OUTLINE 12

IV. Mendel's Work
 D. The dihybrid cross
 1. qualitative results
 2. quantitative results
 E. Summary of Mendel's Rules

V. Probability Theory and Patterns of Inheritance
 A. Definitions
 B. Rules for probability
 1. independent outcomes
 2. the product rule
 3. single event; multiple outcomes
 4. the addition rule
 C. Application to the dihybrid cross

VI. Extensions of Mendel’s Rules
Fig 14.2 A monohybrid cross

P Generation
(true-breeding parents)

Purple flowers × White flowers

F₁ Generation
(hybrids)

All plants had purple flowers

F₂ Generation
Ratio 3:1

705 plants had purple flowers 224 plants had white flowers

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
Fig 14.3

Allele for purple flowers

Locus for flower-color gene

Homologous pair of chromosomes

Allele for white flowers
Homozygous

Heterozygous
Genotypes: PP, Pp, pp genotype ratio: 1:2:1

Phenotypes: Purple, white phenotype ratio: 3:1
Fig. 14.6

A Test Cross

- **Dominant phenotype, unknown genotype:**
 - PP or Pp?

- **Recessive phenotype, known genotype:**
 - pp

- **If PP, then all offspring purple:**

- **If Pp, then $\frac{1}{2}$ offspring purple and $\frac{1}{2}$ offspring white:**

Diagram showing the possible outcomes of a test cross involving purple and white flower phenotypes, with genotypes PP or Pp interfaced with a known pp genotype.
Table 14.1 The Results of Mendel’s F₁ Crosses for Seven Characters in Pea Plants

<table>
<thead>
<tr>
<th>Character</th>
<th>Dominant Trait</th>
<th>×</th>
<th>Recessive Trait</th>
<th>F<sub>2</sub> Generation</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower color</td>
<td>Purple</td>
<td>×</td>
<td>White</td>
<td>705:224</td>
<td>3.15:1</td>
</tr>
<tr>
<td>Flower position</td>
<td>Axial</td>
<td>×</td>
<td>Terminal</td>
<td>651:207</td>
<td>3.14:1</td>
</tr>
<tr>
<td>Seed color</td>
<td>Yellow</td>
<td>×</td>
<td>Green</td>
<td>6022:2001</td>
<td>3.01:1</td>
</tr>
<tr>
<td>Seed shape</td>
<td>Round</td>
<td>×</td>
<td>Wrinkled</td>
<td>5474:1850</td>
<td>2.96:1</td>
</tr>
<tr>
<td>Pod shape</td>
<td>Inflated</td>
<td>×</td>
<td>Constricted</td>
<td>882:299</td>
<td>2.95:1</td>
</tr>
<tr>
<td>Pod color</td>
<td>Green</td>
<td>×</td>
<td>Yellow</td>
<td>428:152</td>
<td>2.82:1</td>
</tr>
<tr>
<td>Stem length</td>
<td>Tall</td>
<td>×</td>
<td>Dwarf</td>
<td>787:277</td>
<td>2.84:1</td>
</tr>
</tbody>
</table>
Fig. 14.7 A Dihybrid Cross

(a) Hypothesis: dependent assortment

(b) Hypothesis: independent assortment

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
Mendel’s Laws (as he stated them)

Law of unit factors

“Inherited characters are controlled by discrete factors in pairs”

Law of segregation

“When gametes are formed, the factors segregate…and recombine in the next generation.”

Law of dominance:

“of the two factors controlling a trait, one may dominate the other.”

Law of independent assortment:

“one pair of factors can segregate from a second pair of factors.”
When all outcomes of an event are equally likely, the probability that a particular outcome will occur is

$$\frac{\text{#ways to obtain that outcome}}{\text{total # possible outcomes}}$$

Examples:

In a coin toss $P[\text{heads}] = \frac{1}{2}$ (or 0.5)

In tossing one die $P[2] = \frac{1}{6}$

In tossing one die $P[\text{even #}] = \frac{3}{6}$

Drawing a card $P[\text{Queen of spades}] = \frac{1}{52}$
The “AND” rule

Probability of observing event 1 AND event 2 = the product of their independent probabilities.

Example:

Pr: 2 heads in 2 coin flips?

Probability of each head = 1/2

Probability of 2 heads = 1/2 x 1/2 = 1/4
The “AND” rule

Probability of observing event 1 AND event 2 = the product of their independent probabilities.

EXAMPLE

Throwing one red and one white die:

P[red is 6] = 1/6

P[white is 2] = 1/6

So, P[red is 6 and white is 2] = 1/6 * 1/6 = 1/36
The “OR” rule:

Probability of observing outcome 1 \textbf{OR} outcome 2 = the \textbf{sum} of their independent probabilities.

Example:

Pr: a die will roll a 2 \textbf{OR} a 6?

Probability of rolling 2 = 1/6
Probability of rolling 6 = 1/6

Probability of rolling 2 \textbf{or} 6 = 1/6 + 1/6 = 1/3
Fig. 14.7 A Dihybrid Cross

(a) Hypothesis: dependent assortment

Experimental results contradict hypothesis

(b) Hypothesis: independent assortment

Experimental results support hypothesis

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
RULES OF PROBABILITY

1. When all outcomes equally likely, the probability that a particular outcome will occur is

\[
\frac{\text{#ways to obtain that outcome}}{\text{total # possible outcomes}}
\]

2. The product rule = the "AND" rule

For 2 independent events, the probability of observing 2 particular outcomes (outcome 1 AND outcome 2) is the PRODUCT of their independent probabilities.

3. The addition rule = the "OR" rule
The probability of observing either one OR another outcome is equal to the SUM of their independent probabilities.
Application of Mendel’s Rules assumes:

1. One allele completely dominates the other

2. All genes have 2 allelic forms

3. All traits are monogenic (affected by only one locus)

4. All chromosomes occur in homologous pairs

5. All genes assort independently

6. An allele is completely expressed when either dominant or heterozygous

7. Each trait is controlled by a different set of factors