Chemical compounds that contain both carbon and hydrogen.

Hydrocarbons consist almost entirely of carbon and hydrogen.

Four types: carbohydrates, lipids, proteins, and nucleic acids.

Monomers (single units) linked together to form polymers.

Linked using dehydration — take water out.

Broken apart by hydrolysis — add water in.
And Biochemistry . . .

- Carbohydrates: simple sugars and complex carbo’s — provide energy and structure.

- Lipids: all hydrophobic — provide energy, regulation, and structure.

- Proteins — enzymes, regulation, structure . . . lots and lots of things!

- Nucleic Acids — the ‘informational’ molecules, but also enzymatic structures.
Carbohydrates are . . .

* Organic molecules that consist of carbon, hydrogen and oxygen (often in a 1:2:1 ratio). They include . . .

* Simple sugars — a ready source of energy. Which include . . .

* **Monosaccharides** — 5 or 6 carbon atoms:
 * The same number of carbon atoms can be put together differently to give very different molecules. And . . .

* **Disaccharides:**
 * Two monosaccharides joined by dehydration synthesis.
 * For example, sucrose = fructose + glucose.

* And . . . **Oligosaccharides** — 3-100 monomers:
 * Many of these attach to [glyco]proteins on the cell membrane.
The other carbohydrates are the complex carbohydrates. These are . . .

- Polysaccharides, which consist of . . .
 - Hundreds of monosaccharides. And include . . .
- Cellulose — used in plant cell walls. And . . .
- Chitin — used in insect exoskeletons, and fungi cell walls. And . . .
- Starch — used for plant energy storage. And . . .
- Glycogen — used by animals and fungi for energy storage.
For example:

a. **Monosaccharides**: simple sugars composed of carbon, hydrogen, and oxygen in the proportions 1:2:1.

- Glyceraldehyde: \(\text{C}_3\text{H}_6\text{O}_3 \)
- Ribose: \(\text{C}_5\text{H}_{10}\text{O}_5 \)
- Glucose: \(\text{C}_6\text{H}_{12}\text{O}_6 \)
- Fructose: \(\text{C}_6\text{H}_{12}\text{O}_6 \)
- Galactose: \(\text{C}_6\text{H}_{12}\text{O}_6 \)

b. **Disaccharides**: molecules composed of two monosaccharides joined by dehydration synthesis. Hydrolysis converts disaccharides into their component monosaccharides. (The structures of the molecules are simplified to emphasize the joining process.)

\[
\text{Glucose} \quad \text{C}_6\text{H}_{12}\text{O}_6 \quad + \quad \text{Fructose} \quad \text{C}_6\text{H}_{12}\text{O}_6 \quad \xrightarrow{\text{Dehydration}} \quad \text{Sucrose} \quad \text{C}_{12}\text{H}_{22}\text{O}_{11} \quad \xrightarrow{\text{Hydrolysis}} \quad \text{Glucose} \quad \text{C}_6\text{H}_{12}\text{O}_6 \quad + \quad \text{Fructose} \quad \text{C}_6\text{H}_{12}\text{O}_6
\]

c. **Polysaccharides**: complex carbohydrates composed of long chains of simple sugars, usually glucose. Their chemical characteristics are determined by the orientation and location of the bonds between the monomers.
Lipids (a.k.a. fats)!

* All cannot dissolve in water. That means they are . . .
* Hydrophobic. They contain . . .
* Large areas with nonpolar bonds.
* They are not polymers; made of monomers.
* This is unlike the other three major macromolecules.
* There are several groups of them:
* triglycerides, sterols, waxes, and phospholipids.
Triglycerides (normal fats):

- Three fatty acids bonded to a glycerol.
- Use dehydration synthesis and hydrolysis.
- Saturated fatty acids have all single bonds between carbons.
- Animal fats, solid.
- Unsaturated fatty acids have at least one double bond between carbons.
Sterols: vital in regulatory and structural roles.

- All have four interconnected carbon rings.
- Examples include Vitamin D, cortisone, testosterone, and . . .
- Cholesterol, used in cell membranes, and to make other lipids.

What makes men men!
Waxes:

- Fatty acids combined with either alcohols or other hydrocarbons.

- Usually forms water-repellent covering, e.g. on leaves, fruits, fur, and feathers.
Proteins: the workers!

* Consist of amino acid monomers.
* Which have a central carbon atom bonded to a hydrogen, a carboxyl group, an amino group, and an R group.
* The R group distinguishes amino acids.
* Dehydration synthesis links amino acids together (peptide bond), hydrolysis break them apart.
* Come as various peptides, dipeptides, tripeptides, polypeptides, and proteins.
Table 2.5 Protein Diversity in the Human Body

<table>
<thead>
<tr>
<th>Proteins</th>
<th>Function</th>
<th>Proteins</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin, myosin, dystrophin</td>
<td>Muscle contraction</td>
<td>Fibrin, thrombin</td>
<td>Blood clotting</td>
</tr>
<tr>
<td>Antibodies, cytokines</td>
<td>Immunity</td>
<td>Growth factors</td>
<td>Promote cell division</td>
</tr>
<tr>
<td>Carbohydrases, lipases, proteases, nuclease</td>
<td>Digestive enzymes*</td>
<td>Hemoglobin, myoglobin</td>
<td>Transport and storage of oxygen</td>
</tr>
<tr>
<td>Casein</td>
<td>Milk protein</td>
<td>Insulin, glucagon</td>
<td>Control of blood glucose level</td>
</tr>
<tr>
<td>Collagen, elastin</td>
<td>Connective tissue</td>
<td>Keratin</td>
<td>Structure of hair, fingernails</td>
</tr>
<tr>
<td>Colony-stimulating factors</td>
<td>Blood cell formation</td>
<td>Transferrin</td>
<td>Iron transport in blood</td>
</tr>
<tr>
<td>DNA and RNA polymerase</td>
<td>Enzymes* required for DNA replication, gene expression</td>
<td>Tubulin, actin</td>
<td>Cell movements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tumor suppressors</td>
<td>Block cell division</td>
</tr>
</tbody>
</table>

Enzymes, discussed further in chapter 4, are proteins that speed chemical reactions. Without enzymes, most of the cell’s reactions would proceed much too slowly to sustain life.
What these molecules really are.
What about these amino acids?
The physiochemical properties of amino acids determine everything about the protein they make.

http://www.bio.davidson.edu/courses/genomics/jmol/aatable.html

The Venn diagram categorizes the twenty naturally occurring amino acids according to their physiochemical properties.

http://prowl.rockefeller.edu/aainfo/pchem.htm

Monday, January 16, 2012
OK, then what sort of structures do they create?

* Protein folding creates unique 3D structures.
* **Primary** (1°) structure — this is the amino acid sequence determined by an organism’s genetic code (DNA).
* **Secondary** (2°) structure — these are the interactions between amino acids to form helices, sheets, and loops.
* **Tertiary** (3°) structure — the overall shape arising from interactions between R groups, 2° structure, and water.
* **Quaternary** (4°) structure — are the interactions between multiple polypeptide subunits (e.g. hemoglobin has 4 subunits, two alpha and two beta in adults).
* Denaturation — a loss of structure due to physical means (e.g. heat, salt, pH); causes the loss of function.
Once more. What do these look like?

a. Primary structure—the sequence of amino acids

b. Secondary structure—hydrogen bonds between nonadjacent carboxyl and amino groups

c. Tertiary structure—disulfide and ionic bonds between R groups, interactions between R groups and water

d. Quaternary structure—hydrogen and ionic bonds between separate polypeptides
Nucleic Acids! Information molecules

Two types:
* Deoxy-ribonucleic acid (DNA),
* Ribonucleic acid (RNA).

Nucleotide monomers:
Each has a five carbon sugar, a phosphate group, and a nitrogenous base.

Nucleotides:
consist of a sugar (ribose or deoxyribose), a phosphate, and one of five nitrogenous bases.

- **Cytosine (C)**
- **Thymine (T)**
- **Adenine (A)**
- **Uracil (U)**

Nitrogenous base
Guanine (G)

Sugar (Deoxyribose)

Phosphate group
Nucleotide polymers = nucleic acids

- DNA
- Deoxyribose sugar;
- A, C, G and T (not U);
- Double helix.
- Hydrogen bonds hold halves together.
- Always A with T, and C with G.
- Strands are complementary.
- Genetic code — each group of three DNA bases specifies one amino acid.
RNA

* Ribose sugar;
* A, C, G and U (not T);
* Often single stranded.
* Different kinds: messenger, transfer, ribosomal, small nuclear
* Most enable DNA to be expressed.
* Some function as an enzyme.
* An RNA nucleotide, adenosine triphosphate (ATP), carries energy.
Once more. What do they look like?

Nucleic acids: nucleotides joined together in long chains to form DNA or RNA. DNA is composed of the nucleotides A, C, T and G. RNA contains the sugar ribose and the nucleotide U instead of T.
Next time — we begin to look into the Cell.

- The Cell — “the basic structural and functional unit of all known living organisms.”
- And all of its constitutive parts.