PLAGUES IN MAN

ANTIBIOTICS & ANTIVIRAL DRUGS

I. INTRODUCTION AND HISTORICAL PERSPECTIVE
A. CHEMOTHERAPEUTIC AGENTS
 1. SYNTHETIC DRUGS
 2. ANTIBIOTICS
B. THE "MAGIC BULLET"
 1. PAUL EHRLICH & CHEMOTHERAPY--1900
 a. QUININE FOR MALARIA
 b. DISCOVERED SALVARSAN (SYPHILIS)
 2. FLEMING AND PENICILLIN--1927
 a. ANTIBIOSIS AND ANTIBIOTICS
 b. PENICILLIUM NOTATUM INHIBITS S. AUREUS
 3. DOMAGK & TREFOUEL -- PRONTOSIL AND SULFONAMIDES--1935
 4. FLOREY & CHAIN -- DEVELOPED PENICILLIN--1940 (WWII)
 5. WAKSMAN -- SURVEYED ACTINOMYCETES - STREPTOMYCIN--1944
 6. THE HUNT WAS ON:
 a. streptomyces species
 b. bacillus species
 c. fungi

II. PROPERTIES OF ANTIMICROBIAL DRUGS
A. SELECTIVE TOXICITY
B. ANTI-ALLERGENIC (NO OTHER TOXIC REACTIONS)
C. WATER SOLUBLE AND STABLE--PENETRATE & LONG LASTING
D. LOW PATHOGEN RESISTANCE

III. SPECTRUM AND ACTION OF ANTIMICROBIAL DRUGS
A. BROAD AND NARROW SPECTRUM
B. BACTERICIDAL OR BACTERIOSTATIC
C. CELL WALL ANTIBIOTICS
 1. PENICILLINS
 a. STRUCTURE--ß-LACTAM ANTIBIOTIC
 b. ACTIVITY--PEPTIDOGLYCAN CROSS-LINKING
 c. ß-LACTAMASES AND PENICILLINASES
 d. NATURAL PENICILLINS
 e. SEMI-SYNTHETIC PENICILLINS
 1) ACID STABILITY
 2) SPECTRUM
 3) RESISTANCE TO ß-LACTAMASES
 2. CEPHALOSPORINS (FROM MOLD CEPHALOSPORIUM)
 a. STRUCTURE--ALSO A ß-LACTAM ANTIBIOTIC
 b. ACTIVITY SAME AS PENICILLINS
 c. SEMI-SYNTHETIC DERIVATIVES ARE USED
 3. OTHER ß-LACTAMS
 a. IMIPENAM (PRIMAXIN) VERY BROAD SPECTRUM
 b. AZTREONAM ß-LACTAMASE RESISTANT
 c. COMBINATIONS-AUGMENTIN (AMOXICILLIN & CLAVULANATE) AND TIMENTIN
 4. VANCOMYCIN (STAPH AND STREP ONLY)
 5. BACITRACIN (TOPICAL APPLICATIONS ONLY)
D. PROTEIN SYNTHESIS ANTIBIOTICS
 1. AMINOGLYCOSIDES
 a. STREPTOMYCIN & GENTAMICIN
 b. AMINO SUGARS & AMINO INOSITOL
 c. BINDS TO 30S RIBOSOMAL PROTEIN (S12)
 d. BACTERICIDAL
 e. SOMEWHAT TOXIC (RENAL AND NERVE)
2. TETRACYCLINES
 a. POLYCYCLIC COMPOUNDS
 b. BIND TO 30S SUBUNIT -- BLOCK A SITE
 c. LOW TOXICITY (BUT RESISTANCE)
 d. NOT FOR CHILDREN -- STAINS TEETH (& BONE)

3. CHLORAMPHENICOL
 a. SMALL MOLECULE--PENETRATES ALL TISSUES
 b. BINDS TO 50S SUBUNIT
 c. BROAD SPECTRUM
 d. SERIOUS SIDE-EFFECTS -- APLASTIC ANEMIA

4. ERYTHROMYCIN (MACROLIDE ANTIBIOTICS)
 a. LARGE LACTONE RING
 b. BINDS TO 50S SUBUNIT (L15--PEPTIDYL TRANSFERASE)
 c. BROAD SPECTRUM--OFTEN SUBS FOR PENICILLIN
 d. ORALLY ADMINISTERED (CHILDREN)

E. ANTIMETABOLITES
1. SULFONAMIDES -- FIRST WAS SULFANILAMIDE
 a. SYNTHETIC DRUGS
 b. INHIBIT FOLIC ACID SYNTHESIS (MIMIC PABA)

2. TRIMETHOPRIM
 a. INHIBITS DHF REDUCTASE
 b. USED WITH SULFONAMIDE--SULFAMETHOXAZOLE
 [Bactrim and Septra]

3. OTHERS
 a. ISONIAZID--FOR TB
 b. ETHAMBUTOL--FOR TB and DAPSONE--FOR LEPROSY

F. NUCLEIC ACID ANTIBIOTICS
1. QUINOLONES “CIPRO” -- TOPOISOMERASE ACTIVITY
2. RIFAMYCINS INHIBIT RNA POLYMERASE

G. MEMBRANE ACTIVE ANTIBIOTICS
1. POLYENES--AMPHOTERICIN B (ANTIFUNGAL)
2. IMIDAZOLES--MICONAZOLE & KETOCONAZOLE (ANTIFUNGAL)

VI. ANTIVIRAL DRUGS
A. NONSPECIFIC DRUGS
1. DNA & RNA SYNTHESIS INHIBITORS
 a. NUCLEOSIDES
 b. CHAIN TERMINATORS
2. INFERFERON

B. VIRAL-SPECIFIC DRUGS
1. ZOVIRAX OR ACYCLOVIR -- HERPES
2. AMANTIDINE -- INFLUENZA
3. RECEIVER & TAMIFLU -- INFLUENZA
3. AZT et al -- HIV-1
4. PROTEASE INHIBITORS -- HIV-1

C. MODE OF ACTION
1. INHIBIT NA REPLICATION
 a. INHIBIT ENZYME
 b. CHAIN TERMINATORS
2. INHIBIT VIRAL ENZYMES
3. DRUG ACTIVATION BY VIRAL ENZYMES

D. RESISTANCE