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Abstract

Parallel and convergent evolution have been remarkably common observations in molecular adaptation but primarily in the
context of the same genotype adapting to the same conditions. These phenomena therefore tell us about the stochasticity
and limitations of adaptation. The limited data on convergence and parallelism in the adaptation of different genotypes
conflict as to the importance of such events. If the effects of beneficial mutations are highly context dependent (i.e., if they
are epistatic), different genotypes should adapt through different mutations. Epistasis for beneficial mutations has been
investigated but mainly through measurement of interactions between individually beneficial mutations for the same
genotype. We examine epistasis for beneficial mutations at a broader genetic scale by measuring the fitness effects of two
mutations beneficial for the ssDNA bacteriophage ID11 in eight different, related genotypes showing 0.3–3.7% nucleotide
divergence from ID11. We found no evidence for sign epistasis, but the mutations tended to have much smaller or no
effects on fitness in the new genotypes. We found evidence for diminishing-returns epistasis; the effects were more
beneficial for lower-fitness genotypes. The patterns of epistasis were not determined by phylogenetic relationships to the
original genotype. To improve our understanding of the patterns of epistasis, we fit the data to a model in which each
mutation had a constant, nonepistatic phenotypic effect across genotypes and the phenotype-fitness map had a single
optimum. This model fit the data well, suggesting that epistasis for these mutations was due to nonlinearity in the
phenotype-fitness mapping and that the likelihood of parallel evolution depends more on phenotype than on genotype.
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Introduction

Parallel molecular evolution, the fixation of the same mutations

in independently evolving populations, provides some of the most

convincing evidence that particular substitutions are adaptive and

has been surprisingly common in experimental evolution studies,

often accounting for around half of the observed substitutions

among replicate lineages [1–4]. Theoretical work has demonstrat-

ed that the probability of parallel evolution can be surprisingly

high but varies inversely with the number of possible beneficial

mutations [5]. As a result, when adaptations of populations of the

same ancestral genotype are compared, parallel evolution provides

valuable insight into the limits of adaptation and the number of

accessible beneficial mutations. However, unless order effects are

examined (see, e.g., Wichman et al. [1] and Bollback and

Huelsenbeck [6]), comparisons among adapting populations do

not provide information on the context dependence of beneficial

mutations, i.e., epistasis. Studies looking at convergent [2] or

parallel [4,6] evolution among related but different ancestral

genotypes provide some information on epistasis because parallel

or convergent changes in that context indicate that mutations

retain a beneficial effect across different genotypes, but this pattern

can be obscured by the stochasticity in the evolutionary process. If

beneficial mutations tend to retain their effects in different

genomes, our ability to predict molecular mechanisms of

adaptation for a target organism would be significantly increased

by the use of data from related strains or species.

Whether a beneficial mutation retains its effect in new

genotypes depends on the presence, pattern, and strength of

epistatic interactions between the mutation and the other

mutations present in the new genome relative to the original

ancestor. The majority of studies examining epistasis for mutations

have focused on deleterious mutations, but studies of beneficial

mutations have recently become common. These studies have

measured interactions either between pairs of mutations that were

individually beneficial [7–9] or between combinations of muta-

tions identified over the course of an adaptive walk [10–14]. The

former studies address whether different mutations beneficial for a

single step in adaptation could participate in later steps, whereas

the latter address the number of pathways accessible to natural

selection between a defined ancestral genotype and its adapted

descendent. In both cases, all of the mutations considered were

identified because of their large beneficial effects in a particular

selective environment, and the presence of epistasis has been

universal. Antagonistic epistasis, under which the benefits of

mutations are less than expected, seems to dominate for beneficial

mutations [9,13], and many beneficial mutations show sign

epistasis, becoming deleterious in the context of others [7–9]. In

all of these cases, however, the genetic backgrounds compared for

a particular mutation differed by one to a few mutations.
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Furthermore, mutations that were selected to function together or

to affect the same underlying phenoptypes might be more likely

than random mutations to show strong epistatic interactions.

Most divergence between species or genotypes is due to drift

and natural selection in different selective environments for

different phenotypic properties and involves many individual

mutations. We sought to determine whether this more generalized

divergence can impinge epistatically on particular beneficial

mutations. To determine whether beneficial mutations retain

their benefits across diverse genetic backgrounds, we selected two

beneficial mutations from the set of nine previously identified for

the ssDNA bacteriophage ID11 [3,9,15]. The original mutations

affected two different genes. We selected the two mutations of

largest effect, which included one from each gene. We retain the

nomenclature of previous work [9], in which the nine mutations

were labeled A–I, and refer to our two mutations as B and F. The

B mutation causes a V to L amino-acid change at position 20 in

the J protein, which is the DNA-binding protein. The F mutations

causes a P to S change at position 355 of the F protein, which is

the major coat protein. Both mutations increase growth rate (i.e.,

fitness) in liquid culture at 37uC on Escherichia coli strain C. These

two mutations were added, by means of site-directed mutagenesis

[9], to eight new genotypes from a set of previously described

natural phage isolates [16], and their fitness effects were measured

by means of growth-rate assays [17]. The new genotypes differed

from ID11 at 0.3–3.7% of their nucleotide sites throughout the

whole genome. With genome sizes of 5529–5577 nucleotides,

these divergences correspond to genomes with *15–200 nucle-

otide differences from ID11.

Results and Discussion

Fitness Effects of Beneficial Mutations in New Genetic
Backgrounds

The mean effects and standard errors of the B and F mutations

in the new genotypes were 1:29+0:81 and 0:85+0:57 population

doublings per hour, respectively. In both cases, we could not reject

a mean effect of zero (B: t7~1:43, P~0:20, and F: t7~1:49,
P~0:18). Despite the large, beneficial effects for ID11 (4.48 and

4.11 doublings per hour for B and F, corresponding to selection

coefficients of 0.32 and 0.29, respectively), these two mutations

tended, on average, to have little or no effect on fitness in new

genotypes (Figure 1 and Table 1), but exceptions should be noted.

Using Welch two-sample t-tests and a Bonferroni correction for 16

tests, we found that none of the mutations was significantly

deleterious at the 5% significance level, but four were significantly

beneficial: B in WA6 and F in NC2, NC10, and WA6. These

results are consistent with the presence of magnitude epistasis but

fail to provide evidence for sign epistasis [18] for beneficial

mutations.

In contrast to our results, Sanjuán et al. [7] and Rokyta et al.

[9] measured the effects of pairs of beneficial mutations and found

sign epistasis to be common. In fact, in both studies, some pairs of

mutations showed decompensatory epistasis such that double

mutants were less fit than either of their constituent single mutants.

Sign epistasis is also common in studies decomposing adaptive

walks by constructing all of the possible intermediate genotypes

between the ancestor and evolved strains [10–14]. In contrast,

parallel substitutions in different genotypes adapting to the same

selective conditions can be common [2,4] (although exceptions

exist [6]), a situation that explicitly requires a lack of sign epistasis

in agreement with our results. Sign epistasis may be most

prominent in adapting populations in which the mutations

involved have large beneficial effects potentially affecting the

same or similar phenotypes or are compensatory for antagonistic

pleiotropic effects of beneficial mutations. Genotypes that have

diverged more extensively through drift or adaptation to different

environments may be less likely to harbor strongly epistatic

mutations for beneficial mutations under new selective conditions

that potentially affect previously less-significant phenotypes.

Epistasis for Beneficial Mutations
Even in the absence of sign epistasis, the nature of epistatic

interactions can be further characterized by measurement of

deviations from additivity for mutational effects. Because our

fitness measure is a growth rate, if epistasis is not present, the two

mutations should have the same additive effects across the eight

new genotypes as for ID11. We can measure a deviation from

additivity in a method similar to that of Rokyta et al. [9] by

Eij~DWij{DW1j , where j[fB,Fg and i[f2, . . . ,9g represents the

eight new genotypes (Table 1). The wild-type (ID11) genotype is

represented by subscript 1. Note that we deviate from the typical

definition of Eij in that i refers to a genetic background rather than

an individual mutation. We are therefore measuring epistasis

between one mutation (B or F) and all of the mutations in the new

genotype relative to the original ancestor. Although any of our

genotypes could conceivably serve as the reference genotype in the

calculations of Eij , our a priori knowledge that the mutations have

large benefits for ID11 makes this genotype the only meaningful

choice. We want to know whether or to what extent the benefits

conferred on the ID11 genotype by these mutations are transferred

to new genotypes. Because we are dealing with beneficial

mutations, Ev0 would indicate negative or antagonistic epistasis.

Synergistic epistasis would give Ew0: Figure 1 clearly shows a

predominance of antagonistic epistasis because only a single

mutant (WA6 with F) has a mean effect larger than the

corresponding effect in the wild type, and all remaining cases

have mean effects lower than that for the wild type. For the B

mutation, EB~{3:19+0:90: For the F mutation,

EF~{3:26+0:57: In both cases, the average deviation differs

by more than three standard errors from zero. Epistasis is

therefore antagonistic, a pattern that appears to be consistent for

beneficial mutations [9,13,14]. Our results suggest more generality

for this pattern than previous studies which only considered

interactions between a small number of beneficial mutations. We

Figure 1. Fitness effects across genotypes of the ssDNA
bacteriophage growing on Escherichia coli. Error bars give standard
errors. We cannot reject a mean effect of zero for addition of either
mutation to each of the eight new genetic backgrounds. Bars with ‘‘*’’
above them indicate effects that are significantly different from zero
after a Bonferroni correction. The deviations from the dashed lines
correspond to the values of �ij , which measure the deviations from
additivity.
doi:10.1371/journal.pone.0043864.g001

Consistency of Benefits across Genetic Backgrounds
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show that, when strongly beneficial mutations are considered, this

pattern also holds for the interactions between one beneficial

mutation and the many mutations separating naturally diverged

genotypes.

Note that the values of E would obviously change if measured

with respect to different reference genotypes (Table 2), but we only

know that the B and F mutations are large-effect beneficial

mutations for ID11. The other ancestral genotypes might have

yielded entirely different sets of beneficial mutations under the

same selective pressures or, even if the B and F mutations were

beneficial, their effects might have been small relative to other

accessible beneficial mutations. Nonetheless, for the four cases for

which mutations were significantly beneficial in backgrounds other

than ID11 (B in WA6 and F in NC2, NC10, and WA6), we found

that �v0 for the mutation assuming the corresponding ancestor as

reference (Table 2).

A number of factors could contribute to the deviations from

additivity for the B and F mutations. Most obviously, we expect

that the effects of the mutations should be more similar to the

effects in ID11 for genotypes that are more closely related to ID11

[6]. The location of isolation, being a proxy for similarity of

historical selective pressures, might have led to distinct phenotypic

properties among the isolates that could contribute. Bull et al. [19]

noted that, for the related phage wX174, the magnitude of the

beneficial effect of a mutation could be negatively correlated with

the fitness of the genotype into which it is added. We might

therefore expect the mutations to have larger effects (and therefore

be closer to additive) in genotypes with lower initial fitnesses.

Finally, idiosyncratic properties of the mutations themselves could

contribute, if, for example, one mutation exhibited stronger

epistatic interactions than the other. We tested for these effects

using an ANCOVA analysis in R [20]. We used �ij as our response

variable and included mutation identity (B or F) and isolation

location (ID, NC, or WA) as categorical explanatory variables.

Percent genetic divergence from ID11 (Table 1) and the initial

(i.e., ancestral) fitness of the genotypes were included as continuous

explanatory variables. In the full model, the only significant

explanatory variable was initial fitness (F1,10~7:15, P~0:023;
Pw0:90 for all other variables); the mininum adequate model,

including only initial fitness, gives F1,14~9:83 and P~0:007

(Figure 2). With R2~0:41, however, the model provided a poor

explanation for our data. The estimated slope was negative,

indicating that genotypes with lower initial fitnesses received

closer-to-additive effects. The data were slightly heteroscedastic,

primarily on the basis of the WA6 genotype with the B mutation.

Eliminating this genotype from the analysis had little effect on the

result (F1,13~6:64, P~0:023). We found, therefore, that epistasis

tends to be more antagonistic for genotypes with higher ancestral

fitnesses. This pattern corresponds to diminishing-returns epistasis,

which has been observed for beneficial mutations for the related

bacteriphage wX174 [21] and in bacteria [13,14,22,23].

Epistasis and the Phenotype-fitness Map
By looking just at fitness effects, we were unable to explain most

of the variation in our data. In previous work characterizing

epistasis between pairs of beneficial mutations [9], a model with

additive phenotypic effects fit the data well. Epistasis was

incorporated at the fitness level by means of a nonlinear

phenotype-fitness map. The model was based on the observation

that biochemical effects of mutations are often additive [10,24]

and the assumption of an intermediate phenotypic optimum (i.e.,

stabilizing selection). Each mutation was assumed to affect a single

phenotype, and its phenotypic effect was the same regardless of the

background genotype. The phenotype of the mutant was then

mapped to fitness by means of a gamma curve to allow for

asymmetry in the phenotype-fitness map. To determine whether a

similar model could explain our data, we imputed phenotypic

values from fitnesses and estimated a phenotype-fitness curve. We

assumed a one-dimensional phenotypic space and that the

Table 1. Effects of beneficial mutations in new genotypes.

Genotype W WB DWB EB WF DWF EF % div.

ID11 14.1860.20 18.6760.37 4.48 – 18.2960.51 4.11 – –

ID8 13.8560.28 15.7360.45 1.88 {2.60 14.0160.23 0.17 {3.94 3.4

ID12 19.8360.39 18.5960.37 {1.24 {5.72 19.0960.39 {0.74 {4.85 3.4

NC2 13.9560.36 15.4760.39 1.52 {2.96 16.1360.18 2.18 {1.93 3.7

NC10 6.7460.29 6.4960.46 {0.24 {4.72 10.0960.51 3.35 {0.76 3.6

NC13 13.9760.34 14.9660.35 0.99 {3.49 14.1860.68 0.21 {3.90 2.1

WA2 12.5860.10 12.0460.31 {0.54 {5.02 12.5060.25 {0.08 {4.19 3.2

WA5 17.7260.48 18.6360.24 0.90 {3.58 16.8660.41 {0.86 {4.97 0.3

WA6 6.8160.47 13.8360.47 7.02 2.54 9.3660.38 2.55 {1.56 3.7

Fitness values are given in units of doublings per hour plus or minus their standard errors.
doi:10.1371/journal.pone.0043864.t001

Table 2. Deviations from additivity assuming different
reference genotypes.

Genotype DWB EB DWF EF

ID11 4.48 {3:1960.90 4.11 {3:2660.57

ID8 1.88 {0:2760.99 0.17 1.1760.69

ID12 {1.24 3.2460.90 {0.74 2.1960.64

NC2 1.52 0.1460.99 2.18 {1:0960.69

NC10 {0.24 2.1260.95 3.35 {2:4160.63

NC13 0.99 0.7360.98 0.21 1.1260.69

WA2 {0.54 2.4560.94 {0.08 1.4560.68

WA5 0.90 0.8360.98 {0.86 2.3360.64

WA6 7.02 {6:0560.63 2.55 {1:5160.68

Fitness effects are given in units of doublings per hour, and deviations from
additivity are given plus or minus their standard errors.
doi:10.1371/journal.pone.0043864.t002

Consistency of Benefits across Genetic Backgrounds
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phenotype-fitness relationship followed a gamma function

g(x,a,b,A)~A(
x

b
)a{1e{x=b

with shape parameter a, scale parameter b, and height parameter

A: The phenotype is denoted by x: Note that the height parameter

A does not equal the maximum height of the curve but is instead a

scaling factor. Also note that the scale of the phenotypes is

arbitrary; to avoid the infinite number of possible scalings for the

x-axis, we set b~100 throughout our analyses. We assumed that

each of nine ancestral genotypes had a phenotype xi for

i~1, . . . ,9 and that each mutation had an additive phenotypic

effect (DxB and DxF ) that was constant in direction and magnitude

across all backgrounds. As an example, the fitness of the B

mutation in genotype i is given by g(xizDxB,a,b,A): We

estimated the parameters and imputed phenotypes and phenotypic

effects by nonlinear least-squares regression (Figure 3). See the

Supporting Information online for details on the optimization

procedure and its limitations.

To assess model fit, we conducted two different tests (Figure 4).

First, we computed a coefficient of determination R2 by assuming

that the uninformative null model was that the fitness of every

mutant genotype was an independent draw from the same normal

distribution. This procedure allowed us to calculate the total sum

of squares. We found that, relative to this model, the gamma

model explained 85% of the variation in the data, indicating good

fit for the model that assumes phenotypic effects are independent

of genetic background. For the second test, we determined

whether we could reject an alternative model that assumed

nothing about the underlying phenotypic effects of the two

mutations. For this model, the fitness effects of the mutations in all

backgrounds were assumed to be normally distributed with mean

zero and variance estimated from the data. Relative to this null

model, the gamma model explained 73% of the variation in fitness

effects. Using an F test, we could reject this model (F13,17~0:36,

P~0:033). We could also easily reject our two null models with

Akaike information criteria (AIC) scores. For the gamma model,

we got an AIC of 71.6. For the model used for calculating R2, the

AIC was 100.0, and the AIC was 87.2 for the second null model.

Again, we found support for a model in which phenotypic effects

are additive across genotypes and epistasis arises from the

nonlinearity of the phenotype-fitness map.

Our goal with the model was to explain the fitnesses and fitness

effects of the mutants by imposing structure on the underlying,

unobserved phenotypes. To further confirm that the model was

discerning a real pattern in the data, we performed a random-

ization test on the fitness effects of the mutations. We generated

500 data sets for which the 18 observed fitness effects were

assigned at random to the nine ancestral genotypes. We then

conducted a likelihood-ratio test by calculating the log-likelihood

of the data under both the gamma model and a null model

corresponding to the randomization procedure (mutational effects

are normally distributed with mean m and variance s2; see

Supporting Information), taking the difference, and determining

how often a value as large as the difference observed in the real

data was observed among the bootstrap data sets. We found that

in none of the 500 data sets did the bootstrap difference meet or

exceed the observed difference (Pv0:002). The model therefore fit

the data not just because it predicted the approximate fitnesses of

each set consisting of an ancestor and its two mutants, but also

because it described the patterns of epistasis within each set.

Because our set of genotypes, consisting of two mutations

introduced into nine ancestors, is of modest size, the generality of

our results is difficult to assess. We were able to reject our null

models, which demonstrates that statistical power is not an issue,

but whether the inclusion of additional mutations would signifi-

cantly alter the overall results is uncertain. We selected the two

largest-effect mutations of the original set of nine because these

mutations were the most likely to show strong epistatic effects.

These mutations were therefore also most likely to have the

strongest influence on the fit of the model. Despite these mutations

affecting different genes, their epistatic patterns were similar

enough that mutation identity was not found to be a significant

factor in our ANCOVA, which suggests that the patterns for

additional mutations would be similar.

All major types of epistasis can emerge naturally from the

additive phenotypic model because the relationship between

phenotype and fitness is nonlinear (Figure 5). Antagonistic

Figure 2. The deviation from additivity was negatively correlated with ancestral fitness. (A) Genotypes with lower initial fitnesses tended
to gain more benefit from the B and F mutations than those with higher initial fitnesses, consistent with diminishing-returns epistasis. This
relationship was statistically significant, and the regression line is shown. (B) We found no significant relationship between the genetic distance from
ID11 and the deviation from additivity. The regression line is shown.
doi:10.1371/journal.pone.0043864.g002

Consistency of Benefits across Genetic Backgrounds
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epistasis, under which the effects of mutations are less than

additive, can arise when a mutational vector is moved from its

original genotype to a new genotype in a region with a more

concave phenotype-fitness relationship. Likewise, synergistic epis-

tasis, in which the effects of mutations are more than additive, can

arise when a mutation is moved to a region with a more convex

phenotype-fitness relationship. Sign epistasis [18], e.g., the case in

which a beneficial mutation becomes deleterious in a new

background, can arise when a mutation overshoots the optimum

in one genotype but not another (Figure 5). Understanding

epistasis is critical for understanding, for example, the rate of

adaptation [13], the evolution of sexual reproduction [25,26], and

reproductive isolation between incipient species [27,28]. Under

this model, epistasis is not a mysterious intrinsic property of

particular genotypes but a reflection of the curvature of the

phenotype-fitness map [29].

The most obvious limitation of our analysis is the restriction to a

single phenotypic dimension. Had we rejected the model, this

restriction might have been significant, because assuming more

phenotypes would have improved the fit of the model. Though the

two mutations affect different genes, they can reasonably be

assumed to affect the same single phenotype. Despite being in

different genes, the mutations lie in the same region of the capsid

structure; the a-carbons for the positions of the B and F mutations

are separated by only 19.2 Å in the structure of the related phage

wX174 [30,31]. Perhaps more troublesome is the assumption that

the ancestral genotypes differ primarily in this one phenotype.

Rokyta et al. [4] adapted eight different microvirid genotypes,

including two of those from the present study, to the same culture

Figure 3. The estimated phenotype-fitness map under the gamma model. Addition of the B mutation moves each ancestral genotype the
same distance and direction along the horizontal axis, as does the F mutation. Interestingly, the two genotypes most distantly related to ID11 (the
original ancestor for identifying the mutations), NC2 and WA6, are its closest neighbors in phenotypic space.
doi:10.1371/journal.pone.0043864.g003

Figure 4. A comparison of model fit for the gamma model and the two null models for the B mutation (A) and the F mutation (B).
Fitness effects were measured in units of doublings per hour. For the null fitness model, we assumed that the fitnesses of the mutants were normally
distributed and estimated the mean and variance. For the null fitness effect model, we assumed that the effects of mutations were normally
distributed with mean zero and estimated the variance. The numbers of parameters in the models are given by k: Note that the null fitness model
was used as the basis of our R2 calculations and therefore has no R2 value associated with it.
doi:10.1371/journal.pone.0043864.g004

Consistency of Benefits across Genetic Backgrounds
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conditions used for the study reported here. They found that

adaptation took on average three substitutions and that parallel

evolution was common even across different genotypes. These two

observations suggest that the phages are not maladapted in many

ways and that the same traits are responding to selection in the

different genotypes. In effect, our approach can be viewed as being

similar to a principal-components analysis in which we try to

identify a single axis in phenotypic space that best explains our

data.

The model described above is effectively a one-dimensional

version of Fisher’s geometric model [32]. Fisher’s model has

defined how evolutionary biologists think about the genetics of

adaptation since its introduction more than 80 years ago [32]. It

led directly, for example, to the generally accepted expectation

that adaptation should occur primarily through small-effect

mutations, an expectation that has not always been met

empirically [15,19,33] and that has since been shown to be an

overly simplistic view of the implications of the model [34–36].

The assumption is that, to be fit, an organism must match its

environment in some number of phenotypes. Each of these

phenotypes is treated as an orthogonal axis in a continuous metric

space. The evolving genotype then moves toward the optimum by

means of selection acting on mutational vectors that can point in

any direction in the space, affecting one or more phenotypes. This

framework has been used to study, for example, the probability

that a mutation is beneficial [32], the evolution of sex [37],

development [38], dominance [39], the cost of complexity [40],

and epistasis [29]. Epistasis is a phenomenon resulting from how

phenotypes are translated into fitness [29]. Phenotypic effects are

additive under Fisher’s model, but fitness effects may not be. If

correct, Fisher’s model provides a simple explanation for patterns

of epistasis and implies that most of the interesting biological

phenomena might arise in the relationship between phenotypes

and fitness, rather than genotype and phenotype. Importantly, the

genotype-phenotype relationship, usually involving a complex

developmental pathway, is much more difficult to characterize

than the phenotype-fitness relationship. When we fit a model in

which mutations are nonepistatic phenotypic vectors, our data are

consistent with Fisher’s model.

In previous work with these mutations [9], phenotypic effects of

individual beneficial mutations were determined to be additive

when the mutations were added as pairs to the same genotype by

means of a modeling framework similar to that of the present

study. These results only address epistasis for mutations between

genotypes differing by at most one mutation and therefore only

establish applicability of the model to small, local regions of

genotypic space. In contrast, the genotypes in this study differ by

from tens to hundreds of mutations with unknown effects and

therefore provide a broader test of the model, dramatically

increasing the generality of the result. Previous results also

provided support for Fisher’s model [29,41] but tested down-

stream predictions of the model, which rely on assumptions about

the phenotype-fitness map, distribution of mutations, and distance

from the optimum. We tested the underlying assumption upon

which these others are built: that mutations behave like vectors in

phenotypic space.

Our results, though limited in scope to two mutations in nine

genetic backgrounds, could have important implications for

understanding epistasis and parallel evolution. Whether different

genotypes or species adapt through the same mutations to similar

selective pressures could depend more on phenotypic properties

than on simple genetic distance. In other words, parallel evolution

might be more likely between phenotypically similar organisms;

propinquity in genotypic space might be important only insofar as

it predicts the relationship in phenotypic space. This pattern may

serve as a mechanism for historical effects to impinge on the

predictability of adaptive evolution and suggests the testable

hypothesis that species with more similar past selective pressures

are more likely to adapt by similar mechanisms even if they are not

particularly closely related. For epistasis, our results show that the

complex patterns for epistatic interactions are likely to be

unpredictable from a knowledge of genotype alone and will

probably change dramatically across environments as the pheno-

type-fitness map shifts. Rather than focusing on the identification

of the most abundant class of epistatic interaction (e.g., antago-

nistic or synergistic), a more informative focus might be the

common forms of phenotype-fitness maps.

Materials and Methods

Constructing the Mutants and Fitness Assays
The ancestral bacteriophage genotypes used in this study were

unadapted, natural isolates from wastewater facilities or barnyards

[16]. Our NC2 ancestor had a silent nucleotide change of C to T

at position 961 relative to the published sequence. The nucleotide

change was in codon 301 for the A gene and 88 for the A* gene.

NC13 had a nonsynonymous change at position 3122 of T to C,

resulting in an amino-acid change of S to P in position 174 of gene

F, the major coat protein gene. WA2 had two nucleotide changes:

a silent G to T transversion at nucleotide position 433 (amino-acid

position 125 in gene A) and a nonsynonymous C to A transversion

at position 1465. This transversion resulted in an amino-acid

change for genes A and A* (amino-acid positions 469 and 256,

respectively) from N to K and was also silent in gene B at amino-

acid position 64. The differences from the published sequences

either represent sequencing errors in the originals or mutations

acquired by chance in the choice of isolates for the present study.

Because the differences are present in both the ancestors and the

constructed mutants, they should have no effect on our results.

The isolation and characterization of the two beneficial

mutations from the microvirid bacteriophage ID11 have been

previously described [3,15]. The B mutation is a G to T

transversion at nucleotide position 2534, resulting in an amino-

acid change of V to L at position 20 of the J protein. The F

mutation is a C to T transition at nucleotide position 3665,

resulting in an amino-acid change from P to S at position 355 of

Figure 5. Nonlinearity in the phenotype-fitness relationship
can produce commonly observed epistatic patterns. Three
hypothetical genotypes (A, B, and C) with different phenotypes are all
given the same mutation with the same phenotypic effect (Dp~1). If
the mutation were moved from background A to background B, we
would see antagonistic epistasis. Moving it from B to A would give
synergistic epistasis, and moving it from A to C would give sign
epistasis.
doi:10.1371/journal.pone.0043864.g005
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the F protein. The sites of these mutations in the eight other

genotypes were determined on the basis of homology; the actual

nucleotide position varied with genome length.

The mutants were created by PCR-mediated site-directed

mutagenesis [9,42,43]. The circular ssDNA genomes were PCR

amplified in two halves. Amplification of one half was conducted

with a forward primer containing the mutation to be inserted, and

for the other half, a reverse primer with the mutation was used.

The other primers were selected to ensure overlap between the

halves. The two halves were combined in a PCR without primers.

The full genomes were electroporated into E. coli strain C, and we

confirmed each mutant genotype by full-genome sequencing.

Fitness was measured as the log2 increase in the size of the

phage population per hour of growth on E. coli C at 370C as

described previously [17,43]. The assays were conducted in an

orbital water bath shaking at 200 rpm. Hosts were allowed to grow

for one hour in liquid medium (10 g/l NaCl, 10 g/l tryptone, 5 g/

l yeast extract, and 2 mM CaCl2) before the addition of phage.

After 40 minutes of phage replication, a 1 ml sample was extracted

from the flask, and chloroform was added to terminate the

infection. Phage titers before and after the growth period were

measured by standard plating assays. The fitness of each genotype

was measured at least five times.

The Phenotype-fitness Map
To determine whether phenotypes were additive, we assumed

that a gamma function described the relationship between

phenotype and fitness for all 27 genotypes

g(x,a,b,A)~A(
x

b
)a{1e{x=b

where a is the shape parameter, b is the scale parameter, A is the

height parameter, and x§0 is the phenotype. We used the gamma

function (not distribution) to allow for a flexible, potentially

asymmetric map. Each of the nine ancestral genotypes was

assumed to have a unique and independent phenotype. The two

mutations, B and F, were assumed to have additive phenotypic

effects on all backgrounds. The phenotype for a B mutant on

background i is xizB~xizDxB for all i, and an F mutant

phenotype is similarly xizF ~xizDxF : The measured fitnesses of

the nine genetic backgrounds were then given under the model by

Si~g(xi,a,b,A)zE, the fitnesses of the B mutants were

SizB~g(xizDxB,a,b,A)zE, and those of the F mutants were

SizF ~g(xizDxF ,a,b,A)zE, where E is normally distributed with

mean zero and variance s2: Note that under the gamma model,

any rescaling of phenotypes x can be compensated for by a

corresponding change in the scale parameter b, yielding an infinite

number of curves with exactly the same fit to the data and shape.

Because our phenotype values are arbitrary, we set b~100 to

simplify the optimization problem.

Parameter Optimization
We found the optimal set of gamma parameters (A, a, and b)

and imputed phenotypes (xi for all backgrounds i~1, . . . ,9) and

phenotypic effects (DxB and DxF ) by minimizing the sum of

squared deviations from the mean observed fitness values given by

min
x,D,a,b,A

(
X

i

(Si{E(Si Dxi))
2z

X

i,j[B,F

(Sizj{E(Sizj D(xizDxj)))
2)

where x~fx1, . . . ,x9g is the set of ancestral phenotypes, and

D~fDxB,DxFg are the phenotypic effects of the two mutations.

The phenotypes and phenotypic effects were treated as missing

data. The values denoted by Si and Sizj are the observed fitnesses,

and the expected values of these are given by the model. An

iterative optimization procedure was initiated by defining gamma

parameters. Because the curve is peaked, it has two roots for each

fitness value. We located the two roots for each background given

its fitness; 29~512 combinations of these roots (512 possible

phenotype sets) are possible for the observed data. For each of

these, we found the values for DxB and DxF that minimized the

sum of squares by calculating, for each of the 512 possible

phenotype sets, the sum of squares for a range of values of DxB

and DxF : We selected the least-squares values for DxB and DxF

and summed them to get the least squares for each phenotype set

and repeated over all 512 sets. We selected the phenotype

combination and values of DxB and DxF that had the overall

smallest sum of squares. By a similar strategy, we found the joint

set of gamma parameters that minimizes sum of squares given the

set of phenotypes and values for DxB and DxF obtained above.

These steps were repeated until convergence. When we ran this

optimization algorithm on the real data set beginning with

different initial gamma values, it produced different estimates

indicating that the likelihood surface is multimodal. Consequently,

we ran the algorithm from 20 different initiation points in

parameter space. The best likelihood score over the 20 runs

defined the estimates (see Supporting Information for details).

Note that, for our purposes, we only need a good fit, not

necessarily the best fit, especially given that we were able to reject

our null models with the optimum we found (see below). Note that

we have 27 observations (a wild type, B mutant, and F mutant for

each of nine genotypes). We estimated nine phenotypes, two

phenotypic effects, two gamma parameters, and the error

variance, leaving 13 degrees of freedom.

Assessing Model Fit
We assessed model fit by calculating a coefficient of determi-

nation R2: To calculate the total sum of squares, we constructed a

model that assumes that every mutant genotype is a sample from

the same normal distribution with estimated mean and variance.

This procedure is equivalent to assuming that the fitness of the

mutants is independent of the ancestral background. For this

model, we estimated a mean and a variance and estimated the

ancestors’ fitnesses directly, leaving 16 degrees of freedom. We also

conducted an F test against a model where mutations confer

fitness effects that are normally distributed with mean zero and

some variance, which are added to the appropriate ancestral

fitnesses. This procedure is equivalent to assuming that phenotypic

effects have no underlying structure (DxB~DxF ~0) and that

mutations are equally likely to be beneficial or deleterious. For this

model, we only estimated a variance, leaving 17 degrees of

freedom. We then compared both models to the gamma model

with Akaike information criterion (AIC) values. Finally, to

determine whether the explanatory power of the gamma model

was merely the result of fitting the clusters of fitness values (i.e., the

fitness of each background and its two correlated mutant fitnesses)

or was the result of also explaining the patterns of epistasis within

clusters, we randomly assigned the 18 observed fitness effects

among the nine backgrounds (without replacement), thereby

maintaining the fitness clusters but eliminating any epistatic

patterns within them, and conducted a likelihood-ratio test. For

each of 500 randomized data sets, we calculated the log-likelihood

under the gamma model and under a null model corresponding to

the randomization process (fitness effects were normally distribut-

ed with mean m and variance s2; see Supporting Information for

details), took the difference, and determined how often this

Consistency of Benefits across Genetic Backgrounds
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difference in log-likelhoods for the real data was as large or larger

than the difference for the randomized data. Note that in all of the

model comparisons described above, parameter estimation under

the null models required simple estimation of means and variances

of fitnesses or fitness effects, but estimation under the alternative

model required complex optimization that was not guaranteed to

find the global optimum. The comparisons were therefore biased

against the alternative model, making them conservative.

Supporting Information

Supporting Information S1 Details of the optimization
procedure and a discussion of its limitations.
(PDF)
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