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S1 Analysis of SI Environmental Transmission Model

S1.1 Model, assumptions, and definitions2

The sympatric model (1) in the main text describes the changes in the densities of susceptible
(Si) and infected (Ii) hosts in each population and the density of infectious propagules (P ).4

The total population size for host i is Ni = Si + Ii. Let p∗ = (S∗1 , S
∗
2 , I
∗
1 , I

∗
2 , P

∗) be a stable
endemic coexistence equilibrium of the sympatric model. Let U∗ = u11S

∗
1 + u12I

∗
1 + u21S

∗
2 +6

u22I
∗
2 denote the total per spore uptake rate at the sympatric equilibrium.
Fixing Si = Ii = 0 for either i = 1 or i = 2 reduces the sympatric model with two8

host species to an allopatric model with one host species. We focus on the allopatric model
with host species 1, but all of our results apply to the allopatric model with host species 210

after a change of indices. Let p̂ = (Ŝ1, Î1, P̂ ) be a stable endemic coexistence equilibrium of
the allopatric model. The pathogen’s basic reproductive number for the allopatric system12

is R0 = β1χ1S̄1/m1(µ + u11S̄1) where S̄1 is the susceptible density at the allopatric disease
free equilibrium. The total per spore uptake rates at the allopatric equilibrium is Û =14

u11Ŝ1 + u12Î1.
Throughout we describe hosts as being higher or lower competence and small or large16

sinks or sources for infectious propagules. Here, higher competence means higher values of
β2 and χ2 and lower values of m2 and u2i. A host is a sink if χi − ui2P ∗ < 0, i.e., the per18

capita excretion of infectious propagules for infected hosts in population i is lower than the
per capita uptake rate at the sympatric equilibrium. A host is a source if χi−ui2P ∗ > 0, i.e.,20

the per capita excretion of infectious propagules for infected hosts in population i is higher
than the per capita uptake rate at the sympatric equilibrium. Large sinks (or equivalently,22

smaller sources) have smaller chii and larger uij values.
Our analysis primarily focuses on systems where both host species experience negative24

density dependence at the allopatric and sympatric equilibria. Mathematically, we assume
the growth rate of host i at equilibrium decreases with an increase in the density of any host26

class, i.e., ∂fi/∂Si < 0 and ∂fi/∂Ii < 0 for i = 1, 2 when evaluated at p̂ or p∗. We expect
this assumption to be met in most systems. We then discuss how our results can differ if28

one or both hosts experiences positive density dependence. Mathematically, positive density
dependence is defined by ∂fi/∂Xi > 0 for some host class Xi. Positive density dependence30

can arise if the pathogen suppresses host densities to very low values.

S1.1.1 Allopatric equilibrium32

The Jacobian evaluated at the allopatric equilibrium, p̂, is

Ĵ =

 ∂f1
∂S1
− β1P ∂f1

∂I1
−β1S1

β1P −m1 β1S1

−u11P χ1 − u12P −U − µ

∣∣∣∣∣∣
p̂

(S1)

with sign structure34  − ± −
+ − +
− + −

 (S2)
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where ± means the entry can have a positive or negative sign. The entries in the first row
represent the combined effects of competition and reproduction of each host class (Ĵ11, Ĵ12)36

and infection (Ĵ11, Ĵ13); the entries in the second row represent the effects of infection (Ĵ21,
Ĵ23) and mortality (Ĵ22); and the entries in the third row represent the negative effects due to38

uptake by susceptible hosts (Ĵ31) and degradation (Ĵ33) and the combined effect of propagule
release and uptake by infected hosts (Ĵ32). Stability of p̂ implies |Ĵ | < 0.40

The entry Ĵ11 is assumed to be negative for the following reason. We write dS1/dt =
S1f̄1S(·) + I1f̄1I(·) − β1S1P where X1f̄1X is the reproductive rate of hosts in class X1. We
assume ∂f̄1X/∂Y1 < 0 for any host classes X1 and Y1 because of intraspecific competition.
Computing the Ĵ11 entry yields

Ĵ11 = f̄1S − β1P + S1
∂f̄1S
∂S1

+ I1
∂f̄1I
∂S1

∣∣∣∣
p̂

= −I1f̄1I(·)
S1

+ S1
∂f̄1S
∂S1

+ I1
∂f̄1I
∂S1

∣∣∣∣
p̂

< 0 (S3)

where the last equality follows from the fact that at equilibrium dS1/dt = 0, which means
f̄1S(·) − β1P̂ = −Î1f̄1I(·)/Ŝ1. While Ĵ11 is negative, entry Ĵ12 can have either sign because42

∂(X1f̄1X)/∂X1 can be positive or negative depending on the densities of the host classes.

S1.1.2 Sympatric equilibrium44

The Jacobian evaluated at the sympatric equilibrium, p∗, is

J =


∂f1
∂S1
− β1P ∂f1

∂S2

∂f1
∂I1

∂f1
∂I2

−β1S1
∂f2
∂S1

∂f2
∂S2
− β2P ∂f2

∂I1

∂f2
∂I2

−β2S2

β1P 0 −m1 0 β1S1

0 β2P 0 −m2 β2S2

−u11P −u21P χ1 − u12P χ2 − u22P −U − µ


∣∣∣∣∣∣∣∣∣∣
p∗

(S4)

with sign structure46 
− − ± − −
− − − ± −
+ 0 − 0 +
0 + 0 − +
− − ± ± −

 (S5)

where ± means the entry can have a positive or negative sign. The entries in the first and
second rows represent the combined effects of intraspecific competition and reproduction of48

each host class (J11, J13, J22, J24), interspecific competition (J12, J14, J21, J23), and infection
(J11, J15, J22, J25); the entries in the third and fourth rows represent the effects of infection50

(J31, J35, J42, J45) and mortality (J33, J44); and the entries in the fifth row represent the
negative effects due to uptake by susceptible hosts (J51, J52) and degradation (J55) and the52

combined effects of propagule release and uptake by infected hosts (J53, J54). Stability of p∗

implies |J | < 0.54

The reason why entries J11 and J22 are negative and entries J13 and J24 can be either sign
is the same as for the allopatric model; see the last paragraph of the previous subsection.56
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S1.2 Method for computing equilibrium dependence on parame-
ters58

We use the Jacobian-based theory in Bender et al. (1984), Yodzis (1988), Novak et al. (2011)
and Cortez and Abrams (2016) to compute how changes in a parameter affect equilibrium60

densities. Let Xi (i = 1, 2, ...) be the variables of the model, dXi/dt = Fi(·). Let J be the
Jacobian of the model evaluated at an equilibrium point (X∗1 , X

∗
2 , ...).62

If a is a parameter of the model that only affects the equation for Xj, i.e., only Fj(·)
depends on a, then the change in X∗i with a small change in the parameter a is defined by64

the derivative,
∂X∗i
∂a

= −∂Fj
∂a

(J−1)ji = −∂Fj
∂a

(−1)i+jMji

|J |
(S6)

where Mji is the j, i minor of the Jacobian (i.e., the determinant of the submatrix of J where66

row j and column i are removed). When we are only interested in the sign of the derivative,
we write68

∂X∗i
∂a
∝ (−1)kMji/|J | (S7)

where “∝” means “proportional to”, (−1)k = sgn(−∂Fj

∂a
)(−1)1+i+j, and sgn(·) is the sign

function.70

If a is a parameter that affects the equations for a set Q of the variables, i.e., Fj(·)
depends on a if j ∈ Q, then the change in X∗i with a small change in the parameter a is72

defined by the sum of derivatives,

∂X∗i
∂a

=
∑
j∈Q

−∂Fj
∂a

(J−1)ji =
∑
j∈Q

−∂Fj
∂a

(−1)i+jMji

|J |
. (S8)
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S1.3 Allopatric equilibrium dependence on parameters74

All terms and derivatives in this section are evaluated at p̂. The response in the density of
infected hosts to increased degradation of infectious propagules is

∂Î1
∂µ

= (−1)2+3P̂
M32

|Ĵ |
=
−P̂
|Ĵ |

∣∣∣∣∣ ∂f1
∂S1
− β1P̂ −β1Ŝ1

β1P̂ β1Ŝ1

∣∣∣∣∣ =
−β1Ŝ1P̂

|Ĵ |
∂f1
∂S1

. (S9)

Because |Ĵ | < 0, the sign of the derivative is determined by ∂f1/∂S1. The response in the
density of susceptible hosts is76

∂Ŝ1

∂µ
= (−1)1+3P̂

M31

|Ĵ |
=

P̂

|Ĵ |

∣∣∣∣ ∂f1
∂I1

−β1Ŝ1

0 β1S1

∣∣∣∣ =
β1Ŝ1P̂

|Ĵ |
∂f1
∂I1

(S10)

The sign of this derivative is determined by −∂f1/∂S1. The response in the proportion of
infected hosts is determined using the chain rule,78

∂

∂µ

(
Î1

N̂1

)
=

1

N̂2
1

[
Ŝ1
∂Î1
∂µ
− Î1

∂Ŝ1

∂µ

]
= −β1Ŝ1P̂

N̂2
1 |Ĵ |

[
Ŝ1
∂f1
∂S1

+ Î1
∂f1
∂I1

]
. (S11)
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S1.4 Sympatric equilibrium dependence on parameters

All terms and derivatives in the following subsections are evaluated at p∗. In the following80

equations, U∗ + µ − u11S
∗
1 − u21S

∗
2 > 0, the effects of interspecific competition show up

through the terms ∂fi
∂Xj

for i 6= j and X ∈ {S, I}, and interspecific competition is absent82

when ∂fi/∂Xj = 0 for all host classes X and i 6= j. To compute how the proportion of
infected individuals (I1/N1 = I1/[S1 + I1]) responds to a small change in parameter a, we84

use the chain rule,

∂

∂a

(
I∗1
N∗1

)
=

1

(N∗1 )2

[
(S∗1 + I∗1 )

∂I∗1
∂a
− I∗1

(
∂S∗1
∂a

+
∂I∗1
∂a

)]
=

1

(N∗1 )2

[
S∗1
∂I∗1
∂a
− I∗1

∂S∗1
∂a

]
∝
[
∂I∗1
∂a
− β1P

∗

m1

∂S∗1
∂a

] (S12)

where the last line uses the equilibrium condition 0 = dIi/dt|p∗ = β1S
∗
1P
∗−m1I

∗
1 to substitute86

for I∗1 .

S1.4.1 Response to increased excretion or removal of infectious propagules88

Response to increased degradation rate: The responses to increases in the degradation
rate of the infectious propagules are defined by90

∂I∗1
∂µ
∝(−1)3+5M53

|J |
=
β1S1

|J |

(
m2

∂f1
∂S1

∂f2
∂S2

+ β2P
∂f1
∂S1

∂f2
∂I2
−m2β2P

∂f1
∂S1

)
+
β1β2P

|J |

[
∂f2
∂I2

S2
∂f1
∂S2

− ∂f1
∂I2

(
S1
∂f2
∂S1

+ S2
∂f2
∂S2

)]
− ∂f1
∂S2

∂f2
∂S1

β1S1m2

|J |
,

(S13)

∂S∗1
∂µ
∝(−1)1+5M13

|J |
=

1

|J |

(
∂f2
∂S2

− β2P
)(

m1m2 − β1S1m2
∂f1
∂I1

)
− β1S1β2P

|J |

(
∂f1
∂I1

∂f2
∂I2
−m1

∂f2
∂I2

)
+
m1β2S2

|J |

(
∂f2
∂S2

− β2P
)
∂f1
∂I2

+
β2P

|J |
∂f1
∂I2

(
∂f2
∂I1

β1S1 −m1β2S2

)
+

1

|J |
∂f1
∂S2

(
∂f2
∂I1

m2β1S1 +
∂f2
∂I2

m1β2S2 − β2S2m1m2

)
,

(S14)

and

∂

∂µ

(
I∗1
N∗1

)
∝Pβ

2
1S

2
1

m1|J |
∂f1
∂I1

(
Pβ2

∂f2
∂I2
− Pβ2m2 +m2

∂f2
∂S2

)
+
β1β2S

2
1P

|J |
∂f2
∂I2

(
∂f1
∂S1

− β1P
)

+
β1m2S

2
1

|J |

(
∂f1
∂S1

− β1P
)(

∂f2
∂S2

− β2P
)

− β1S
2
1

m1|J |

(
Pβ2

∂f1
∂I2

+m2
∂f1
∂S2

)(
Pβ1

∂f2
∂I1

+m1
∂f2
∂S1

)
.

(S15)
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Negative density dependence: In the absence of interspecific competition, equations (S13)92

and (S15) are negative. Thus, increased removal of infectious propagules causes the num-
ber and proportion of infected hosts to decrease. With increased interspecific competition,94

equations (S13) and (S15) become more positive.
We expect equations (S13) and (S15) will be negative for most systems. Equations (S13)96

and (S15) can be positive under two scenarios: (1) interspecific competition is greater than
intraspecific competition (∂fi/∂Xj much larger than ∂fi/∂Xi for all host classes X and98

i 6= j) and (2) interspecific competition between infected and susceptible hosts is greater
than both intraspecific competition between infected and susceptible hosts (∂fi/∂Ij larger100

than ∂fi/∂Ii for i 6= j) and interspecific competition between susceptible hosts (∂fi/∂Ij
larger than ∂fi/∂Sj for i 6= j).102

Positive density dependence: If the positive density dependence is sufficiently weak, then104

the above results apply. If the positive density dependence is sufficiently strong, then any of
the above predictions can be reversed. For example, if there is no interspecific competition106

and positive density dependence in host 1, then equations (S13) and (S15) can be positive.
108

Response to increased uptake: Because ∂(dP/dt)/∂µ and ∂(dP/dt)/∂βij have the same
sign, the signs of ∂I∗1/∂βij and ∂(I∗1/N

∗
1 )/∂βij are the same as the signs of ∂I∗1/∂µ and110

∂(I∗1/N
∗
1 )/∂µ, respectively.

112

Response to increased excretion rates: Because ∂(dP/dt)/∂µ and ∂(dP/dt)/∂χi have
opposite signs, the signs of ∂I∗1/∂χi and ∂(I∗1/N

∗
1 )/∂χi are the opposite of the signs of ∂I∗1/∂µ114

and ∂(I∗1/N
∗
1 )/∂µ, respectively.

S1.4.2 Response to increased mortality of host 2116

The responses to increases in the mortality rate of I2 are defined by

∂I∗1
∂m2

∝ (−1)4+3M43

|J |
= (χ2 − u22P )

β1S1
|J |

∂f1
∂S1

(
∂f2
∂S2

+ β2P

)
+
β1u22S1P

|J |
∂f1
∂S1

∂f2
∂I2

− (χ2 − u22P )
β1
|J |

∂f1
∂S2

(
PS2β2 + S1

∂f2
∂S1

)
− β1u22S1P

|J |
∂f1
∂I2

∂f2
∂S1

+
β1P

|J |
∂f1
∂S2

∂f2
∂I2

(U∗ + µ− S1u11)

+
β1β2P

2

|J |
∂f1
∂I2

(U∗ + µ− S1u11 − S2u22)−
β1P

|J |
∂f1
∂I2

∂f2
∂S2

(U∗ + µ− S1u11),

(S16)

∂S∗1
∂m2

∝ (−1)4+1M41

|J |
= (χ2 − u22P )

β1S1
|J |

(
∂f2
∂S2
− β2P

)(
m1 −

∂f1
∂S1

)
+
u21Pβ1S1
|J |

∂f2
∂I2

(
m1 −

∂f1
∂I1

)
+

(χ2 − u22P )
|J |

∂f1
∂S2

(
β1S1

∂f2
∂I1
−m1β2S2

)
− u21P

|J |
∂f1
∂I2

(
m1β2S2 − β1S1

∂f2
∂I1

)
+
m1(U

∗ + µ)− (χ1 − u12P )β1S1
|J |

[
∂f1
∂S2

∂f2
∂I2
−
(
∂f2
∂I2
− β2P

)
∂f1
∂I2

]
,

(S17)
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and

∂

∂m2

(
I∗1
N∗1

)
∝ β1S

2
1

m1|J |
(χ2 − u21P )

(
∂f2
∂S2
− β2P

)(
Pβ1

∂f1
∂I1

+m1
∂f1
∂S1
− β1m1P

)
+
β1u21S

2
1P

m1|J |
∂f2
∂I2

(
Pβ1

∂f1
∂I1

+m1
∂f1
∂S1
− β1m1P

)
− β1S

2
1

m1|J |
(χ2 − u21P )

∂f1
∂S2

(
β1P

∂f2
∂I1

+m1
∂f2
∂S1

)
− β1u21S

2
1P

m1|J |
∂f1
∂I2

(
β1P

∂f2
∂I1

+m1
∂f2
∂S1

)
+
S1P

|J |

(
β2P

∂f1
∂I2
− ∂f1
∂I2

∂f2
∂S2

+
∂f1
∂S2

∂f2
∂I2

)
(χ1I1 − u12I1P − u11S1P ) .

(S18)
118

Negative density dependence: In the absence of interspecific competition, only the first
line of equation (S16) is nonzero and only the first two lines of equation (S18) are nonzero.120

The signs of the first term in each equation are −(χ2 − u22P ) and the remaining nonzero
terms are negative. This means increased removal of I2 causes I1 and I1/N1 to decrease122

unless infected hosts in population 2 are large sinks for infectious propagules, i.e., χ2−u22P
negative and large in magnitude. Increased interspecific host competition causes the signs124

of equations (S16) and (S18) to switch from negative to positive when host 2 is a small sink
or source and from positive to negative when host 2 is a large sink.126

We expect equations (S16) to be negative for most systems where host 2 is not a large
sink and positive for most systems where host 2 is a large sink. Equations (S16) and (S18)128

have the opposite signs under two scenarios: (1) interspecific competition is greater than
intraspecific competition (∂fi/∂Xj much larger than ∂fi/∂Xi for all host classes X and130

i 6= j) and (2) interspecific competition between infected and susceptible hosts is greater
than both intraspecific competition between infected and susceptible hosts (∂fi/∂Ij larger132

than ∂fi/∂Ii for i 6= j) and interspecific competition between susceptible hosts (∂fi/∂Ij
larger than ∂fi/∂Sj for i 6= j).134

Positive density dependence: If the positive density dependence is sufficiently weak, then
the above results apply. If the positive density dependence is sufficiently strong, then any of136

the above predictions can be reversed.

S1.4.3 Response to host 1 experiencing increased interspecific competition138

Let α12 be any parameter that negatively affects the reproduction rate of host 1. Mathemat-
ically, we assume ∂f1/∂α12 < 0, which implies ∂(dS1/dt)/∂α12 < 0. For example, a model140

with Lotka-Volterra competition, i.e., f1 = r1(S1 + b1I1)[1−α11(S1 + c1I1)−α12(S2 + c2I2)],
satisfies these conditions. Note that our results apply to any parameter that negatively af-142

fects the growth rate of host 1. For the Lotka-Volterra example, our results apply to changes
in α12 as well as changes in α11, c1, and c2.144

The responses to host 1 experiencing increased interspecific competition are defined by

∂I∗1
∂α12

∝(−1)1+3M13

|J |
= (χ2I2 − u21S2P − u22I2P )

β1m2P

β2S2|J |

(
S2
∂f2
∂S2

+ S1
∂f2
∂S1

)
− β1P

|J |

[(
∂f2
∂S2

− β2P
)
m2 +

∂f2
∂I2

β2P

]
(U∗ + µ− u11S1 − u21S2) ,

(S19)
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∂S∗1
∂α12

∝(−1)1+1M11

|J |
= (χ2 − u22P )

m1β2S2

|J |
∂f2
∂S2

+ (χ1 − u12P )
β1S1

|J |

(
m2

∂f2
∂S2

+ β2S2
∂f2
∂I2
− β2m2P

)
− m1

|J |
(U∗ + µ)

(
m2

∂f2
∂S2

+ β2P
∂f2
∂I2

)
+
m1m2

|J |
(U∗ + µ− u21S2)

− (χ2 − u22P )
β1S1β2P

|J |
∂f2
∂I1

+
m2u21Pβ1S1

|J |
∂f2
∂I1

,

(S20)

and

∂

∂α12

(
I∗1
N∗1

)
∝−S1P

|J |
[χ1I1 − u12I1P − u11S1P ]

(
β2P

∂f2
∂I2

+m2
∂f2
∂S2

−m2β2P

)
+
β1m2S

2
1P

β2m1S2|J |
[χ2I2 − u22I2P − u21S2P ]

(
β1P

∂f2
∂I1

+m1
∂f2
∂S1

)
.

(S21)

Negative density dependence: The second line of equation (S19) is negative and the sign
of the first line of equation (S19) is determined by χ2I2−u21S2P −u22I2P . This means that146

increased interspecific competition causes the number of infected individuals to decrease,
unless host 2 is a large source (χ2 − u22P positive and large in magnitude).148

The sign of the first line of equation (S21) is determined by −(χ1I1 − u12I1P − u11S1P )
and the sign of the second line of equation (S21) is determined by χ2I2 − u22I2P − u21S2P .150

Equation (S21) is negative when χ1I1 − u12I1P − u11S1P is positive and sufficiently large
or χ2I2 − u22I2P − u21S2P is negative and sufficiently large. Biologically, this means that152

increased interspecific competition will cause the proportion of infected host to decrease
unless the host 2 is a sufficiently large source (i.e., χ2−u22P is positive and sufficiently large154

in magnitude).
Positive density dependence: Sufficiently strong positive density dependence in host 2156

can reverse the above predictions.

S1.4.4 Response to host 2 experiencing increased competition158

Let α22 be any parameter that negatively affects the reproduction rate of host 2. Mathemat-
ically, we assume ∂f2/∂α22 < 0, which implies ∂(dS2/dt)/∂α22 < 0. For example, a model160

with Lotka-Volterra competition, f2 = r2(S2 + b2I2)[1 − α22(S1 + c1I1) − α22(S2 + c2I2)],
satisfies these conditions. Note that our results apply to changes in any parameter that162

negatively affects the growth rate of host 2. For the Lotka-Volterra example, our results
apply to changes in α22 as well as changes in α21, c1, and c2.164

THe responses to host 2 experiencing increased competition are defined by

9



∂I∗1
∂α22

∝ (−1)2+3M23

|J |
=− β1m2

|J |S2

(
S1
∂f1
∂S1

+ S2
∂f1
∂S2

)
(χ2I2 − u21S2P − u22I2P )

+
β1P

|J |

[
m2

∂f1
∂S2

+
∂f1
∂I2

β2P

]
(U∗ + µ− u11S1 − u21S2)

(S22)

=
β1β2P

2

|J |
∂f1
∂I2

(U∗ + µ− u11S1 − u21S2) +
β2m2

|J |
∂f1
∂S2

(u22PI2 + χ1I1 − u11S1P )

− β2m2S1

S2|J |
∂f1
∂I1

(χ2I2 − u21S2P − u22S2P ) ,

(S23)

∂S∗1
∂α22

∝ (−1)2+1M21

|J |
=(χ2 − u22P )

β1S1β2P

|J |

(
∂f1
∂I1
−m1

)
− u21Pm2β1S1

|J |

(
∂f1
∂I1
−m1

)
+
m1β2P

|J |
∂f1
∂I2

(U∗ + µ− u21S2) +
m1m2

|J |
∂f1
∂S2

(U∗ + µ)

− ∂f1
∂S2

[(χ1 − u12P )m2β1S1 + (χ2 − u22P )m1β2S2] ,

(S24)

and

∂

∂α22

(
I∗1
N∗1

)
∝− β1m2S

2
1P

β2S2m1|J |
[χ2I2 − u22I2P − u21S2P ]

(
β1P

∂f1
∂I1

+m1
∂f1
∂S1

−m1β1P

)
+
S1P

|J |
[χ1I1 − u12I1P − u11S1P ]

(
β2P

∂f1
∂I2

+m2
∂f1
∂S2

)
.

(S25)

Negative density dependence: The sign of the first line of equation (S22) is −(χ2I2 −166

u22I2P − u21S2P ) and the second line is positive. This means that increased intraspecific
competition in host 2 causes an increase in the number of infected individuals in population168

1 unless host 2 is a sufficiently large source. In addition, host 2 needs to be a larger source
when interspecific host competition is stronger. That is, when interspecific competition is170

low, host 2 only needs to be a small source for equation (S22) to be negative, but when
interspecific competition is high, host 2 needs to be a large source.172

The sign of the first line of equation (S25) is −(χ2I2 − u22I2P − u21S2P ) and the sign
of the second line is χ1I1 − u12I1P − u11S1P . Equation (S25) is negative when χ1 − u12P174

is negative and sufficiently large or χ2 − u22P is positive and sufficiently large. Biologically,
this means that increased intraspecific competition will cause the proportion of infected176

hosts in population 1 to increase unless the host 2 is a sufficiently large source of infectious
propagules.178

Positive density dependence: The above predictions can be reversed if host 1 has suffi-
ciently strong positive density dependence at equilibrium.180
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S1.4.5 Response to increased infection rates of host 2

The responses to increases in the infection rate of host 2 are defined by

∂I∗1
∂β2

=
−β1u22S1P

|J |
∂f1
∂S1

(
∂f2
∂I2
−m2

)
− (χ2 − u22P )

β1S1

|J |

(
∂f1
∂S1

∂f2
∂S2

− ∂f1
∂S2

∂f2
∂S1

)
+
β1P

|J |
(U∗ + µ− u11S1)

(
∂f1
∂I2

∂f2
∂S2

− ∂f1
∂S2

∂f2
∂I2

+m2
∂f1
∂S2

)
+
β1u22S1P

|J |
∂f1
∂I2

∂f2
∂S1

,

(S26)

∂S∗1
∂β2

= − ∂

∂β2

(
dS2

dt

)
(−1)2+1M21

|J |
− ∂

∂β2

(
dI2
dt

)
(−1)4+1M41

|J |
=
S2P

|J |
(M41 −M21), (S27)

where Mij is the i, j minor of J , and182

∂

∂β2

(
I∗1
N∗1

)
∝− (χ2 − u22P )

|J |
∂f2
∂S2

(
β1P

∂f1
∂I1

+m1
∂f1
∂S1

− β1m1P

)
− u21P

|J |

(
∂f2
∂I2
−m2

)(
β1P

∂f1
∂I1

+m1
∂f1
∂S1

− β1m1P

)
+

(χ2 − u22P )

|J |
∂f1
∂S2

(
β1P

∂f2
∂I1

+m2
∂f2
∂S1

)
− (χ1 − u12P )

β1P

|J |
∂f1
∂S2

(
∂f2
∂I2
−m2

)
+
m1u11P

|J |
∂f1
∂S2

(
∂f2
∂I2
−m2

)
+
u21P

|J |
∂f1
∂I2

(
β1P

∂f2
∂I1

+m1
∂f2
∂S1

)
+ (χ1I1 − u12I1P − u11S1P )

m1P

β1S1|J |
∂f1
∂I2

∂f2
∂S2

.

(S28)

Negative density dependence: In the absence of interspecific competition, equations (S26)
and (S28) are positive unless χ2−u22P is negative and large in magnitude. This means that184

increasing β2 causes the number and proportion of infections in population 1 to increase
unless host 2 is a large sink for infectious propagules.186

Increased interspecific competition makes equation (S26) more negative unless χ2−u22P
is negative and large in magnitude. Increased interspecific competition makes equation188

(S28) more negative unless χ2 − u22P or χ1 − u12P are negative and large in magnitude.
Increased interspecific competition can cause equations (S26) and (S28) to change sign when190

(1) interspecific competition is much greater than intraspecific competition (∂fi/∂Xj much
larger than ∂fi/∂Xi for all host classes X and i 6= j), (2) interspecific competition between192

infected and susceptible hosts is greater than both intraspecific competition between infected
and susceptible hosts (∂fi/∂Ij larger than ∂fi/∂Ii for i 6= j) and interspecific competition194

between susceptible hosts (∂fi/∂Ij larger than ∂fi/∂Sj for i 6= j), or (3) host 2 is a large
source and host 1 is a large sink (χ1 − u11P negative and large in magnitude).196

Overall, we expect increased transmission rates of host 2 to (i) increase the number and
proportion of infected hosts in population 1 when interspecific competition is low unless host198

2 is a large sink, (ii) decrease the number of infected hosts in population 1 when interspecific
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competition is high unless host 2 is a large sink, and (iii) decrease the proportion of infected200

hosts in population 1 when interspecific competition is high unless either host is a sink.
Positive density dependence: As expected, all of the above predictions can be reversed if202

one or both hosts have sufficiently strong positive density dependence at equilibrium.
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S1.5 Relationships between environmental and direct transmis-204

sion models

The first subsection identifies conditions under which the environmental transmission model (1)206

reduces to a density dependent or frequency dependent direct transmission model. The sec-
ond subsection provides interpretation for an important quantity in the calculations. The208

remaining subsections present the changes in parameter values that hold either the sympatric
equilibrium densities (p∗) constant or the allopatric equilibrium densities (p̂) constant.210

S1.5.1 Model equivalences in the limit of fast infectious propagule dynamics

To reduce the environmental transmission model (1) to a density dependent direct transmis-
sion model, we assume there is no uptake of infectious propagules by any host class (uij = 0
for all i and j) and that χi and µ are sufficiently large that there is a separation of time scales
between the dynamics of the infectious propagules and the dynamics of the host classes. Un-
der these assumptions, the dynamics of the infectious propagules reach a quasi-steady state
equilibrium density defined by P = χ1I1/µ+χ2I2/µ. Substitution into the equations for the
host dynamics yields a density dependent direct transmission model

dSi
dt

= fi(S1, S2, I1, I2)︸ ︷︷ ︸
growth & competition

− β̄i1I1Si + β̄i2I2Si︸ ︷︷ ︸
infection

dIi
dt

= β̄i1I1Si + β̄i2I2Si︸ ︷︷ ︸
infection

−miIi︸ ︷︷ ︸
mortality

(S29)

where the direct transmission coefficients are β̄ji = βiχj/µ. The equilibria of model (S29)212

are identical to those of model (1) when uij = 0. Thus, all of our equilibrium-based results
apply to density dependent direct transmission SI models.214

To reduce the environmental transmission model (1) to a frequency dependent direct
transmission model, we assume there is no degradation of infectious propagules (µ = 0) and
that χi and uij are sufficiently large such that there is a separation of time scales between
the dynamics of the infectious propagules and the dynamics of the host classes. Under these
assumptions, the dynamics of the infectious propagules reach a quasi-steady state equilibrium
density defined by P = (χ1I1 + χ2I2)/(u11S1 + u12I1 + u21S2 + u22I2). Substitution into the
equations for the host dynamics yields a frequency dependent direct transmission model

dSi
dt

= fi(S1, S2, I1, I2)︸ ︷︷ ︸
growth & competition

− βi(χ1I1 + χ2I2)Si
(u11S1 + u12I1 + u21S2 + u22I2)︸ ︷︷ ︸

infection

dIi
dt

=
βi(χ1I1 + χ2I2)Si

(u11S1 + u12I1 + u21S2 + u22I2)︸ ︷︷ ︸
infection

−miIi︸ ︷︷ ︸
mortality

(S30)

where the transmission rates depend on the weighted frequency of susceptible hosts in the
community. The equilibria of model (S30) and (1) are identical when µ = 0. Thus, all of216

our equilibrium-based results apply to frequency dependent direct transmission SI models.
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S1.5.2 Factors affecting the sign of U∗ − Û218

Here, we focus on determining factors that effect the sign of U∗− Û . This is needed because
for both changes of parameters presented in the following subsections, the signs of effects of
the transformation on the host densities are influenced by the sign of U∗ − Û . Using the
equilibrium conditions dP/dt = 0 and dI1/dt = 0 for the allopatric and sympatric models,
we can rewrite U∗ − Û as

U∗ − Û =
χ1I

∗
1

P ∗
+
χ2I

∗
2

P ∗
− χ1Î1

P̂
(S31)

=
χ1β1
m1

(S∗1 − Ŝ1) +
χ2β2
m2

S∗2 . (S32)

Before giving general conditions, we start with a few special cases.
Special case 1: No interspecific host competition: In this case, the magnitudes of S∗1 and S∗2220

are determined by the competence and intraspecific competitive ability of each host. U∗− Û
is more likely to be positive when host 2 has lower competence and lower intraspecific com-222

petitive ability, because both of these make S∗1 and S∗2 larger. Conversely, U∗ − Û is more
likely to be negative when host 2 has higher competence and higher intraspecific competitive224

ability, because both of these make S∗1 and S∗2 smaller.
226

Special case 2: Symmetric uptake: Assuming uij = ui results in

U∗ − Û = u1(N
∗
1 − N̂1) + u2N

∗
2 (S33)

where Ni = Si + Ii. The total population size for each host at the sympatric equilibrium228

is determined solely by the levels of intraspecific and interspecific host competition and the
amount of disease induced mortality. In particular, N∗i is lower with increased interspecific230

competition, increased intraspecific competitive ability of host i, and increased numbers of
infected individuals in host i. U∗− Û is more likely to be positive when interspecific compe-232

tition is weak, host 2 is a weaker intraspecific competitor, and host 2 is a lower competence
host. Conversely, U∗ − Û is more likely to be negative when interspecific competition is234

strong, and host 2 is a strong intraspecific competitor, and a higher competence host.
236

Special case 3: No uptake by infected hosts: Assuming ui2 = 0 yields

u11(S
∗
1 − Ŝ1) + u21S2 = U∗ − Û =

χ1β1
m1

(S∗1 − Ŝ1) +
χ2β2
m2

S∗2 . (S34)

Setting the left and right hand sides equal to each other, solving for S∗1 − Ŝ1, substituting238

into equation (S32), and some algebraic manipulation yields

U∗ − Û = u21S
∗
2

(
1−

χ2β2
m2u21

− 1
χ1β1
m1u11

− 1

)
= u21S

∗
2

(
1− R2(∞)− 1

R1(∞)− 1

)
. (S35)

Here, Ri(∞) = χiβi/miui1 is the basic reproductive number for the pathogen in an allopatric240

system where the density of host i is infinite. It determines if the pathogen can invade the
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allopatric system in the limit where there are an infinite number of susceptible hosts. We242

interpret more positive values of Ri(∞) to mean that host i is a higher competence host
for the pathogen. If Ri(∞) < 1, then the pathogen cannot invade a completely susceptible244

population of host i of any size. We assume R1(∞) > 1 because this is a necessary condition
to apply our either of our change of parameters.246

Equation (S35) is positive whenever R1(∞) > R2(∞) and equation (S35) is negative
whenever R1(∞) < R2(∞). Thus, U∗ − Û is positive when host 2 is a lower competence248

host than host 1 and U∗−Û is negative when host 2 is a higher competence host than host 1.
250

General Case: In general, S∗i will be smaller in magnitude when host j is a stronger in-
terspecific competitor, host i is a stronger intraspecific competitor, and host j is a higher252

competence host. Thus, U∗ − Û is more likely to be positive when (i) interspecific compe-
tition is weaker, (ii) host 2 is a weaker intraspecific competitor, and (iii) host 2 is a lower254

competence host. In contrast, U∗ − Û is more likely to be negative when (i) interspecific
competition is stronger, (ii) host 2 is a stronger intraspecific competitor, and (iii) host 2 is256

a higher competence host.
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S1.5.3 Parameter transformation that holds the sympatric equilibrium constant258

Here we present a continuous change of parameters between µ = 0 and uij = 0 that holds the
sympatric equilibrium (p∗) constant. This change of variables converts the environmental260

transmission model from a form that behaves like a frequency dependent direct transmission
model (at equilibrium) to a form that behaves like a density dependent direct transmission262

model (at equilibrium), while leaving the host and infectious propagule densities at the sym-
patric equilibrium unchanged.264

Change of parameters: We assume model (1) is parameterized such that uij 6= 0 for at
least one i, j pair; our approach cannot be applied to models where uij = 0 for all i, j. We
rewrite the infectious propagule equation for the sympatric system as

dP

dt
= χ1I1 − f(q)(u11S1 + u12I1)P − qµP (S36)

and similarly we rewrite the infectious propagule equation for the sympatric system as266

dP

dt
= χ1I1 + χ2I2 − f(q)(u11S1 + u12I1 + u21S2 + u22I2)P − qµP (S37)

where

f(q) = 1 +
µ

U∗
− µ

U∗
q, for 0 ≤ q ≤ 1 + U∗/µ (S38)

and U∗ is the total per infectious propagule uptake rate at the sympatric equilibrium. We268

assume the sympatric and allopatric equilibria exist with positive densities for q ∈ [0, 1 +
U∗/µ].270

At q = 0, there is no degradation and uptake rates are increased by the factor f(0) = 1+
µ/U∗. In this case the allopatric and sympatric equilibria of the environmental transmission272

model (1) are identical to those of the frequency dependent direct transmission model (S30)
with uptake rates uij(1 + µ/U∗). At q = 1, f(1) = 1 and the environmental transmission274

model is unchanged. At q = 1 + U∗/µ, there is no uptake and the degradation rate is
µ+U∗. In this case, the allopatric and sympatric equilibria of the environmental transmission276

model (1) are identical to those of a density dependent direct transmission model (S29) with
degradation rate µ+ U∗.278

The densities at the sympatric equilibrium (p∗) are independent of the value of q. This
is because the sum of the degradation and total per capita uptake rates at equilibrium in280

the sympatric model is held fixed at U∗ + µ as q is varied.
282

Effect on loss rate at allopatric equilibrium: Varying q changes the infectious propagule
growth rate (dP/dt) in the allopatric model through its effect on the total per capita loss rate284

of infectious propagules (U + µ). To see how the loss rate changes in the allopatric model,
we can compute the difference in the loss rates at equilibrium for q = 1 and q = 1 + Û/µ,286

[loss rate for q=1 + U∗/µ]− [loss rate for q=1] = U∗ + µ− (Û + µ) = U∗ − Û . (S39)
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Similarly, we can compute the difference in the loss rates at equilibrium for q = 0 and q = 1,

[loss rate for q=1]− [loss rate for q=0] = Û + µ−
(

1 +
µ

U∗

)
Û =

µ

U∗
(U∗ − Û). (S40)

In both cases, the effect of increasing q on the total per capita loss rate of infectious propag-
ules depends on the sign of U∗ − Û .288

Another way to see how varying q affects the per capita infectious propagule loss rate is
to compute the partial derivative,

∂

∂q

dP

dt
=

∂

∂q

χ1I1 − f(q)

total per capita uptake,U︷ ︸︸ ︷
(u11S1 + u12I1 + u13R1)−qµP

 (S41)

=
µ

U∗
UP − µP = −Pµ(U∗ − U)/U∗. (S42)

When evaluated at the allopatric equilibrium, p̂, the above shows that increasing q decreases
the infectious propagule growth rate (i.e., increases the total infectious propagule per capita290

loss rate) of the allopatric model when U∗ − Û > 0.
In total, if U∗ − Û is positive, then the total per capita loss rate will increase as the292

environmental transmission model is changed from a form that behaves like a frequency
dependent direct transmission model (q = 0) into a form that behaves like a density depen-294

dent direct transmission model (q = 1+Û/µ). If U∗−Û is negative, then the opposite is true.
296

Effect on allopatric equilibrium densities: Because varying q changes the total loss
rate of infectious propagules, varying q changes the densities at the allopatric equilibrium,298

p̂. The effects of varying q are determined by

∂Î1
∂q

= − ∂

∂q

(
dP

dt

)
(−1)2+3M32

|Ĵ |
∝ −(U∗ − Û)

M32

|J |
= −(U∗ − Û)

β1S1

|Ĵ |
∂f1
∂S1

, (S43)

300

∂Ŝ1

∂q
= − ∂

∂q

(
dP

dt

)
(−1)1+3M31

|Ĵ |
∝ (U∗ − Û)

M31

|Ĵ |
= (U∗ − Û)

β1S1

|Ĵ |
∂f1
∂S1

(S44)

and

∂

∂q

(
Î1

N̂1

)
=

1

N̂2
1

[
Ŝ1
∂Î1
∂q
− Î1

∂Ŝ1

∂q

]
∝ −(U∗ − Û)

1

|Ĵ |

[
Ŝ1
∂f1
∂S1

+ Î1
∂f1
∂I1

]
(S45)

where |Ĵ | < 0, M31 and M32 are submatrices of matrix (S1), and all terms are evaluated at p̂.302

Negative density dependence of host 1 at equilibrium: We assume that host 1 has negative304

density dependence at the allopatric equilibrium, i.e., ∂f1/∂X1 < 0 for X ∈ {S, I}.
If U∗ − Û > 0, then equations (S43) and (S45) are negative. This implies I∗1 − Î1 and306

(I∗1/N
∗
1 ) − (Î1/N̂1) are more positive under frequency dependent direct transmission than

density dependent direct transmission, i.e., greater dilution (or less amplification) in host 1308
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occurs under frequency dependent direct transmission than under density dependent direct
transmission. If U∗−Û < 0, then equations (S43) and (S45) are positive. In this case, I∗1− Î1310

and (I∗1/N
∗
1 )−(Î1/N̂1) are more negative under frequency dependent direct transmission than

density dependent direct transmission, i.e., greater dilution (or less amplification) in host 1312

occurs under density dependent direct transmission than under frequency dependent direct
transmission.314

In total, we predict that frequency dependent direct transmission leads to more dilu-
tion and a greater reduction in infected density in host 1 than density dependent direct316

transmission when:

• (D1) Interspecific competition is weaker, (D2) host 2 is a weaker intraspecific competi-318

tor, and (D3) host 2 a lower competence host.

We also predict that density dependent direct transmission leads to more dilution and a320

greater reduction in infected density in host 1 than frequency dependent direct transmission
when:322

• (D4) Interspecific competition is stronger, (D5) host 2 is a stronger intraspecific com-
petitor, and (D6) host 2 a higher competence host.324

Positive density dependence of host 1 at equilibrium: If host 1 has sufficiently strong positive
density dependence in either class or positive density dependence in both classes at the326

allopatric equilibrium, then the above predictions are reversed.
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S1.5.4 Parameter transformation that holds the allopatric equilibrium constant328

Here we present a continuous change of parameters between µ = 0 and uij = 0 that holds
the allopatric equilibrium (p̂) constant. This change of variables converts the environmental330

transmission model from a form that behaves like a frequency dependent direct transmission
model (at equilibrium) to a form that behaves like a density dependent direct transmission332

model (at equilibrium), while leaving the densities at the allopatric equilibrium for host 1
unchanged.334

Change of Parameters: We assume model (1) is parameterized such that uij 6= 0 for at
least one i, j pair; our approach cannot be applied to models where uij = 0 for all i, j. We
rewrite the infectious propagule equation for the allopatric system as

dP

dt
= χ1I1 − f(q)(u11S1 + u12I1)P − qµP (S46)

and similarly we rewrite the infectious propagule equation for the sympatric system as

dP

dt
= χ1I1 + χ2I2 − f(q)(u11S1 + u12I1 + u21S2 + u22I2)P − qµP (S47)

where336

f(q) =
Û + µ

Û
−

(
Û + µ

Û
− 1

)
q = 1 +

µ

Û
− µ

Û
q, 0 ≤ q ≤ 1 + Û/µ (S48)

and Û = u11Ŝ1 + u12Î1 is the total per infectious propagule uptake rate at the allopatric
equilibrium for host 1. We assume the sympatric and allopatric equilibria exist with positive338

densities for q ∈ [0, 1 + Û/µ].
At q = 0, there is no degradation and the uptake rates are increased by the factor340

f(0) = 1 + µ/Û . In this case the allopatric and sympatric equilibria of the environmental
transmission model (1) are identical to those of a frequency dependent direct transmission342

model (S30) with uptake rates uij(1+µ/Û). At q = 1, the environmental transmission model

is unchanged. At q = 1 + Û/µ, there is no uptake and the degradation rate is µ+ Û . In this344

case the allopatric and sympatric equilibria of the environmental transmission model (1) are
identical to those of a density dependent direct transmission model (S29) with degradation346

rate µ+ Û .
The densities at the allopatric equilibrium (p̂) are independent of the value of q. This is348

because the sum of the degradation and total per capita uptake rates at equilibrium in the
allopatric model is held fixed at Û + µ as q is varied.350

Effect on loss rate at sympatric equilibrium: Varying q changes the infectious propag-
ule growth rate (dP/dt) in the sympatric model (1) through its effect on the total per capita
loss rate of infectious propagules (U + µ). To see how it changes, we compare the loss rates
at equilibrium when q = 1 and when q = 1 + Û/µ. This yields

[loss rate for q=1 + Û/µ]− [loss rate for q=1] = Û + µ− (U∗ + µ) = Û − U∗. (S49)
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Similarly, we can compute difference in the loss rate at equilibrium for q = 0 and q = 1.
This yields

[loss rate for q=1]− [loss rate for q=0] = U∗ + µ−
(

1 +
µ

Û

)
U∗ =

µ

Û
(Û − U∗). (S50)

In both cases, the effect of increasing q on the total per capita loss rate of infectious propag-352

ules depends on the sign of Û − U∗.
Another way to see how varying q affects the per capita infectious propagule loss rate is

to compute the partial derivative,

∂

∂q

dP

dt
=

∂

∂q

χ1I1 + χ2I2 − f(q)

total per capita uptake,U︷ ︸︸ ︷
(u11S1 + u12I1 + u13R1 + u21S2 + u22I2 + u23R2)−qµP


(S51)

=
µ

Û
UP − µP = PµÛ(U − Û). (S52)

When evaluated at the sympatric equilibrium, p∗, the above shows that increasing q decreases354

the infectious propagule growth rate (i.e., increases the total infectious propagule per capita
loss rate) of the allopatric model when U∗ − Û < 0.356

In total, if U∗ − Û is negative, then the total per capita loss rate will increase as the
environmental transmission model is continuously changed from a form that behaves like358

a frequency dependent direct transmission model (q = 0) into a form that behaves like a
density dependent direct transmission model (q = 1 + Û/µ). If U∗ − Û is positive, then the360

opposite is true.
362

Effect on sympatric equilibrium densities: Because varying q changes the total loss
rate of infectious propagules in the sympatric model, varying q changes the densities at the364

sympatric equilibrium, p∗. The effects of varying q are determined by

∂I∗1
∂q

=− ∂

∂q

(
dP

dt

)
(−1)3+5M53

|J |

∝ − (U∗ − Û)

[
β1S1

|J |

(
m2

∂f1
∂S1

∂f2
∂S2

+ β2P
∂f1
∂S1

∂f2
∂I2
−m2β2P

∂f1
∂S1

)

+
β1β2P

|J |

(
∂f2
∂I2

S2
∂f1
∂S2

− ∂f1
∂I2

(
S1
∂f2
∂S1

+ S2
∂f2
∂S2

))
− β1S1m2

|J |
∂f1
∂S2

∂f2
∂S1

]
,

(S53)

366

∂S∗1
∂q

= − ∂

∂q

(
dP

dt

)
(−1)1+5M51

|J |
∝ −(U∗ − Û)

M51

|J |
, (S54)
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and

∂

∂q

(
I∗1
N∗1

)
∝− (U∗ − Û)

[
Pβ2

1S
2
1

m1|J |
∂f1
∂I1

(
Pβ2

∂f2
∂I2
− Pβ2m2 +m2

∂f2
∂I2

)
+
β1β2S

2
1P

|J |
∂f2
∂I2

(
∂f1
∂I1
− β2

)
+
β1m2S

2
1

|J |

(
∂f1
∂S1

− β2P
)(

∂f2
∂S2

− β2P
)

− β1S
2
1

m1|J |

(
Pβ2

∂f1
∂I2

+m2
∂f1
∂S2

)(
Pβ2

∂f2
∂I1

+m1
∂f2
∂S1

)] (S55)

where all terms are evaluated at p∗ and M51/|J | is given in equation (S14). Note that the
conditions defining the signs of equations (S53) and (S55) are combinations of the conditions368

listed in section S1.4.1 and S1.5.2 because
∂X∗

1

∂q
∝ −(U∗ − Û)

∂X∗
1

∂µ
for X = S, I.

370

Negative density dependence at equilibrium: We assume both hosts have negative density
dependence at equilibrium, i.e., ∂fi/∂Xi < 0 for X ∈ {S, I, R}. Equations (S53) and (S55)372

are positive when either (i) U∗ − Û > 0 and the terms in brackets are negative or (ii)
U∗− Û < 0 and the terms in brackets are positive. In these cases, I∗1 − Î1 and I∗1/N

∗
1 − Î1/N̂1374

are more negative under frequency dependent direct transmission than density dependent
direct transmission. This means frequency dependent direct transmission results in a smaller376

density and proportion of infected individuals than density dependent direct transmission.
Conversely, equations (S53) and (S55) are negative when either (i) U∗ − Û < 0 and the378

terms in brackets are negative or (ii) U∗ − Û > 0 and terms in brackets are positive. In
these cases, I∗1 − Î1 and I∗1/N

∗
1 − Î1/N̂1 are more positive under frequency dependent direct380

transmission than density dependent direct transmission. This means density dependent
direct transmission results in a smaller density and proportion of infected individuals than382

frequency dependent direct transmission.
Recall from subsection S1.4.1 that the terms in brackets in equations (S53) and (S55)384

are negative when interspecific host competition is sufficiently low and positive when (1) in-
terspecific competition is greater than intraspecific competition or (2) competition between386

infected and susceptible hosts is stronger than competition between susceptible hosts. Also
recall from subsection S1.5.2 that positive values of U∗− Û are promoted when (a) interspe-388

cific competition is weak, and host 2 is (b) a low competence host and (c) a weak intraspecific
competitor. Combining this yields the following predictions.390

• Assume interspecific competition between hosts is less than intraspecific competition
and infected hosts are weaker competitors than susceptible hosts392

– Frequency dependent direct transmission is more likely to reduce the number
and proportion of infected individuals in host 1 compared to density dependent394

direct transmission when (D1) interspecific competition is weaker, (D2) host 2 is
a weaker intraspecific competitor, and (D3) host 2 is a lower competence host.396

– Density dependent direct transmission is more likely to reduce the number and
proportion of infected individuals in host 1 compared to frequency dependent398

direct transmission when (D4) interspecific competition is stronger, (D5) host 2 is
a stronger intraspecific competitor, and (D6) host 2 is a higher competence host.400
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• Assume interspecific competition between hosts is greater than intraspecific competi-
tion or infected hosts are stronger competitors than susceptible hosts402

– Frequency dependent direct transmission is more likely to reduce the number and
proportion of infected individuals in host 1 compared to density dependent direct404

transmission when (F1) host 2 is a stronger intraspecific competitor and (F2) host
2 is a higher competence host.406

– Density dependent direct transmission is more likely to reduce the number and
proportion of infected individuals in host 1 compared to frequency dependent408

direct transmission when (F3) host 2 is a weaker intraspecific competitor and
(F4) host 2 is a lower competence host.410

We note three things about the above. First, conditions D1-D6 in this section are identical
to the conditions with the same labels in section S1.5.3 (hence the duplicate labeling). This412

agreement is expected because in both cases increased removal of infectious propagules causes
the number and proportion of infected individuals in the focal host to decrease (i.e, ∂Î1/∂µ,414

∂(Î1/N̂1)/∂µ, ∂I∗1/∂µ, and ∂(I∗1/N
∗
1 )/∂µ are all negative). Second, conditions F1-F4 differ

from conditions D1-D6 because increased removal of infectious propagules causes the number416

and proportion of infected individuals in host 1 at the sympatric equilibrium to increase (i.e,
∂I∗1/∂µ and ∂(I∗1/N

∗
1 )/∂µ positive). This disagreement is also expected because interspecific418

host competition does not influence the response to increased removal of infectious propagules
in the allopatric model; ∂Î1/∂µ is independent of interspecific competition because there is420

only one host species in the allopatric model.
Third, if interspecific competition is absent and there is negative density dependence

in host 1, it is not possible for host 1 to experience amplification at q = 0 and dilution at
q = 1+Û/µ. The proof by contradiction is the following. Under the assumed negative density
dependence, amplification at q = 0 and dilution at q = 1+Û/µ is only possible if U∗−Û < 0,
which implies S∗1 − Ŝ1 < 0 and sufficiently large for 0 ≤ q ≤ 1 + Û/µ. Because interspecific
competition is absent, the equilibrium host densities satisfy 0 = f1(S

∗
1 , I
∗
1 ) − m1I

∗
1 . The

dependence of S∗1 on I∗1 can be computed using implicit differentiation,

0 =
∂f1
∂S1

∂S∗1
∂I∗1

+
∂f1
∂I1
−m1

∣∣∣∣
p∗
⇒ ∂S∗1

∂I∗1
= −

(
∂f1
∂I1
−m1

)/
∂f1
∂S1

∣∣∣∣
p∗

(S56)

The assumed negative density dependence implies
∂S∗

1

∂I∗1
is negative. Thus, increases in I∗1422

imply decreases in S∗1 and vice versa. Combining
∂S∗

1

∂I∗1
< 0 and S∗1− Ŝ1 < 0 yields S∗1− Ŝ1 < 0

and I∗1 − Î1 > 0 for all 0 ≤ q ≤ 1 + Û/µ, which implies I∗1/(S
∗
1 + I∗1 ) > Î1/(Ŝ1 + Î1) for424

0 ≤ q ≤ 1+Û/µ. However, this means that the proportion of infected hosts at the sympatric
equilibrium is higher than the proportion of infected host at the allopatric equilibrium for426

all values of q, which contradicts our assumption that dilution occurs at q = 1 + Û/µ.
428

Positive density dependence at equilibrium: If either host has positive density dependence
at equilibrium and the positive density dependence is sufficiently large, then the terms in430

brackets in equations (S53) and (S55) change signs and the sign of U∗− Û is unchanged. In
this case, all of the above predictions are reversed.432
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S1.6 Figure equations and parameters

For all figures, the model equations are

dSi
dt

=

[
ri(Si + ciIi)[1− αi1(S1 + ei1I1)− αi2(S2 + ei2I2)]

]
︸ ︷︷ ︸

growth & competition

− βiPSi︸ ︷︷ ︸
infection

dIi
dt

= βiSiP︸ ︷︷ ︸
infection

−miIi︸ ︷︷ ︸
mortality

dP

dt
= χ1I1 + χ2I2︸ ︷︷ ︸

propagule excretion

− (u11S1 − u12I1 − u21S2 − u22I2)P︸ ︷︷ ︸
propagule uptake

−µP︸ ︷︷ ︸
degradation

.

(S57)

where ri and ciri (with ci ≤ 1) are the maximum exponential growth rates of susceptible434

and infected individuals of species i, αij is the per capita competitive effect of host j on host
i, and eij determines whether infected individuals of host j have weaker (eij < 1), equal436

(eij = 1), or stronger (eij > 1) competitive effects on host i than susceptible individuals of
host j; all other parameters are defined as in model (1) of the main text.438

For Figures 1 and 4, the infectious propagule equation is

dP

dt
= χ1I1 + χ2I2︸ ︷︷ ︸

propagule excretion

− f(q)(u11S1 − u12I1 − u21S2 − u22I2)P︸ ︷︷ ︸
propagule uptake

−qµP︸ ︷︷ ︸
degradation

(S58)

where f(q) = 1 + µ

Û
− µ

Û
q is a change of parameters defined on 0 ≤ q ≤ 1 + Û/µ that440

transforms the environmental transmission model from a form that behaves like a frequency
dependent direct transmission model to a form that behaves like a density dependent direct442

transmission models, while leaving the densities at the allopatric equilibrium for host 1 un-
changed. See appendix S1.5.4 for details.444

Figure 1D,E:446

High, Weak (blue-green): r1 = 3, r2 = 3, c1 = 0, c2 = 0, α11 = 1, α22 = 0.1, aij = 1,
β1 = 1.5, β2 = 1.7, m1 = 0.1, m2 = 0.1, χ1 = 1, χ2 = 2, u11 = 8, u12 = 1, u21 = 0.5,448

u22 = 0.5, and µ = 6. For the dashed curve α21 = 0 and α12 = 0. For the solid curve
α21 = 0.9 and α12 = 0.001. Û = 7.11 in the change of parameters function.450

Low, Weak (orange): r1 = 2, r2 = 2, α11 = 1, α22 = 0.1, aij = 1, β1 = 2, β2 = 1/3,
m1 = 0.1, m2 = 0.1, χ1 = 2, χ2 = 2, uij = 3, and µ = 1. For the dashed curve α21 = 0 and452

α12 = 0. For the solid curve α21 = 0.9 and α12 = 0.05. Û = 1.85 in the change of parameters
function.454

High, Strong (purple): r1 = 0.1, r2 = 0.1, c1 = 0, c2 = 0, α11 = 1, α22 = 10, aij = 1,
β1 = 4, β2 = 4, m1 = 0.1, m2 = 0.1, χ1 = 2, χ2 = 4, uij = 3, and µ = 20. For the dashed456

curve α21 = 0 and α12 = 0. For the solid curve α21 = 0.5 and α12 = 9. Û = 1.26 in the
change of parameters function.458

Low, Strong (vermillion): r1 = 2, r2 = 2, c1 = 0, c2 = 0, α11 = 1, α22 = 10, aij = 1,
β1 = 1, β2 = 1/3, m1 = 0.1, m2 = 0.1, χ1 = 2, χ2 = 2, uij = 3, and µ = 10. For the dashed460

curve α21 = 0 and α12 = 0. For the solid curve α21 = 0.4 and α12 = 4. Û = 2.92 in the
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change of parameters function.462

Figure 2A: r1 = 2, r2 = 2, c1 = 0, c2 = 0, α11 = 1, α21 = 0, α12 = 0, α22 = 1, aij = 0.5,464

β1 = 0.5, β2 = 0.5, m1 = 0.1, χ1 = 2, uij = 2, and µ = 1. The values of χ2 are (blue)
χ2 = 0.1, (cyan) χ2 = 2, and (red) χ2 = 3.466

Figure 2B: r1 = 2, r2 = 2, c1 = 0, c2 = 0, α11 = 1, α21 = 0, α12 = 0, α22 = 1, aij = 0,
β1 = 0.5, m1 = 0.1, m2 = 0.1, χ1 = 2, uij = 2, and µ = 1. The values of χ2 are (blue)468

χ2 = 0.1, (cyan) χ2 = 0.5, (green) χ2 = 1, (magenta) χ2 = 2, and (red) χ2 = 4.
Figure 2C: r1 = 2, r2 = 2, c1 = 0, c2 = 0, α11 = 1, α21 = 0.8, α12 = 0.8, α22 = 1, a11 = 1,470

a22 = 1, β1 = 0.5, m1 = 0.1, m2 = 0.1, χ1 = 2, χ2 = 2, uij = 2, and µ = 7. The values of
a12 and a21 are (blue) a12 = a21 = 0.5, (cyan) a12 = a21 = 1, (magenta) a12 = a21 = 1.5, and472

(red) a12 = a21 = 2.5.
474

Figure 3A: r1 = 2, r2 = 2, c1 = 0, c2 = 0, α11 = 1, α21 = 0, α12 = 0, aij = 1, β1 = 0.5,
β2 = 0.5, m1 = 0.1, χ1 = 2, uij = 2, and µ = 1. The values of χ2 are (blue) χ2 = 0.5, (cyan)476

χ2 = 1.5, and (red) χ2 = 3.
Figure 3B: Same as Figure 3A except α21 = 0.5 and α12 = 0.5.478

Figure 3C: r1 = 2, r2 = 2, c1 = 0, c2 = 0, α11 = 1, α21 = 0.5, α22 = 1, aij = 1, β1 = 0.5,
β2 = 0.5, m1 = 0.1, χ1 = 2, uij = 2, and µ = 1. The values of χ2 are (blue) χ2 = 1, (cyan)480

χ2 = 2, (magenta) χ2 = 4, and (red) χ2 = 3.
482

Figure 4A: The parameters for both curves are r1 = 10, r2 = 10, c1 = 0, c2 = 0, α11 = 1,
α22 = 0.1, a11 = 0.9, a12 = 0.9, a21 = 0.9, a22 = 0.9, β1 = 0.5, β2 = 1/3, m1 = 0.1, m2 = 0.1,484

χ1 = 2, χ2 = 2, uij = 4, and µ = 1. For the dashed curve α21 = 0 and α12 = 0. For the solid

curve α21 = 0.5 and α12 = 0.05. Û = 4.17 in the change of parameters function.486

Figure 4B: The parameters for all three curves are r1 = 0.1, r2 = 0.1, c1 = 0, c2 = 0,
α11 = 1, α22 = 10, aij = 1, β1 = 4, β2 = 4, m1 = 0.1, m2 = 0.1, χ1 = 2, χ2 = 4, uij = 3,488

and µ = 20. For the dashed gray curve α21 = 0 and α12 = 0. For the dashed black curve
α21 = 0.2 and α12 = 2. For the solid black curve α21 = 0.5 and α12 = 9. Û = 1.26 in the490

change of parameters function.
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