
Journal of Theoretical Biology 243 (2006) 114–120

Properties of adaptive walks on uncorrelated landscapes under strong
selection and weak mutation

Darin R. Rokytaa, Craig J. Beiselb, Paul Joyceb,c,�

aDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
bDepartment of Mathematics, University of Idaho, Moscow, ID 83844, USA

cDepartment of Statistics, University of Idaho, Moscow, ID 83844, USA

Received 30 March 2006; received in revised form 3 June 2006; accepted 7 June 2006

Available online 13 June 2006

Abstract

We examine properties of adaptive walks on uncorrelated (i.e. random) fitness landscapes starting from moderately fit genotypes under

strong selection weak mutation. As an extension of Orr’s model for a single step in an adaptive walk under these conditions, we show that

the fitness rank of the dominant genotype in a population after the fixation of a beneficial mutation is, on average, ði þ 6Þ=4, where i is the

fitness rank of the starting genotype. This accounts for the change in rank due to acquiring a new set of single-mutation neighbors after

fixing a new allele through natural selection. Under this scenario, adaptive walks can be modeled as a simple Markov chain on the space

of possible fitness ranks with an absorbing state at i ¼ 1, from which no beneficial mutations are accessible. We find that these walks are

typically short and are often completed in a single step when starting from a moderately fit genotype. As in Orr’s original model, these

results are insensitive to both the distribution of fitness effects and most biological details of the system under consideration.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Much work has recently emerged describing adaptation
in discrete sequence spaces (e.g. DNA or amino acid
sequences) that suggests that molecular adaptation may be
characterized by general rules that are independent of
many of the biological details of the evolving system.
Building on the idea of a protein space described by
Maynard Smith (1962, 1970), Gillespie (1983, 1984, 1991)
incorporated the use of extreme value theory to circumvent
the problem of specifying the exact distribution of fitness
effects for new mutations. He argued that beneficial
mutations represent draws from the extreme right tail of
the unknown fitness distribution, thus falling within the
purview of extreme value theory, which provides many
distribution-independent properties. Orr (2002, 2003a,
2005) expanded significantly on this framework, leading

to empirically testable predictions (e.g. Rokyta et al., 2005;
Kassen and Bataillon, 2006) for the expected progression
of the first step in adaptive evolution.
Work by Gillespie and Orr concerning multiple steps in

adaptation or full adaptive walks to local optima has
primarily used uncorrelated fitness landscapes. These
landscapes are ‘‘random’’ in that each sequence is assigned
a fitness at random from the same fitness distribution.
Thus, neighbors in sequence space do not tend to have
similar fitnesses (i.e. their fitnesses are uncorrelated). This
type of landscape has been studied extensively, though
typically starting either from a random sequence or the
sequence with the lowest fitness, and moving through
sequence space by either randomly selecting from among
the accessible beneficial mutations or always selecting the
most fit (Macken et al., 1991; Flyvbjerg and Lautrup, 1992;
Macken and Perelson, 1989; Kauffman and Levin, 1987;
Orr, 2003b; Rosenberg, 2005). In contrast, we further
explore the model investigated by Gllespie and Orr, the
mutational landscape model, that begins from a moder-
ately fit initial genotype that traverses the fitness landscape
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according to a more realistic population genetics model.
This modeling framework is particularly relevant to
microbial experimental evolution studies, where its as-
sumptions can be met, providing reasonable expectations
for the outcomes of these experiments (Orr, 2002, 2005).
Additionally, microbial systems allow for experimentally
feasible testing of both the assumptions and predictions of
the model (Rokyta et al., 2005; Kassen and Bataillon,
2006).

2. The model

Following Orr (2002), we consider the adaptation of a
population of haploid DNA sequences of length L,
representing a gene or a small genome. Under Gillespie’s
strong selection weak mutation (SSWM) conditions,
exploration of sequence space is constrained to those 3L

sequences differing from the wild type by a single mutation,
and the population is effectively fixed for a single sequence
at any particular time (Gillespie, 1983, 1984, 1991);
adaptation proceeds as the sequential fixation of novel
beneficial mutations, and clonal interference does not
occur. Selection is considered strong if Nsb1 where N is
the population size and s is a typical selection coefficient;
for weak mutation, it is assumed that Nm51, where m is the
per site mutation rate. We imagine that the wild-type
sequence is at a local fitness optimum; it has a higher fitness
than all of its 3L single-mutation neighbors. Some
environmental change results in the reassignment of
fitnesses to these 3Lþ 1 sequences, and if any have a
higher fitness than the wild type, adaptation ensues. We
can proceed without knowledge of the exact form of the
distribution used to assign fitnesses by assuming that the
wild-type sequence remains relatively well adapted to the
new environment, i.e. its new rank, i, is small (say o50)
(Gillespie, 1983, 1984, 1991). The fitnesses of the i � 1
beneficial alleles will be from the right tail of the fitness
distribution, and in large samples (e.g. 3Lþ 1 draws for a
moderately large L) the extreme values take on distribu-
tion-independent properties. Orr (2002) characterized this
model for the fixation of a single beneficial mutation.

After the fixation of the first beneficial mutation, a new
region of sequence space becomes accessible to the
population. We assume that the 3L� 1 new neighboring
sequences (this number excludes the original wild-type
sequence) are assigned fitnesses from the same distribution
used to generate the initial fitnesses. This corresponds to an
uncorrelated fitness landscape, where the fitness of
neighboring sequences are random with respect to each
other. The environment remains constant, but the popula-
tion is now exploring a previously inaccessible region of
sequence space. The sequence currently fixed by the
population may now have a new rank, depending upon
the number of single-mutation neighbors with fitness
values larger than its own (Fig. 1). This process of fixing
a new beneficial mutation followed by acquiring new
accessible sequences is repeated until the population

achieves rank 1 relative to its new neighbors, meaning that
no beneficial mutations are available and the population
has reached a local optimum. This scenario has been
examined through simulations by Gillespie (1991) and Orr
(2002).

3. Results

3.1. Orr’s mean transition probabilities

Orr (2002) characterized the expected behavior for the
first step in adaptation for a population under the
conditions described above. If the initial wild-type
sequence has a moderate fitness rank relative to its single-
mutation neighbors, the selection coefficients for
the accessible beneficial mutations in rank order, s ¼ ðs1;
s2; . . . ; si�1Þ, can be calculated based on the spacings
between the extreme draws from the tail of the fitness
distribution. The neighboring sequence with the highest
fitness relative to the wild type has rank 1 and selection
coefficient s1, the sequence with the second highest fitness
has rank 2 and selection coefficient s2, etc. Assuming
SSWM conditions and that the fixation probability for
allele j is approximately 2sj (Haldane, 1927), Orr (2002)
found that the expected distribution for the change
in fitness rank for the first step in adaptive evolution is
given by

EsðPijðsÞÞ ¼ Es

sjPi�1
k¼1sk

 !
¼

1

i � 1

Xi�1
k¼j

1

k
, (1)

where i is the current fitness rank and joi are the accessible
beneficial mutations. These transition probabilities, PijðsÞ,
describe the probabilities of moving from the wild-type
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Fig. 1. A schematic illustration of a full step in an adaptive walk on an

uncorrelated fitness landscape. After some change in environment,

fitnesses are assigned to all accessible sequences from some unknown

distribution. In this example, the population begins with initial rank

X 0 ¼ 10, and the fitnesses of the single-mutation neighboring sequences

with higher fitnesses are designated with triangles. The population fixes a

new allele through natural selection to decrease its rank to Y 1 ¼ 5. This

new sequence’s neighbors are assigned fitnesses from the same distribution

as for the original set, and in this example, 5 sequences have higher fitness,

giving the new rank X 1 ¼ 6.
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allele with rank i to the sequences with higher fitnesses
(ranks joi) as a function of s. The mean transition
probabilities, EsðPijðsÞÞ, average over the selection coeffi-
cients, assuming the fitness values are the extreme order
statistics from a fitness distribution in the Gumbel domain
of attraction, which includes most commonly encountered
distributions such as the Normal, Gamma, and Exponen-
tial (Orr, 2002, 2003a; Gumbel, 1958; Gillespie, 1991). On
average, fitness rank is decreased in a single step from i to
ði þ 2Þ=4 through natural selection. The variance in rank
change is given by ði � 2Þð7i þ 6Þ=144. Let Y be a random
variable where

PðY ¼ jÞ ¼
1

i � 1

Xi�1
k¼j

1

k
(2)

and

EðY Þ ¼
i þ 2

4
, (3)

then we say the Y�OrrðiÞ, where i is the current fitness
rank.

3.2. The distribution of the number of exceedances

The second component of the model describes the
change in fitness rank due to the acquisition of a new set
of neighboring sequences. This change depends on the
distribution of the number of values larger than the current
fitness in a new sample of fitness values, i.e. the number of
exceedances in a new sample. The asymptotic form of this
distribution was described by Gumbel and von Schelling
(1950). Assuming 3L � ð3L� 1Þ is large, the number of
exceedances, X, has a negative binomial distribution,
regardless of the original distribution, such that

PðX ¼ xÞ ¼
xþ j � 1

x

� �
1

2

� �xþj

, (4)

where j is the starting fitness rank, and x is the number of
draws larger than the current value. Since EðX Þ ¼ j, fitness
rank increases by 1 on average, since the rank is the
number of exceedances plus 1. The variance is given by
VarðX Þ ¼ 2j. We will denote this distribution as
X�NegBinðjÞ. This result makes no assumptions about
the form of the fitness distribution; it is only necessary that
the sample size is large and constant across samples.
Interestingly, Eq. (4) has a simple probabilistic interpreta-
tion in terms of coin tosses. If a fair coin is repeatedly
tossed until exactly j heads occur, it gives the distribution
of the number of tails accumulated before the jth head.

To illustrate this idea in terms of a DNA sequence space,
consider a sequence of length L ¼ 1000. Initially, the wild
type sequence has some rank, say i ¼ 10, i.e. if the fitnesses
of the wild type and its 3000 single-mutation neighbors
were listed in increasing size, the wild-type’s fitness would
be 10th from the top. Now let us say that natural selection
moves the population up the list to the sequence with rank

j ¼ 5. The new sequence had rank 5 among the 3001
sequences including the original wild type and its single-
mutation neighbors, but now those sequences, except for
the original wild type, differ from the new wild type by two
mutations and are thus no longer accessible. It now has a
new list of 2999 accessible sequences plus the original wild
type, and thus potentially a new fitness rank. We can
imagine that these 2999 sequences are all assigned fitnesses
from the same distribution as for the original set and are
again listed in increasing order. Eq. (4) describes the
probability distribution for the new rank given that the
current sequence had rank j in the first set of draws from
the fitness distribution. In our example, the fitness rank is,
on average, expected to increase from 5 to 6. This example
is illustrated in Fig. 1. This result is independent of the
distribution used to assigned fitness, as long as it remains
the same for each set of sequences and the rank remains
small relative to the number of draws.

3.3. One complete step

We can begin to characterize the combined process,
including both the effects of natural selection and of
acquiring new single-mutation neighbors, by calculating
the expected change in rank. Define X 0 ¼ i as the rank of
the initial wild-type sequence. Then let Y 1�OrrðX 0Þ be the
rank after the fixation of a mutation through natural
selection and X 1 be the rank of that new sequence relative
to its new neighbors in sequence space. Then
EðX 1jY 1Þ ¼ Y 1 þ 1, and thus

EðX 1Þ ¼ EðEðX 1jY 1ÞÞ ¼ EðY 1Þ þ 1 ¼
i þ 6

4
, (5)

where EðY 1Þ is given by Eq. (3). Natural selection decreases
the fitness rank on average from i to ði þ 2Þ=4, as described
by Orr (2002). In the presence of new neighbors, however,
the fitness rank increases by 1, on average (Fig. 1). Note
that when the initial rank is 2 (i.e. only a single beneficial
mutation is accessible), the expected new rank after a
complete step is also 2, and fitness rank does not change on
average. Even though the landscape is random, adaptation
in terms of fitness ranks follows a very simple rule. It might
be expected that the random nature of the landscape might
make adaptation highly unpredictable, yet, in fact, a
population’s fitness rank does not change much on average
from acquiring new neighboring sequences. The variance of
this process is given by

VarðX 1Þ ¼ EðVarðX 1jY 1ÞÞ þ VarðEðX 1jY 1ÞÞ

¼
i þ 2

2
þ
ði � 2Þð7i þ 6Þ

144
ð6Þ

for iX2. Note that if i ¼ 2, then Y 1 ¼ 1 with probability 1,
thus there is no variability associated with the action of
natural selection, but there is still variability associated
with acquiring new accessible sequences. The variance is
increased relative to the variance of the rank change due to
just natural selection by a factor of ði þ 2Þ=2.
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In addition, we can obtain the full one step transition
probabilities for the combined process, which incorporate
the change in rank due to both natural selection and to
acquiring new neighbors in sequence space (Fig. 1). Using
the Chapman–Kolmogorov equation (Karlin and Taylor,
1975), we find that the transition probabilities are given by

PðX 1 ¼ xjX 0 ¼ iÞ

¼
1

i � 1

1

2

� �x�1Xi�1
j¼1

xþ j � 2

x� 1

 !
1

2

� �j Xi�1
k¼j

1

k
, ð7Þ

where i is the initial fitness rank, and x is the new fitness
rank after fixing a beneficial mutation through natural
selection and acquiring a new set of accessible single-
mutation neighbors. To move from rank i to rank x, the
population’s fitness rank is first decreased through natural
selection according to Eq. (2) to some rank j. The rank then
changes from j to x according to Eq. (4). To get the total
probability of changing from rank i to x, it is necessary to
sum the probabilities over all i � 1 intermediate states j.
This describes a simple discrete space, discrete time
Markov chain.

The probability that a fitness peak is reached in a single
step given the initial fitness rank can be found by setting
x ¼ 1 in Eq. (7). However, we can also derive this
probability using properties of the negative binomial
distribution. This probability has an explicit relationship
to the probability of fixing the most fit allele through
natural selection as derived by Orr (2002) and given in
Eq. (2). Let X 0 ¼ i be the rank of the original wild type,
and Y 1� OrrðX 0Þ be the rank of the first step mutant
relative to the original wild type, and X 1 be the rank of the
first mutant relative to its new neighbors, then

PðX 1 ¼ 1jX 0 ¼ iÞ

¼ PðY 1 ¼ 1jX 0 ¼ iÞ �
ln 2

i � 1

þ
1

i � 1

Z 1=2

0

ti�1

1� t
dt

¼
1

i � 1

Xi�1
j¼1

1

j
�

ln 2

i � 1
þ

1

i � 1

Z 1=2

0

ti�1

1� t
dt. ð8Þ

Note that
R 1=2
0 ti�1=ð1�tÞdtpð2=iÞð1=2Þi and

R 1=2
0 ti�1=ð1� tÞ

dtXð1=iÞð1=2Þi which is negligibly small for i410. Also
PðY 1 ¼ 1jX 0 ¼ iÞ ¼ ð1=ði � 1ÞÞ

Pi�1
j¼1 ð1=jÞ � ðlnði � 1ÞÞ=

ði � 1Þ. If we ignore the last term in the above equation
and use the log approximation, we get PðX 1 ¼ 1jX 0 ¼ iÞ

� ðlnðði � 1Þ=2ÞÞ=ði � 1Þ. See Appendix A for the deriva-
tion. Based on Eq. (8), half of the walks starting from rank
2, and thus necessarily fixing the allele of rank 1, will find
no new neighboring sequences with a higher fitness. Even
with an initial rank of 10, nearly a quarter of adaptive
walks will involve only a single substitution, and beginning
at rank 50, 8% of walks will be complete after a single step.
Thus, we find that adaptive walks consisting of a single step
are expected to be common under this model, even when

beginning at a moderately high initial rank (Fig. 2). As
noted above, under Orr’s original formulation of this
model (Orr, 2002), it is possible to calculate the probability
of reaching rank 1 in a single step using Eq. (2). However,
this formulation does not account for the possibility that
the newly fixed sequence might have higher fitness
neighbors that were inaccessible to the original wild type
through a single mutation.

3.4. Multiple steps

Also of interest is the behavior of this process beyond the
first step. Define X n be the rank at the nth step of an
adaptive walk. We can describe the conditional distribution
of X njX n�1 by observing that Y njX n�1 is distributed
OrrðX n�1Þ, where Y n refers to the new rank after natural
selection for the nth step, and X njY n is distributed 1þ
NegBinðY nÞ provided that X n�141. If X n�1 ¼ 1 then X n ¼ 1
as well. By using the above conditional distributions and
considering the two cases, X n�141 and X n�1 ¼ 1, we find

EðX nÞ ¼ 1þ
i � 1

4n þ
3

4

Xn�1
j¼0

1

4

� �j

PðX n�j41Þ, (9)

and there exists a constant a, where 1
4
oao1

0o
3

4

Xn�1
j¼0

1

4

� �j

PðX n�j41Þpanþ1 4

4a� 1
. (10)

Thus, limn!1 EðX nÞ ¼ 1, and, in fact, the convergence is
geometrically fast. The full derivation is provided in
Appendix B. This geometric rate of convergence of EðX nÞ

to 1 suggests, albeit indirectly, that rank 1 should be
reached quickly. An explicit formula for EðX nÞ is more
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elusive, as it requires that we know PðX j ¼ 1Þ for all
j ¼ 1; . . . ; n. This issue is discussed in more detail in a
remark at the end of Appendix B.

3.5. Absorption time

Adaptation will continue until the population becomes
fixed for a sequence that has a higher fitness than all of its
single-mutation neighbors, i.e. it reaches rank 1. Let Ti be
the number of beneficial mutations fixed by a population
until a local optimum is reached, starting from rank i, and,
as before, X n is the rank after n steps of the process
conditional on starting at rank X 0 ¼ i. The number of
steps taken is given by

Ti ¼
X1
n¼0

I fX n41g, (11)

where I fAg denotes the indicator function for the event A.
Therefore, the distribution of Ti and, consequently the
mean walk length, EðTiÞ, depends on knowing PðX n ¼ 1Þ
for all n, which we were unable to derive explicitly.
However, if PðX n ¼ 1Þ converges to 1 at a geometric rate,
then in practice we only need to approximate PðX n ¼ 1Þ for
a handful of values of n. A geometric rate of convergence is
guaranteed if there is a positive probability that X 1 is equal
to 1, i.e. if PðX 1 ¼ 1Þ40, which holds for the model under
consideration. This implies a geometric rate of convergence
since, PðX n41ÞpðPðX 141ÞÞn. This inequality holds since
X n is stochastically decreasing, i.e. PðX noxÞpPðX nþ1oxÞ.
This can be understood intuitively as follows. Consider two
processes, where the first behaves according to the rules we
have established, and the second moves one step according to
our rules, but if rank 1 is not reached, then it restarts at rank
i. Because the second process always starts over it takes, on
average, more steps to reach rank 1 than for the first process.
The second process reaches rank 1 according to the geometric
distribution, i.e. the probability of not reaching rank 1 in n

steps is equal to PðX 141Þn. Therefore, the above equation
provides a bound on the mean walk length as follows:

EðTiÞ ¼
X1
n¼0

PðX n41Þp
X1
n¼0

PðX 141Þn ¼ 1=PðX 1 ¼ 1Þ,

(12)

where PðX 1 ¼ 1Þ � PðX 1 ¼ 1jX 0 ¼ iÞ is given by Eq. (8).
While this typically provides a very crude bound on EðTiÞ, we
note that it follows from geometric convergence thatX1
n¼k

PðX n41ÞpPðX 141Þkþ1=PðX 1 ¼ 1Þ. (13)

Thus, EðTiÞ can be approximated as accurately as desired by
starting with an �40 and choosing k so that PðX 141Þkþ1=
PðX 1 ¼ 1Þo� and

EðTiÞ �
Xk�1
n¼1

PðX n41Þ. (14)

As before, we have no explicit formula for PðX n41Þ.

We can calculate VarðTiÞ by noting that VarðTiÞ ¼

EðT2
i Þ � EðTiÞ

2 and that I fX n41gI fX k41g ¼ I fX n41g when-
ever n4k. Thus

EðT2
i Þ ¼ E

X1
k¼0

X1
n¼0

I fX n41gI fX k41g

 !

¼
X1
n¼0

PðX n41Þ þ 2
X1
n¼1

Xn�1
k¼0

PðX n41Þ

¼ EðTiÞ þ 2
X1
n¼1

nPðX n41Þ. ð15Þ

Therefore,

VarðTiÞ ¼ EðTiÞ � ðEðTiÞÞ
2
þ 2

X1
n¼1

nPðX n41Þ. (16)

4. Discussion

We have examined some properties of adaptation under
the mutational landscape model. Our results build on work
by Orr (2002) and explore the process of adaptation
beyond the fixation of a single-beneficial mutation. Orr’s
work showed that the movement of a population for a
single step due to natural selection follows some surpris-
ingly simple rules; we have found similar results for the
process that follows this fixation event. Although intuition
might suggest that adaptation on a random fitness land-
scape would be highly unpredictable, we have shown that it
has a simple structure. Orr (2002) found that natural
selection tends to move the population from rank i to
ði þ 2Þ=4, but this new rank is relative to a set of sequences
which no longer represent potential single-step adaptive
substitutions. After a single substitution, natural selection
has a new suite of sequences from which to choose, yet the
fitness rank of the current population tends to change little;
it increases by 1 on average. Thus, overall, the rank in a full
step decreases on average from i to ði þ 6Þ=4.
We also explored some properties of entire adaptive

walks. We found that walks consisting of only a single step
should be common for moderate initial ranks and that the
fitness rank of an evolving population converges geome-
trically fast to 1. We also provided a bound on the expected
number of steps in an adaptive walk. Taken together, these
results indicate that adaptive walks under the scenario
under consideration involve a small number of substitu-
tions. This was also shown through simulations by both
Gillespie (1991) and Orr (2002). Our work, however,
provides an explanation for why this should be the case
and provides a more thorough description of the properties
of adaptation under the mutational landscape model.
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Appendix A. Derivation of the probability that an adaptive

walk will be complete after a single step

PðX 1 ¼ 1jX 0 ¼ iÞ

¼
1

i � 1

Xi�1
j¼1

1

j
�

ln 2

i � 1
þ

1

i � 1

Z 1=2

0

ti�1

1� t
dt.

Recall the distribution of Y 1 given by (2). Define the
probability generating function for Y 1 by GiðsÞ ¼

EðsY 1 jX 0 ¼ iÞ, then

GiðsÞ ¼
Xi�1
j¼1

1

i � 1

Xi�1
k¼j

sj

k

¼
1

i � 1

Xi�1
k¼1

Xk

j¼1

sj

k

¼
1

i � 1

Xi�1
k¼1

s

k

1� sk

1� s

� �

¼
s

1� s

1

i � 1

Xi�1
k¼1

1

k
�

1

i � 1

Xi�1
k¼1

sk

k

" #
.

Recall from Eq. (2) that

PðY 1 ¼ 1jX 0 ¼ iÞ ¼
1

i � 1

Xi�1
k¼1

1

k

and note that it follows from standard calculus that

Xi�1
k¼1

sk

k
¼
Xi�1
k¼1

Z s

0

tk�1 dt ¼ � lnð1� sÞ �

Z s

0

ti�1

1� t
dt.

Therefore,

GiðsÞ ¼
s

1� s
PðY 1 ¼ 1jX 0 ¼ iÞ þ

lnð1� sÞ

i � 1

�

þ

R s

0 ðt
i�1Þ=ð1� tÞdt

i � 1

�
. ð17Þ

It follows from Eq. (7) that PðX 1 ¼ 1jX 0 ¼ iÞ ¼

Eðð1=2ÞY 1 jX 0 ¼ iÞ ¼ Gið1=2Þ. Therefore,

PðX 1 ¼ 1jX 0 ¼ iÞ ¼ Gið1=2Þ ¼ PðY 1 ¼ 1jX 0 ¼ iÞ �
ln 2

i � 1

þ
1

i � 1

Z 1=2

0

ti�1

1� t
dt.

Appendix B. Derivation of the expected fitness rank after n
steps

EðX nÞ ¼ 1þ
i � 1

4n þ
3

4

Xn�1
j¼0

1

4

� �j

PðX n�j41Þ.

Note that the one step transition probabilities from X n�1 to
X n given by Eq. (7) only apply if X n�141, otherwise
PðX n ¼ 1jX n�1 ¼ 1Þ ¼ 1. Therefore, we need to consider
X n�141 and X n�1 ¼ 1 separately when calculating EðX nÞ.
That is,

EðX nÞ ¼ EðEðX njX n�1ÞÞ

¼ EðEðX nI fX n�141gjX n�1ÞÞ

þ EðEðX nI fX n�1¼1gjX n�1ÞÞ. ð18Þ

It follows from Eq. (5) that the first expression on the right
side of (18) can be written as

EðEðX nI fX n�141gjX n�1ÞÞ

¼ E
X n�1 þ 6

4

� �
I fX n�141g

� �

¼
1

4
EðX n�1I fX n�141gÞ þ

3

2
PðX n�141Þ ð19Þ

and second expression can be written as

EðEðX nI fX n�1¼1gjX n�1ÞÞ ¼ EðX n�1I fX n�1¼1gÞ

¼ PðX n�1 ¼ 1Þ

¼ 1� PðX n�141Þ. ð20Þ

Similarly, using (20) we rewrite (19) as

EðEðX nI fX n�141gjX n�1ÞÞ

¼ 1
4EðX n�1ð1� I fX n�1¼1gÞÞ þ

3
2PðX n�141Þ

¼ 1
4
EðX n�1Þ �

1
4
þ 3

4
PðX n�141Þ. ð21Þ

Substituting Eqs. (21) and (20) into (18) gives

EðX nÞ ¼
1
4
EðX n�1Þ þ

3
4
þ 3

4
PðX n�141Þ.

Starting with X 0 ¼ i and proceeding inductively gives

EðX nÞ ¼
i

4n þ
3

4

Xn�1
j¼0

1

4

� �j

þ
3

4

Xn�1
j¼0

1

4

� �j

PðX n�j41Þ

¼ 1þ
i � 1

4n þ
3

4

Xn�1
j¼0

1

4

� �j

PðX n�j41Þ.

Choose a ¼ maxfPðX 141Þ; 1=3g and note that it follows from
discussion following Eq. (10) that PðX n41ÞpPðX 14 1Þnpan.
Therefore,

3

4

Xn�1
j¼0

1

4

� �j

PðX n�j41Þp
3

4

Xn�1
j¼0

1

4

� �j

an�j

¼
3

4

Xn�1
j¼0

an 1

4a

� �j

panþ1 4

4a� 1
.
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Remark. Note that an explicit formula for EðX nÞ requires
an explicit expression for PðX j ¼ 1Þ for j ¼ 1; . . . ; n. To
calculate this probability we must consider every set of
single step mutations requiring j steps to reach rank 1. To
get a feel for why this is a rather intractable calculation, the
following example might be helpful. For example, starting
at rank i ¼ 20 and j ¼ 5, then one possible five step path
from rank 20 to rank 1 would be to first move from rank 20
to 15, then 15 to 9, 9 to 10, 10 to 3, and finally 3 to 1. The
probability of this path would be the product of 5 terms,
and this path is only one of an infinite number of paths. To
get the full probability, it would be necessary to sum over
all possible pathways. Below is the general formula for
calculating PðX j ¼ 1Þ starting at rank i, where each one
step probability Pkj�1kj�2

¼ PðX j�1 ¼ kj�1jX j�2 ¼ kj�2Þ is
calculated using Eq. (7)

PðX j ¼ 1Þ ¼
X1

kj�1¼1

X1
kj�2¼1

� � �
X1
k1¼1

Pik1
Pk1k2

� � �Pkj�2kj�1
Pkj�11.
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