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Abstract

Epistatic interactions between genes and individual mutations are major determinants of the evolutionary properties of
genetic systems and have therefore been well documented, but few quantitative data exist on epistatic interactions
between beneficial mutations, presumably because such mutations are so much rarer than deleterious ones. We explored
epistasis for beneficial mutations by constructing genotypes with pairs of mutations that had been previously identified as
beneficial to the ssDNA bacteriophage ID11 and by measuring the effects of these mutations alone and in combination. We
constructed 18 of the 36 possible double mutants for the nine available beneficial mutations. We found that epistatic
interactions between beneficial mutations were all antagonistic—the effects of the double mutations were less than the
sums of the effects of their component single mutations. We found a number of cases of decompensatory interactions, an
extreme form of antagonistic epistasis in which the second mutation is actually deleterious in the presence of the first. In
the vast majority of cases, recombination uniting two beneficial mutations into the same genome would not be favored by
selection, as the recombinant could not outcompete its constituent single mutations. In an attempt to understand these
results, we developed a simple model in which the phenotypic effects of mutations are completely additive and epistatic
interactions arise as a result of the form of the phenotype-to-fitness mapping. We found that a model with an intermediate
phenotypic optimum and additive phenotypic effects provided a good explanation for our data and the observed patterns
of epistatic interactions.
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Introduction

The nature of epistatic interactions between loci or mutations is a

major component of evolutionary theories. For example, epistasis is

thought to have been important in the evolution of sexual

reproduction [1,2] and reproductive isolation between incipient

species [3–6]. In models of adaptation and fitness landscapes,

epistatic interactions are the primary determinant of the topology of

landscape and thus the accessibility of high-fitness genotypes [7–11].

Previous empirical studies have provided much evidence for a

variety of forms of epistasis. Compensatory mutations, whose

beneficial effects depend on the presence of a deleterious mutation,

provide direct evidence of the relevance of epistasis; numerous

empirical examples have been described [12–17]. Experiments in

microbial [18,19] and viral systems [20–24] have provided

abundant evidence for antagonistic epistasis, in which the total

effect of multiple mutations is less than expected on the basis of their

individual effects. Similarly, some of these same studies have

provided evidence for synergistic epistasis [18,22,23], in which the

combined effects of mutations are greater than expected. Some

evidence suggests that the predominance of antagonistic epistasis is

a feature of simpler genomes, whereas synergistic epistasis is more

common in more complex genomes [25].

The majority of commonly cited effects of epistasis in evolution

are the results of interactions between deleterious alleles, but

interactions between beneficial alleles can significantly affect the

rate of adaptation. Epistasis has been shown to constrain pathways

of molecular adaptation severely [26–28]. One of the major

advantages of sexual reproduction is the presumed benefit of

recombining separate beneficial mutations or alleles into the same

genome [2]. Discussions of microbial evolution are dominated by

the phenomenon of clonal interference [29–37], in which, because

of their asexual mode of reproduction, clonal organisms suffer a

reduced rate of adaptation because individual beneficial mutations

must compete for fixation rather than being combined into the

same genome by recombination. These results rest on the

assumption that mutations that are individually beneficial remain

beneficial when combined. Furthermore, many models of

adaptation rely on the assumption that the effects of beneficial

mutations are additive [29,30,38]. Though these assumptions are

widely used, their validity is largely undetermined.

To explore epistatic interactions between beneficial mutations,

we constructed bacteriophage mutants with pairs of previously

identified beneficial mutations by site-directed mutagenesis. We

used nine beneficial mutations (which we designate A through I, in

order of their appearance in the genome; Table 1) identified for

the ssDNA microvirid bacteriophage ID11 [39]. This phage

infects Escherichia coli strain C, and the nine mutations increased

growth rate of the wild type at 370C in liquid culture with excess

hosts. We built 18 of the possible 36 pairs of these nine beneficial
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mutations (designated by two-letter combinations) and measured

the fitnesses of the wild-type genotype, those of the single beneficial

mutations, and the double mutants. A similar approach was used

to study epistatic interactions between deleterious mutations and

between beneficial mutations for the RNA virus vesicular

stomatitis virus (VSV) [22], but we go beyond characterizing the

patterns by constructing an explanatory model that posits that

epistatic interactions arise at the level of the mapping from

phenotypes to fitness and assessing the fit of our data to it.

Results/Discussion

Antagonistic epistasis between beneficial mutations
For the 18 double mutants, the expected effect of incorporating

both beneficial mutations into the genome under additivity

(i.e., without epistasis) was greater than the observed effect

(Figure 1). Because our fitness was measured as a growth rate

(i.e., log fitness), the expectation under additivity was that the effect

of the two mutations in combination would be the sum of the

single-mutant effects on growth rate. We can measure the

deviation from additivity by calculating

ij~DWij{(DWizDWj) ð1Þ

where DWij is the effect of the double mutant with mutations i and

j relative to the wild type, and DWi is the effect of single mutant i
relative to the wild-type. An of 0 implies additivity; w0 implies

synergistic epistasis, and v0 implies antagonistic epistasis [22].

The average deviation from additivity over the 18 double mu-

tants was �~{4:52+0:43. We could easily reject additivity

(t17~{10:53, p~7:2|10{9). All deviations were less than zero

( ijv0 for all i and j), and the deviation of smallest magnitude,

AH~{2:23, was more than 5 standard errors less than zero. We

therefore found no evidence of synergistic epistasis between

beneficial mutations and could strongly reject additivity. Epistasis

between beneficial mutations of ID11 was entirely antagonistic.

Previous work with the RNA virus VSV looking at the effects of

pairs of beneficial mutations also found evidence for a predom-

inance of antagonistic epistasis and no significant cases of

synergistic epistasis for beneficial mutations. This result confirmed

the prediction by Martin et al. [40] based on a generalized version

of Fisher’s geometrical model [41] that values of between pairs of

beneficial mutations should be skewed toward negative values (see

below for a full treatment of this model).

Decompensatory epistasis for beneficial mutations
Although, under antagonistic epistasis, the beneficial effect of a

second mutation is reduced, that second mutation might still

increase fitness to some lesser extent. We are also therefore

interested in decompensatory epistasis [22], under which a

beneficial mutation actually becomes deleterious in the presence

of another beneficial mutation (analogous to compensatory

mutations, which are beneficial only in the context of a deleterious

mutation). Decompensatory epistasis is also a special case of sign

epistasis [9] and would indicate that the set of beneficial mutations

available for the wild-type genotype may be quite different from

the set of beneficial mutations available after the first fixation event

in adaptation. This situation would be consistent with, for

example, the standard implementation of the mutational land-

scape model [42–45], which uses a random fitness landscape. After

a mutation becomes fixed in the population, an entirely new set of

beneficial mutations (if any) becomes available to the evolving

population.

Figure 2 illustrates the cases in which the mean fitness conferred

by the double mutation is less than the mean fitness conferred by

one or both beneficial mutations on their own. To test for

significance, we performed three different sets of tests of increasing

stringency. For the first, we simply asked whether the fitness

conferred by the double mutation was significantly less than the

higher of the two fitnesses conferred by the single mutations of

which it was composed. We called the situation in which it was

conditional decompensatory epistasis, as it merely guaranteed that

at least one of the two mutations was deleterious in the presence of

the other and did not preclude the case where the double-mutant

fitness lies between the two single-mutant fitnesses. Using a one-

sided Welch two-sample t-test and a Bonferroni correction for 18

tests, we found six double mutants that showed evidence of

conditional decompensatory epistasis with pv0:05: BE, BG, BI,

Table 1. Nine mutations beneficial to the ssDNA
bacteriophage ID11.

Label
Protein
function

Protein
name

Aa
position DAa

Nuc
position DNuc

A DNA binding J 15 A?V 2520 C?T

B DNA binding J 20 V?L 2534 G?T

C coat F 3 V?F 2609 G?T

D coat F 314 A?V 3543 C?T

E coat F 322 N?S 3567 A?G

F coat F 355 P?S 3665 C?T

G coat F 416 M?I 3850 G?A

H coat F 419 T?A 3857 A?G

I coat F 421 D?G 3864 A?G

The nine beneficial mutations used in this study affect two different viral proteins:
the DNA binding protein J and the major coat protein F. Positions are based on
the published genome sequence of ID11 (GenBank accession # AY751298). Nuc,
nucleotide; DNuc, nucleotide change.
doi:10.1371/journal.pgen.1002075.t001

Author Summary

Epistasis, the extent to which the effects of a mutation
depend on its genetic context, can have profound effects
on the evolutionary process and strongly affects our
understanding of the prevalence of sexual reproduction. It
has been investigated in a diverse array of organisms but
almost exclusively for deleterious mutations. Interactions
between beneficial mutations can impede adaptation, and
we therefore investigated epistasis between beneficial
mutations by constructing 18 bacteriophage genomes,
each with two mutations that had been previously
identified as beneficial, and measuring their fitnesses. We
found universal evidence for epistasis—every pair of
mutations conferred fitness lower than that expected
from the single mutations alone. In many cases, a
beneficial mutation became deleterious when in combi-
nation with another, and in fact, only one pair out of 18
could be shown to confer significantly greater fitness than
its constituent mutations alone. To explain these results,
we developed a model of the relationship between
phenotype and fitness that posits an intermediate
phenotypic optimum and assumes no epistasis at the
phenotypic level. This model fit our data well and showed
that the patterns we observed could result because
mutants have phenotypes that overshoot the optimum.

Epistasis between Beneficial Mutations
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CE, DI, and EI. The second test was to determine whether the

double mutant was less fit that the lower-fitness single mutant. We

refer to the case in which it was as unconditionally decompen-

satory epistasis, as regardless of the order mutations might be

added to the genome, the second was always deleterious. Using the

same test as above, we found only two double mutants that were

unconditionally decompensatory with pv0:05: CE and EI.

Finally, our most stringent test was to ask whether the double

mutant was less fit than the wild-type genotype. This situation

would imply that the two mutations together constituted a

deleterious mutation, i.e., a population in which both mutations

became fixed would be worse off than one in which neither had.

Using the same test as above, we found two double mutants that

were significantly less fit than the wild type with pv0:05: CE and

EI, the two unconditionally decompensatory doubles.

The presence of decompensatory epistasis for beneficial

mutations is consistent with a random fitness landscape, but

clearly not all pairs of beneficial mutations show this pattern. In

fact, at least one double mutant is significantly more fit than

mutants bearing either of its constituent single mutations (see

below). Nevertheless, in a number of cases, both beneficial

mutations could not become fixed in the population because they

could not outcompete one or both of the single mutations from

which they were formed. A similar observation about beneficial

mutations was made for VSV [22]. Under landscape models such

as the block model [10,11] or NK model [7,8], the ruggedness of

the landscape can be adjusted if the extent of epistatic interactions

is changed from a smooth, additive landscape with no epistasis to a

highly rugged, highly epistatic random landscape. We can clearly

reject the nonepistatic model, but just as clearly, the random

landscape is too extreme. Under a random-landscape model, the

probability that a second mutation increases fitness (i.e., is not

decompensatory) is the same as the probability that a random

mutation is beneficial, which is generally assumed to be small. Our

observation of nondecompensatory mutations is therefore incon-

sistent with this model.

The advantage of sex
One of the major proposed advantages of sexual reproduction is

that it facilitates recombination, which can increase the rate of

adaptation by allowing beneficial mutations arising in different

genomes to be combined in the same genome. This advantage is

contigent on the assumption of a fitness increase for the

recombinant over its composite single mutations. To test this

assumption, we asked whether any of the 18 double mutants had

significantly higher fitness than the higher of the fitnesses of

mutants bearing the single mutations of which it was composed.

Using a one-sided Welch two-sample t-test and Bonferroni

correction for 18 tests, we found only a single double mutation

that could outcompete its constituent single mutations: AG

Figure 1. Universal antagonistic epistasis for beneficial mutations. The fitness of double mutant ID11 phage expected on the basis of
addition of the effects of the two mutations is plotted against the observed effects on the doubles mutants. Additive effects would fall on the
diagonal, synergistic effects would fall above the diagonal, and antagonistic effects would fall below the diagonal. Effects are given in units of
doublings per hour.
doi:10.1371/journal.pgen.1002075.g001

Epistasis between Beneficial Mutations
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(p~0:02 with Bonferroni correction). Even without the Bonferroni

correction, only two doubles are significantly higher at the 5%

significance level: AG (p~0:0013) and AH (p~0:0046). There-

fore, recombination would not increase the rate of adaptation in

this phage system.

This observation, together with the presence of decompensatory

epistasis described above, indicates that the patterns predicted by

clonal interference models [29,30] may actually arise even in the

presence of recombination. The assumption of the model is that,

because of their asexual mode of reproduction, clonal organisms

have a lower rate of adaptation because individual beneficial

mutations must compete with one another for fixation rather than

be combined into the same genome through recombination for

simultaneous fixation. If combinations of beneficial mutations

confer less fitness or not more fitness than the single mutations,

however, even with recombination, the single mutations must

compete for fixation because of a kind of epistatic interference or

epistatic repulsion. Our results suggest that the types of theoretical

results derived for asexuals have broader applicability even in

sexual organisms, while at the same time calling into question the

underlying impetus for the models, if similar results are found in

other systems. In other words, in our phage, sexual reproduction

would provide little or no increase in the rate of adaptation,

because ultimately one of the single mutants will outcompete the

other singles and any double mutants that could be produced by

recombination.

Additivity of phenotypic effects
Clearly, our results and Figures 1 and 2 reveal significant

epistatic interactions between the nine beneficial mutations in our

data set. Recent theoretical and empirical work has suggested that

mutations produce additive biochemical effects [26,46], and

bacteriophage growth is merely a somewhat complex biochemical

reaction. If phenotypic (e.g., biochemical) effects are completely

additive, epistatic interactions might still arise through nonlinearity

in the mapping from phenotype to fitness [40]. In addition, work

with the nine beneficial mutations we studied revealed a distinct

upper bound on fitness effects for beneficial mutations [47]. Such

an upper bound could arise naturally with an intermediate

phenotypic optimum (i.e., stabilizing selection). To determine

whether such a scenario might apply to the ID11 system, we

developed a simple model of the phenotype-to-fitness mapping

and fit it to our data. Our model is analogous in structure to the

model of Martin et al. [40], who assumed a fitness landscape based

Figure 2. Evidence for decompensatory epistasis. The grid shows the fitnesses of the wild type, single mutants, and double mutants. Empty
cells represent the double mutants that were not constructed. Red indicates that the average fitness of the double mutant is lower than the average
fitness conferred by its two constituent single mutations. Blue indicates that its fitness is higher than that of either single mutant, and purple
indicates that it is between the fitnesses of the two single mutants. A ‘‘*’’ in a red box indicates the double mutation confers a fitness significantly
lower than that conferred by one single mutation, and a ‘‘**’’ indicates that the double mutation confers a fitness significantly lower than that
conferred by either of its single mutations. A ‘‘*’’ in a blue box indicates that the double mutation confers a fitness significantly higher than that
conferred by either constituent single mutation.
doi:10.1371/journal.pgen.1002075.g002

Epistasis between Beneficial Mutations
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on Fisher’s geometrical model [41] in a multidimensional

phenotype space, additivity of phenotypic effects of mutations,

and a Gaussian fitness function to map phenotypes to fitness (see

below for a comparison of the two models). DePristo et al. [46]

also assumed additivity of phenotypes in their model. For our

model, we assumed the phenotype-fitness relationship took the

form of a gamma curve, with shape (a), scale (b), height (A), and

shift (B) parameters. We also assumed that the mutations were all

affecting a single underlying and unknown phenotype. Under the

model, we assumed that the phenotype of the double mutant with

single mutations i and j with phenotypes xi and xj was given by

xij~xizxj . We treated the phenotypes of the single mutations as

missing data and imputed their values and estimated the values of

the gamma parameters a, b, A, and B. For our nine single mutants

and the 18 constructed double mutants, we found that the model

provides a good fit to our data (Figure 3), with a coefficient of

determination R2~0:804. We rejected a null model that assumed

the fitnesses of the doubles and the singles to be independent draws

from a normal probability distribution with F12,14~4:78 giving

p~0:003. The parameter estimates for the phenotype-to-fitness

map were a~1:275, b~29:0, A~18:5, and B~11:0. This

distribution is right skewed and suggested that our wild-type ID11

is close to the phenotypic optimum.

Our gamma model and the model of Martin et al. [40] make

similar assumptions but differ in the number of phenotypic

dimensions and the shape of the phenotype-fitness map. Martin et

al. assume a Gaussian map. To compare the performance of the

models, we produced predicted distributions of epistatic effects

(Figure 4). The gamma model provided a 12 log-likelihood

improvement over the model of Martin et al. but requires

imputation of nine phenotypes and estimates of five parameters

(four for the gamma and one for the error distribution). The model

Figure 3. The phenotype-to-fitness map. The plot shows the fit of our model for the phenotype-to-fitness map. The model assumes a gamma
curve for the relationship between fitness and phenotype. Phenotypic effects were assumed to be additive and epistasis for fitness to arise through
the shape of the curve. The variance of the normal error was estimated to be s2~1:94. R2 gives the coefficient of determination. The p value is based
on an F test comparing our model to a model assuming that single- and double-mutant fitnesses are independent of each other. For these data,
F12,14~4:78. We rescaled fitness by substracting B~11 rather than the fitness of the wild type to avoid negative values.
doi:10.1371/journal.pgen.1002075.g003

Epistasis between Beneficial Mutations
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of Martin et al. has only two parameters, leaving a difference of 12

parameters. Therefore, when Akaike Information Criterion (AIC)

scores were used to penalize for over-fit, the two models explained

the data equally well (Figure 4). Both models predicted a pattern of

negative epistatic effects, which was reflected in the data, but the

model of Martin et al. predicted more extreme antagonistic

epistasis than was observed. The lack of fit for this model is due

primarily to this prediction of extreme negative epistasis. The

pattern of epistasis predicted by the gamma model is consistent

with the data, but this model is penalized for extra parameters.

The gamma model assumes that the phenotypic optimum is

intermediate, and our fitted values suggested that five of the nine

single mutants actually overshoot this optimum. Therefore, adding

two of these effects together had an overall tendency to reduce

fitness, except for those mutations conferring the smallest

phenotypic effects, A, D, and H (Figure 3). Note that all cases in

which the second mutation appeared to have increased fitness

involved at least one of these three mutations (Figure 2). In

addition, the strongest epistatic interactions (i.e., those involving

the unconditionally decompensatory mutations) involved at least

one of the mutations with the largest phenotypic effects, E and I

(Figure 3). Therefore, the model did explain the major patterns in

our data, and it also made a number of testable predictions. For

example, we can predict which of the 18 unconstructed possible

double mutants will have low or high fitness or predict the fitness

of triple mutants and beyond. To test the predictive power of the

model, we conducted a series of analyses, each of which involved

the removal of one of the 18 double mutants from the data set.

The model was fit to each reduced data set, then used to predict

the removed value. The model generated accurate predictions for

17 of the 18 double mutants (Table 2), suggesting good predictive

power. More interestingly, the model predicts that, if we can

change the phenotypic optimum by, for example, changing the

environment, we can entirely alter the patterns of epistasis.

Increasing the distance of the wild type from the optimum might

produce additive effects or even synergistic epistasis rather than

the uniform antagonistic effects we observed. Intriguingly, recent

work on the phage wX174, a close relative of our phage ID11,

showed that epistatic interactions between different amino-acid

residues at two particular sites in the phage coat protein can

change from antagonistic to synergistic depending on the

environment in which fitness is measured [23]. Our simple model

can evince such behavior in response to simple changes in the

optimum.

Materials and Methods

Constructing the mutants and fitness assays
The isolation and initial characterization of the nine beneficial

mutations of the microvirid bacteriophage ID11 [48] have been

described in detail previously [39,48]. These mutations confer an

increased growth rate on the wild-type ID11. The isolates used

were confirmed by full-genome sequencing to have the mutations

of interest and no other mutations.

PCR-based construction of the double mutants was based on

published techniques [23,49]. Pairs were selected such that each

mutation was found in multiple genotypes, and all combinations of

large-, intermediate-, and small-effect mutations were included.

To construct the double mutants, we added the second mutation

into a sequence-confirmed isolate of the first. We PCR amplified

the circular genome in two halves, in which the forward primer for

one half and the reverse of the other had the mutation to be

incorporated. The other primers were selected to result in an

overlap of the resulting genome halves. These halves were cleaned

with a Qiagen QIAquick PCR purification kit and combined in a

PCR (no primers). This reaction was cleaned with the QIAquick

kit and electroporated into E. coli. The resulting plaques were

picked and plaque purified by replating. We then subjected the

final isolate to full-genome sequencing to confirm the incorpora-

tion of the mutation and the lack of secondary mutations.

Fitness assays were performed as described previously [12]. We

measured fitness as the log2 increase in the phage population per

hour on E. coli strain C at 370C. Assays were performed in an

orbital water bath shaking at 200 rpm. We measured each

genotype at least five times (Table 3).

Testing for additivity of phenotypic effects
Let Si be the fitness effect of mutation i and let Sij be the

fitness effect of the double mutant with mutations i and j. We

assumed the phenotype-to-fitness mapping followed a gamma

Figure 4. Comparison between the gamma model (left) and the model of Martin et al. [40] (right). The plots show the predicted
distributions of the deviations from additivity ( ij ; Equation 1) based on simulations under the two models. The observed values are plotted as
triangles (Table 3). The gamma model fits the data better by approximately 12 log likelihoods but requires the estimation of 12 more parameters. The
Akaike Information Criterion (AIC) scores of the two models are therefore similar, indicating that the two explain the data equally well.
doi:10.1371/journal.pgen.1002075.g004
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curve given by

g(x, a, b, A, B)~A(
x

b
)a{1e{x=b zB:

Note that this is not a probability density function. We view a as

the shape parameter, b as the scale parameter, A as the height

parameter, and B as the shift parameter. The phenotypic effect is

denoted by x. Our model is then given by S~g(x, a, b, A, B)z

where is normally distributed with mean zero and variance s2.

Our data consisted of the fitness effects of single mutations, Si, and

fitness effects of double mutants, Sij ; average effects are given by

E(Sijxi)~g(xi, a, b, A, B) and additivity of phenotypic effects was

modeled on the assumption that E(Sij jxi, xj)~g(xizxj , a, b, A, B).

For model fitting, the estimate of the shift parameter B, denoted

by B̂B, was based on the fitness of the lowest-fitness genotype (see

below). We treated a, b, and A as parameters and the phenotypes

x1, x2, . . . , xn as missing data. We first imputed the phenotypes

and estimated the parameters from nonlinear least squares

regression. Let the array of phenotypes be x~(x1, x2, . . . , xn).
We then minimize

min
x,a,b,A

(
X

i

(Si{E(Sijxi)
2)z

X
ij

(Sij{E(Sij jxi, xj))
2): ð2Þ

We denote the estimates and imputations by x̂xi, âa, b̂b, ÂA, and

B̂B. Then the predicted fitness are ŜSi~g(x̂xi, âa, b̂b, ÂA, B̂B) and

ŜSij~g(x̂xizx̂xj , âa, b̂b, ÂA, B̂B).

To assess model fit, we used a simple null model where Si and

Sij are draws from some probability distribution and vary about

some mean m such that Si~mz and Sij~mz , where follows a

normal distribution with mean zero and variance s2. Under this

null model, the fitnesses of the single mutations and double

mutations are completely independent of one another. We can

therefore consider �SS~
1

T
(
X

i
Siz

X
ij

Sij) to be our estimate

of m, where T is the total number of mutants considered (doubles

and singles). Then, the coefficient of determination is

R2~1{

P
i (Si{ŜSi)

2z
P

ij (Sij{ŜSij)
2

P
i (Si{�SS)2z

P
ij (Sij{�SS)2

:

When R2 was close to 1, the model explained a large amount of

the variation. For a formal test, we used an approach analogous to

an F test. The sum of squared error is defined by

SSE~
X

i

(Si{ŜSi)
2z

X
ij

(Sij{ŜSij)
2

and the sum squared total is

SST~
X

i

(Si{�SS)2z
X

ij

(Sij{�SS)2:

The sum of squares model is then the difference SSM~SST{SSE.

The degrees of freedom for SST is T{1, and the degrees of

freedom for SSE is T{n{4, where n is the number of single

mutants. The degrees of freedom for SSM is then nz3. Therefore

the F statistic would be

F~
SSM=(nz3)

SSE=(T{n{4)
:

Table 2. The predictive power of the gamma model.

Removed Predicted Observed ÂA âa b̂b R2 # SD

AB 19:19+1:41 18.66 14 1.06 23 0.81 0.37

AD 18:61+1:52 18.82 13 1.10 20 0.78 0.14

AF 19:84+1:40 18.07 14 1.08 40 0.81 1.26

AG 20:58+1:31 22.50 14 1.11 48 0.80 1.46

AH 19:76+1:56 20.29 15 1.20 27 0.75 0.34

BD 16:30+1:46 17.77 15 1.17 49 0.80 1.01

BE 15:07+1:48 15.58 15 1.15 21 0.78 0.34

BG 19:66+1:49 17.31 15 1.21 42 0.78 1.58

BH 19:31+1:53 19.47 15 1.18 48 0.77 0.11

BI 13:99+1:24 16.52 15 1.06 30 0.85 2.05

CD 17:12+1:56 17.52 12 1.08 20 0.76 0.26

CE 17:06+1:04 11.56 13 1.05 59 0.85 5.30*

CH 19:38+1:49 19.49 15 1.16 29 0.78 0.08

DF 18:21+1:37 19.30 15 1.11 22 0.82 0.79

DH 19:06+1:41 18.48 15 1.08 38 0.81 0.41

DI 14:46+1:53 15.40 15 1.19 20 0.76 0.62

EH 16:63+1:57 16.54 15 1.20 27 0.76 0.06

EI 13:16+1:40 12.74 14 1.06 31 0.77 0.30

Each analysis consisted of removing one of the 18 double mutants, fitting the model to the remaining data, and predicting the fitness of the removed double mutant.
For simplicity, we assumed the same shift (B~11) for each analysis. The last column gives the magnitude of the difference between the observed and predicted values
as a number of standard deviations. A ‘‘*’’ indicates a significant difference at a 5% significance level from the model predictions with 15 degrees of freedom. A
difference greater than 2.13 standard deviations is significant.
doi:10.1371/journal.pgen.1002075.t002
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The standard F distribution may not hold because of the non-

linear nature of the model. All statistical analyses were done in

R [50].

Fitting the model to our data
To analyze our data, we shifted all fitnesses, which are given in

units of doublings per hour, by subtracting a fitness value of B̂B~11
from each. This shifting allowed our model to address only

fitnesses in the observed range without making predictions about

the phenotype-fitness relationship for very low fitness values.

Because of the simplicity of the model, it may not accurately

describe the behavior far outside the range of our data. We could

not shift by the wild-type fitness because two double mutants had

fitnesses below that of the wild-type, which would have given

negative fitness values. Therefore, we shifted by the largest integer

value that was less than all observed fitnesses. The degrees of

freedom for SSE becomes T{n{4~14, and the degrees of

freedom for SSM becomes nz3~12. Note that the scale of the

phenotypes is arbitrary, as a change in the phenotype scale can be

absorbed by a change in the gamma scale parameter.

Minimization algorithm
The minimization problem given by equation (2) is an nz3

dimensional problem, where n is the number of single mutations.

We used the following algorithm to solve this problem.

1. Begin with an initial guess for a0, b0, and A0.

2. For each fitness value Si for the single mutants, solve for the two

possible phenotypes xi,1 and xi,2 using Si~g(xi,ki
, a0, b0, A0, B̂B),

where ki~1,2. The two possible phenotypes for each single

mutant represent the points of equal fitness on either side of the

peak in the hypothesized phenotype-fitness map.

3. For each single mutation, a pair of possible phenotypes is

denoted by the array

x1,1, x1,2, . . . , x1,n

x2,1, x2,2, . . . , x2,n

� �

For each single mutant, choose one phenotype from each

column to form a row of n phenotypes. Denote the set of all

row vectors by P. Among all arrays of phenotypes in P, choose

Table 3. Fitnesses and fitness effects of all genotypes tested.

Genotype Fitness n Dwwt Dwadd Dw1 Dw2 ij

ID11 15:18+0:20 14 - - - - -

A 19:07+0:19 5 3.89 - - - -

B 19:34+0:43 5 4.15 - - - -

C 19:36+0:56 6 4.18 - - - -

D 18:62+0:49 7 3.44 - - - -

E 16:84+0:36 5 1.65 - - - -

F 18:58+0:37 5 3.39 - - - -

G 21:02+0:26 6 5.84 - - - -

H 18:62+0:42 5 3.44 - - - -

I 16:60+0:28 5 1.42 - - - -

AB 18:66+0:25 5 3.47 8.04 20.42 20.68 24.57

AD 18:82+0:37 5 3.63 7.33 20.26 0.19 23.70

AF 18:07+0:56 5 2.88 7.28 21.00 20.51 24.40

AG 22:50+0:25 5 7.32 9.73 3.43 1.48 22.41

AH 20:29+0:29 5 5.10 7.33 1.21 1.66 22.23

BD 17:77+0:33 5 2.59 7.59 21.56 20.85 25.00

BE 15:58+0:53 6 0.40 5.8 23.75 21.26 25.40

BG 17:31+0:54 7 2.12 9.99 22.03 23.72 27.87

BH 19:47+0:43 5 4.29 7.59 0.14 0.85 23.30

BI 16:52+0:48 7 1.34 5.57 22.82 20.08 24.23

CD 17:52+0:36 6 2.34 7.62 21.84 21.10 25.28

CE 11:56+0:47 6 23.62 5.83 27.80 25.28 29.45

CH 19:49+0:28 5 4.31 7.62 0.13 0.87 23.31

DF 19:30+0:31 5 4.12 6.83 0.68 0.72 22.71

DH 18:48+0:43 5 3.30 6.88 20.14 20.14 23.58

DI 15:40+0:34 5 0.21 4.86 23.23 21.20 24.65

EH 16:54+0:44 5 1.35 5.09 20.30 22.09 23.74

EI 12:74+0:35 5 22.44 3.07 24.09 23.86 25.51

Fitnesses are given as the average plus or minus the standard error. The column labeled n gives the number of replicate assays for each genotype. The fitness effect
relative to the wild type is designated by Dwwt . Dwadd gives the fitness effect expected on the assumption that the effects of single mutations were additive, Dw1 gives
the effect of adding the first mutation in the genotype name into the background of the second, and Dw2 gives the effect of adding the second mutation in the
genotype name into the background of the first.
doi:10.1371/journal.pgen.1002075.t003
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the one that minimizes the fitness effects of the doubles.

min
x[P

X
ij

(Sij{g(xizxj , a0, b0, A0, B̂B))2

4. Denote the phenotypes solved for in steps 2 and 3 by

x1, x2, . . . , xn. Fix the phenotypic values and minimize

min
a,b,A

(
X

i

(Si{E(Sijxi))
2z

X
ij

(Sij{E(Sij jxi, xj))
2):

The solution can be used as input in step 1. The whole process

can then be iterated until the solved values of a, b, and A no

longer change.

Model comparisons
To compare the gamma model to the model of Martin et al.

[40], we simulated the expected distributions of the deviations

from additivity ( ij in our notation) under the two models.

Parameter values were selected such that the two models yielded

the same distributions for single beneficial mutations. For both

models, we assumed the distribution of fitness effects followed the

generalized Pareto distribution (GPD) with shape parameter

k~{1 as estimated previously for the single mutations [47,51].

The GPD with k~{1 corresponds to a uniform distribution. We

used the maximum observed fitness of the single mutations as our

estimate for the upper bound and used the smallest observed

fitness for a beneficial mutation as the lower bound.

To simulate ij ’s under the gamma model, we chose nine fitness

effects from the uniform distribution and mapped them to

phenotypes using the inverse of the fitted gamma function. Each

fitness value could be mapped to either side of the optimum; we

selected the side at random. We assumed additivity of the

phenotypes and generated the phenotypes of 18 double mutants.

Double mutants were selected to match the pattern in our

empirical data. Fitness was calculated for each on the basis of the

gamma curve with normal error added from the estimated error.

Deviations from addivity were calculated as described above. We

generated 1,000 replicate data sets. This model requires

imputation of nine phenotypes and estimation of four gamma

parameters and the error parameter.

To simulate ij ’s under the model of Martin et al. [40], we noted

that Fisher’s geometrical model predicts a GPD distribution of

beneficial fitness effects with k~{2=d, where d is the number of

phenotypic dimensions [52]. Therefore, the number of dimensions

for our data is d~2. We used the same upper and lower bounds

on fitness as for the gamma model and a two-dimensional

geometrical model with a Gaussian phenotype-fitness map. The

wild type was assumed to be one phenotypic unit from the

optimum. Given phenotype values x and y, the fitness function is

f (x, y)~(lzl0)eln(l0=(lzl0))(x2zy2){l0

where l0 is the fitness of the wild type, and l is the difference

between the maximum fitness and the wild-type fitness. This form

was selected to satisfy several constraints. We wanted f (0,0)~l

and, for simplicity, f (x,y)~0 when x2zy2~1. The final

constraint shifted the floor of the function to {l0; the location

of this floor was not found to affect the results significantly. To

generate our distribution of deviations from additivity, we

simulated nine phenotypes at random within the circle defined

by the fitness of the smallest-effect mutation, created 18 double

mutants by vector addition, and mapped the single and double

mutants to fitness to calculate the deviations from additivity.

Double mutants were selected to match the pattern in our

empirical data. We simulated 1,000 replicate data sets. This model

requires the estimation of two parameters.

To compare the fit of the two models, we calculated AIC scores

for each model, where AIC~2k{2 ln(L). The number of

parameters for the gamma model is k~14 and k~2 for the

model of Martin et al. We approximated likelihoods (L) from the

histogram densities.
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