measurements (X1X2)"12. The squared mul- 
tiple correlation of log 5-D shape (Y1 - Y5, 

*--,) Y4- Y5) with the log of each of 
these size variables is given in Table 3. 

Recall from part one there is no reason 
to expect similar size-shape associations 
for the different choices of a size variable. 
Table 3 confirms this. The squared mul- 
tiple correlation coefficients of log shape 
with log size (see part one) demonstrate a 
variety of size-shape associations, both 
between and within blocks: 

(1) Log wing length, Y5, is very highly 
associated with five-dimensional shape 
both between blocks and within East- 
ern Everglades and Central Florida. 
The relationship is stronger between 
blocks than within them. Recall that 
log wing length shows considerable 
between-block variation. 

(2) Log bill length, Y2, shows sizeable but 
not significant size-shape association 
between blocks, but shows stronger 

significant size-shape association with- 
in the two blocks. Recall from Table 
2 that bill length varies very little be- 
tween blocks. Here, the within-block 
association of size and shape is higher 
than that between blocks. 

(3) The log geometric mean of all mea- 
surements shows very little association 
with shape within blocks, but higher 
associations between blocks. 

(4) The log geometric mean of bill mea- 
surements is significantly related to 
five-dimensional shape, both between 
and within blocks, with higher asso- 
ciations between blocks. 

(5) Log weight is poorly correlated with 
log shape within blocks, but between- 
block associations are higher. 

Two features of this allometric meth- 
odology are illustrated by these analyses. 
First, there are various shape associations 
with different size variables. Second, 
there is the possibility of associating shape 
with a size variable such as weight that 
was not included in the data vector. 

THREE-DIMENSIONAL SHAPE OF BILL 
AND WING MEASUREMENTS 

Since we have demonstrated geographic 
variation in bill shape as well as in wing 
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TABLE 4. Some size-shape associations in the three-dimensional vector (bill depth, bill length, wing 
length) = (Xi, X2, X5). Log1o measurements are (Yl, Y2, Y5). Log "bill shape" is log (bill lengthlbill 
depth) = 2- YI. In thefirst column are squared multiple correlation coefficients of log three-dimensional 
shape (Y, - Y5, Y2 - Y5) with log wing length, Y5. In the second, third and fourth columns are ordinary 
correlation coefficients of log bill shape, Y2 - Y1, with Y5, Y2 and Y, respectively. For Between-block com- 
ponents significance from zero is indicated by **, .01 level; and *, .05 level. 

Log shape, Log bill shape, Y2 - Y, 

V2 - Y5) with 
with log wing log wing log bill log bill 
length Y5 R2 length, Y5 length, Y2 depth, Y, 

Males 
Between Florida blocks .84** -.52 .03 -.95** 

N = 12 
Eastern Everglades .30** -.16 .53** -.65** 

N= 52 
Central Florida .57** .32* .64** -.67** 

N = 42 

Females 
Between Florida blocks .88** -.80** -.19 -.94** 

N = 12 
Eastern Everglades .43** .05 .66** -.70** 

N = 67 
Central Florida .30** .20 .56** -. 55** 

N = 42 

length we shall now analyze the associa- 
tion of the three-dimensional shape of the 
vector of bill and wing measurements (X1, 
X2, X5) with wing length. First, however, 
consider associations of the log measure- 
ments (Y1, Y2, Y5) themselves within the 
Central Florida and Eastern Everglades 
blocks. There is little to no correlation 
among these measurements. Of the 12 or- 
dinary correlation coefficients among 
these Y's (three for each sex and block) 
only the two largest (.38, .30) are signifi- 
cant. Thus there is little within-block as- 
sociation of the logs of bill depth, bill 
length, and wing length in these adult 
birds. 

We now look at size-shape associations 
among the bill measurements and wing 
length. In Table 4 we give squared mul- 
tiple correlation coefficients of log three- 
dimensional shape (Y1 - Y5, Y2 - Y5) 

with log wing length Y5. The geographic 
association of size and shape across blocks 
is much stronger than the within-block 
association. Also in Table 4 we consider 
log (bill length/bill depth), Y2 -Y, 
henceforth called log bill shape. Ordinary 

correlation coefficients of log bill shape 
with the logs of bill length, bill depth and 
wing length are given. (Relationships with 
log wing length are pictured in Figure 2.) 
Log bill shape is related geographically to 
log bill depth, but not log bill length. This 
is consistent with the virtual lack of geo- 
graphic variation in log bill length. Rela- 
tively stouter bills in larger birds are due 
to increased depth, not decreased length. 
This geographic association is not reflect- 
ed within the Central Florida and Eastern 
Everglades blocks. There the associations 
of log bill shape with the logs of bill depth 
Y1 and bill length Y2 are consistent with 
the more or less independent variation of 
these measurements themselves just not- 
ed. The associations of Y2 - Y1 with Y2 
and Y1 are nonetheless real. Longer bills 
are relatively narrower bills, and one can, 
for example, imagine possibilities for nat- 
ural selection operating on either bill 
shape or on bill length. In any event the 
geographic association of bill shape with 
bill depth is not a reflection of an allo- 
metric trend within a given block. 

Our between-block analyses are based 
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on means and seem relatively immune to 
possible unequal measurement error vari- 
ances for bill depth and length. However, 
our within-block analyses might be af- 
fected by unequal measurement error 
variances. (Virtually all statistical analy- 
ses, regression and principal component 
analysis as well as size-shape, would be so 
affected.) We do not have repeated mea- 
surements on the same individual that 
would allow us to evaluate the effects of 
unequal error variances. But we have ex- 
amined a simple error model and do not 
believe effects of unequal error variances 
could alter the conclusion that the geo- 
graphic association of bill shape with 
either wing length or bill depth is not ex- 
plained by the within-population allome- 
tric trend. 

DISCUSSION 

These allometric methods for the study 
of size-shape associations are applicable to 
N independently sampled vectors of pos- 
itive measurements expressed in the same 
units (e.g. mm). They are not intended, 
nor suitable, for the study of shape change 
throughout the growth of a single individ- 
ual. The choice of size variables is an im- 
portant, but almost totally neglected, as- 
pect of allometric studies. For example, 
Jolicoeur's procedure (Jolicoeur, 1963; 
Gould, 1975, p. 260) implicitly chooses the 
geometric mean of all measurements as a 
size variable (Mosimann, 1970). In the 
present study the geometric mean of all 
the measurements does not have a simple 
visual interpretation. However, wing 
length is easy to visualize, and has a high 
between/within variance component ratio. 
This latter renders wing length the best 
discriminator among populations of those 
size variables presented in Table 2. Our 
methods have permitted us to select 
among size variables and also to compare 
shape with a size measurement, weight, 
not derived from the data vector. 

The usual use of the word "size," such 
as by Bonner (1965), involves some idea 
of total size. He considers three such mea- 
surements: weight, volume, and length, 

and concludes that no one measure is ideal 
for all organisms. We believe, with Bon- 
ner, that no one size measurement is ideal. 
In fact, even within a single species no one 
size measurement answers all purposes, 
and allometric relations with respect to 
bill size may be as interesting as those with 
respect to wing length. The methods here 
allow such choices. 

The relationship of our method with 
those of other allometric studies has been 
discussed elsewhere (Mosimann, 1970, pp. 
942-944). Here we amplify some remarks 
made there concerning the use of discrim- 
inant (canonical) analysis and principal 
component analysis to define size vari- 
ables. We shall assume that the analyses 
are based on the covariance matrix E of 
the logarithmic variables, or for a model 
with unequal measurement errors, are 
based on the model covariance matrix re- 
sulting after subtraction of the error ma- 
trix from E (Jolicoeur and Heusner, 1971; 
Hopkins, 1966; Mosimann,et al., 1978). 

In discriminant analysis, the random 
variable corresponding to the first canon- 
ical axis, say lajYj, has a maximal be- 
tween/within variance ratio in the space 
spanned by the canonical axes. Sometimes 
this variable may be defined as size. How- 
ever, the underlying variable ILXja, is a 
size variable only if Yaj = 1. When this 
is not so then IIXaX and YajYj contain 
shape as well as size information. If 
another population is studied, new coef- 
ficients for the first canonical axis, YbjYj 
will likely result, and the geometric mean- 
ing of "size" will therefore differ. (Re- 
marks directly analogous to these apply to 
defining the first principal component of 
X as "size.") 

In our approach the aim is not to pro- 
duce automatically uncorrelated "size" 
and "shape" variables as above. We first 
produce geometrically meaningful defini- 
tions of shape (proportionality) and size. 
Then whether or not shape and size are 
related is a matter of empirical observa- 
tion, and a subject for statistical analysis. 

Consider wing length, which has a fixed 
geometric definition across populations. 
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This measurement has traditionally been 
used by ornithologists. We have shown 
that wing length has the largest between/ 
within variance ratio of the size variables 
considered. Within the set of geometrical- 
ly meaningful, simply measured, size vari- 
ables considered by us, wing length 
achieves the desirable maximization of the 
between/within ratio. 

We have shown that geographic varia- 
tion in the size of red-winged blackbirds 
in Florida is consistent with that observed 
by Power (1970a) for this species in the 
Great Plains, and with trends in other 
species observed by James (1970). Birds 
in the panhandle region of Florida are 
larger (longer-winged, heavier) and have 
relatively deeper bills. Bill length shows 
no geographic variation, so bills are deep- 
er but not longer. The resulting geograph- 
ic association of longer-winged birds with 
relatively deeper bills is not a reflection of 
size-shape associations within populations 
at single localities, since the two within- 
block analyses do not reveal a similar as- 
sociation. Therefore the geographic vari- 
ation in shape is not a simple by-product 
of size variation. (This is consistent with 
Gould's remarks on scaling, 1971, 1975, 
p. 277.) 

In their study of Galapagos ground 
finches (Geospiza spp.), Abbott et al. 
(1977, Fig. 11) consider 16 sympatric 
species pairs. There were three measure- 
ments for each pair: their "overlap in 
diet," their ratio of beak depths, and their 
ratio of culmen lengths. There was no cor- 
relation of "overlap in diet" with the cul- 
men length ratio, but a significant nega- 
tive correlation of overlap with the beak 
depth ratio. The authors do not find this 
surprising since "the main component of 
diet of finches is seeds and fruits . . . 
which are cracked; it is the depth and 
width components of the beak which 
chiefly determine its crushing strength." 
It is interesting to note that over a rela- 
tively small part of the range of a single 
species, the red-winged blackbird, we 
have found negligible variation in culmen 

length but considerable variation in bill 
depth. 

Bill shape is a feature of evolutionary 
importance within the blackbird family 
Icteridae. Beecher (1951) concluded that 
the family as a whole has undergone ra- 
diation from a seed-eating finch-like 
ancestor into fruit, nectar, and insect-eat- 
ing forms. He emphasized the importance 
of the gaping motion (the forceful opening 
of the bill) in adaptations toward a more 
insectivorous or frugivorous diet. 

Given the observations of Abbott et al. 
(1977) and Beecher's (1951) conclusions, 
it is tempting to think that the variation 
we have observed within a single species 
might reflect adaptation to diet, and that 
northwestern Florida blackbirds are larg- 
er because their relatively deeper, more 
conical, bills are better adapted for eating 
seeds. In such a case increase in size might 
follow a change in bill shape. 

This explanation would not seem to ac- 
count for the fine block-to-block grada- 
tions in wing length in Florida blackbirds, 
nor would it account for the large birds 
with shallow bills which occur on the 
Keys. Further, such an explanation would 
not explain the concordant increase in 
wing length observed by James (1968, 
1970) for other species of diverse diet. 
Considering its whole range, the largest 
red-winged blackbirds are found on the 
hot-dry Mexican plateau (Dickerman, 
1974) and in the Great Plains of the United 
States (Power, 1970a) and this is consis- 
tent with the notion that climatic variables 
underlie the observed geographic trend in 
size. We cannot select among hypothe- 
ses-themselves not necessarily mutually 
exclusive-here. 

We do believe that simultaneous con- 
sideration of shape and size variation will 
be a considerable aid in the interpretation 
of size trends in North American birds. 

SUMMARY 

New methods for allometry are pre- 
sented. The definition of random size and 
shape variables which are visually mean- 
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ingful is stressed. In contrast to classical 
methods which attempt to summarize 
size-shape associations with single coeffi- 
cients, the methods here permit the study 
of the entire joint distribution of size and 
shape variables. The diversity of allome- 
tric hypotheses is revealed, and the choice 
of size variable is shown to be important. 
Under a multivariate lognormal assump- 
tion, exact statistical tests are presented. 

The methods are illustrated by study of 
geographic variation in the red-winged 
blackbird in Florida. Bill depth and bill 
shape, but not bill length, show interest- 
ing covariation across Florida. The ob- 
served bill variation for the red-winged 
blackbird is suggestive of variation found 
across species of Darwin's finches, and is 
also consistent with size trends observed 
in a variety of bird species in eastern 
North America. 
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APPENDIX 

We give an illustration of allometric calculations 
with artificial data to allow ease of entry into the 
computer. The situation imagined is that of 10 in- 
dividuals with four measurements on each. There 
are thus N = 10 data vectors with k = 4 variables 

Xi X2 X3 X4 

2 5 15 20 
3 8 21 30 
4 9 22 31 
4 10 25 28 
9 15 28 40 

10 9 26 37 
11 8 22 30 
8 6 20 25 
6 9 20 25 
2 6 20 18. 

The corresponding Y's (log base 10 of the X's) for 
the first two data vectors are 

Y1 Y2 Y3 Y4 

0.30103 0.69897 1.17609 1.30103 
0.47712 0.90309 1.32222 1.47712. 

Let Z 1 = Y 1- Y4, Z2 = Y2- Y4, Z3= 

Y3 - Y4. The values of "log shape" for the first two 
data vectors are then 

Z1 Z2 Z3 

-1.00000 -.602060 -.124939 
-1.00000 -.574031 -.154902. 

Values of the log size variables M= 

(Y1 + Y2 + Y3 + Y4)/4 and Y4forthefirsttwo data 
vectors are 

M Y4 

0.86928 1.30103 
1.04489 1.47712. 

The squared multiple correlation of M with Z1, 
Z2, Z3, with F(3,6), is 
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F VALUE PROB > F R-SQUARE 

8.47 0.014 0.809. 

Hence fovr-dimensional shape is significantly asso- 
ciated with the geometric mean of all measurements 
(X,X2X3X4)"4. The squared multiple correlation of 
Y4 with Z1, Z2, Z3 again with F(3,6), is 

F VALUE PROB > F R-SQUARE 

5.00 0.045 0.714. 

Hence the association of four-dimensional shape 
with the fourth measurement, X4, is significant, but 

not so strong as for (X1X2X3X4)114. However, 2-D 
shape (1, X2/X1), or simplyX2/X1, is not significantly 
associated with X2. The squared correlation of 
Y2- Y1 with Y2 with F(1,8) is 

F VALUE PROB > F R-SQUARE 

0.03 0.877 0.003. 

This also could have been tested using the ordi- 
nary correlation coefficient of Y2 - Y1 with Y2 
which is -.056. 
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