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ABSTRACT

Recent theoretical studies of the adaptation of DNA sequences assume that the distribution of fitness
effects among new beneficial mutations is exponential. This has been justified by using extreme value
theory and, in particular, by assuming that the distribution of fitnesses belongs to the Gumbel domain of
attraction. However, extreme value theory shows that two other domains of attraction are also possible: the
Fréchet and Weibull domains. Distributions in the Fréchet domain have right tails that are heavier than
exponential, while distributions in the Weibull domain have right tails that are truncated. To explore the
consequences of relaxing the Gumbel assumption, we generalize previous adaptation theory to allow all
three domains. We find that many of the previously derived Gumbel-based predictions about the first step
of adaptation are fairly robust for some moderate forms of right tails in the Weibull and Fréchet domains,
but significant departures are possible, especially for predictions concerning multiple steps in adaptation.

ADAPTATION occurs at the level of DNA sequences.
Recent efforts in the theory of adaptation have,

therefore, focused on patterns that might characterize
the movement of a population through DNA sequence
space when evolution is driven by natural selection.
Building on Gillespie’s seminal work (Gillespie 1983,
1984, 1991), Orr (2002, 2003a, 2005) and Rokyta et al.
(2006) derived a number of predictions about the
adaptation of DNA sequences. Their models consider
the evolution of individual genes and yield predictions
that are generally independent of most biological
details. In fact, predictions typically depend only on the
number of beneficial mutations available to a starting
wild-type sequence.

The key assumption underlying this theory is that the
distribution of fitness, while unknown, belongs to a
large class of probability distributions known as the
Gumbel domain of attraction. The Gumbel domain is
broad and includes most familiar probability distribu-
tions, including the normal, exponential, logistic, and
gamma. Extreme value theory shows that the right tails
of such distributions have similar behavior. In particular,
values in excess of a high threshold are approximately
exponentially distributed. In the case of adaptation,
then, the distribution of effects among beneficial muta-
tions should be nearly exponential so long as the
(unknown) fitness distribution belongs to the Gumbel

domain and the wild-type sequence is highly fit (i.e.,
represents a high threshold).

Although the Gumbel assumption represents a natu-
ral starting point for the theory of adaptation, it also
represents a possible limitation: extreme value theory
shows that non-Gumbel tail behavior can also occur. In
particular, extreme value theory shows that a distribu-
tion, so long as it meets minimal criteria, can belong to
one of three domains: Gumbel, Fréchet, or Weibull. The
Fréchet domain loosely corresponds to distributions
with heavy tails (heavier than exponential), while the
Weibull domain loosely corresponds to distributions
with right truncated tails (although the Gumbel domain
can also include some right truncated distributions).
Although previous workers (e.g., Orr 2006) suggested
that the Fréchet and Weibull domains are less natural
biologically than the Gumbel, these arguments are far
from conclusive. It is therefore important to consider
adaptation through DNA sequence space when the
Gumbel assumption is relaxed and fitness distributions
belong to the Fréchet and Weibull domains. Here we
study this problem.

We begin by considering adaptation under extreme
forms of the Fréchet and Weibull domains. Though
clearly biologically unrealistic, these forms provide valu-
able intuitions about the more realistic cases that follow.
We then derive generalized forms of the results of
Orr (2002, 2005) and Rokyta et al. (2006). Most of
these general results require introducing only one new
parameter, denoted by k, into the models. By altering
the value of k, we can tune whether the right tail of a
fitness distribution behaves like the tail of a distribution
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belonging to the Gumbel (k ¼ 0), the Fréchet (k . 0),
or the Weibull (k , 0) domain.

We find that some of the previous results derived for
the Gumbel domain are robust to modest departures
into the other domains. Indeed if k ranges between �1

2
and 1

2, our results are qualitatively similar to those of Orr

(2002), who considered k ¼ 0. We do, though, find
qualitatively different patterns of adaptation in the
Weibull domain when using parameter values suggested
by the empirical work of Rokyta et al. (2008). For some
types of Fréchet tails (k $ 1

2), we obtain unstable results
that are difficult to interpret. However, for k , 1

2; we
derive a simple set of results in which findings from Orr

(2002, 2005) and Rokyta et al. (2006) represent special
cases.

THE MODEL

General assumptions: We consider a scenario that is
identical to that considered by Orr (2002)—a haploid
population of DNA sequences of length L adapting
under strong-selection weak-mutation (SSWM) condi-
tions; i.e., Ns?1 and Nm , 1, where N is the population
size, s is a typical selection coefficient, and m is the per
site per generation mutation rate. Under these con-
ditions, a population adapts through a series of selective
sweeps, and the rate of adaptation is limited by the
appearance of new beneficial mutations. Also, double
mutants occur at too low a rate to influence adaptation;
thus only the 3L single-mutant neighboring sequences
to the currently fixed sequence need be considered.
Deleterious and neutral mutations as well as recombi-
nation events are ignored.

The process begins with a population consisting of a
wild-type sequence displaced from its fitness optimum,
perhaps by an environmental change. If some number
of the 3L single-mutant neighbors of this wild type are
more fit, then adaptation will occur. If all of the 3L
possible mutations and the wild type are ranked by their
fitnesses such that the fittest has rank 1, the second
fittest has rank 2, etc., then the wild type will have some
rank i. Thus i � 1 beneficial mutations are available.
One of these i � 1 beneficial mutations will eventually
fix in the population, increasing fitness. At this point,
the process begins anew.

The generalized Pareto distribution: To build a
model of adaptation, one must posit a distribution for
the effect sizes of beneficial mutations. It is safe to assume
that the vast majority of mutations available to a wild-
type sequence decrease fitness; consequently, beneficial
mutations are rare. The classical approach to studying
rare events is to consider the upper-order statistics, for
example, the maxima of large samples. Extreme value
theory shows that the maxima from very large samples
converge on one of three possible extreme value distri-
butions (Pickands 1975). Each distribution corresponds
to one of the domains of attraction discussed earlier.

Importantly, the distributions for the maximum un-
der all three domains of attraction can be described
by a single generalized extreme value distribution (see
Embrechts et al. 1997). Results under the special case of
the Gumbel domain were used by Gillespie (1991,
1983, 1984) and Orr (2002, 2003a) in their implemen-
tations of the model we consider. Specifically, they relied
on the distributions of the spacings between the order
statistics that have certain convenient properties under
the Gumbel domain (in particular, the spacings are
independent exponential random variables). Unfortu-
nately, the spacings for distributions in the other two
domains lack such simple forms, necessitating an alter-
native approach.

Our approach is based on the ‘‘peaks over threshold’’
formulation of extreme value theory. This approach
considers the distribution of values greater than some
high threshold. This approach is natural in the context
of adaptive evolution, as we are interested in those
mutations that have fitnesses greater than the wild type.
If the fitness of the wild type is used as the threshold, the
tail of the ‘‘excess’’ distribution describes the distribu-
tion of beneficial fitness effects.

In this formulation, the tails of distributions in the
three domains of attraction can all be described by the
generalized Pareto distribution (GPD) (Pickands 1975).
The cumulative distribution function for the GPD is
given by

F ðs j k; tÞ ¼
1� ð1 1 ks

t
Þ�1=k; s $ 0 k . 0

1� ð1 1 ks
t
Þ�1=k; 0 # s ,� t

k
k , 0

1� e�s=t; s $ 0 k ¼ 0

8<
: ð1Þ

and its probability density function is given by

f ðs j k; tÞ ¼
1
t
ð1 1 ks

t
Þ� k11

k ; s $ 0; k . 0
1
t
ð1 1 ks

t
Þ� k11

k ; 0 # s ,� t
k

k , 0
1
t
e�s=t; s $ 0 k ¼ 0:

8><
>: ð2Þ

In what follows, we use uppercase letters to denote
random variables. For example, S � GPD(k, t) means
S is a random variable distributed according to the
generalized Pareto distribution with probability density
function given by Equation 2 and P(S # s) ¼ F(s j k, t)
given by Equation 1. We use a lowercase s to denote a
particular observed value of the random variable S. The
parameters in Equations 1 and 2 are described as follows.
The parameter t determines the scale of the distribu-
tion, and k determines the shape. More precisely, if
Z � GPD(k, 1) follows the standard GPD (analogous
to the standard normal), then S ¼ tZ is distributed
GPD(k, t). In this notation, k . 0 corresponds to the
Fréchet domain, k , 0 corresponds to the Weibull
domain, and k ¼ 0 corresponds to the Gumbel domain
(Figure 1). Note that for the Gumbel domain (k ¼ 0),
the GPD is simply an exponential distribution. Again, if
the threshold, which we can (and will) set to zero, is the
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fitness of the wild type, then the GPD describes the
distribution of fitness effects for beneficial mutations.

Rather than rely on properties of the spacings
between the upper-order statistics, we instead consider
the upper-order statistics themselves from the GPD. If
S � GPD(k, t) as in Equation 1, then

U [ 1� F ðS j k; tÞ ¼ 1 1
k

t
S

� ��1=k
ð3Þ

is uniformly distributed on [0, 1]. Then

S

t
¼ U �k � 1

k
ð4Þ

and thus S is a decreasing function in U. If Uj;i�1 is the jth
smallest value from a sample of size i� 1 from a uniform
distribution, then the corresponding Sj is the jth largest
value from the GPD. The distributions of the order
statistics for the uniform distribution are well known
and some relevant properties are provided in appendix

a. Most notably, we make extensive use of the fact that
Uj;i�1 � Beta( j, i � j).

The lth moment for the GPD exists whenever k , 1/l
(Pickands 1975). appendix b provides a simple way to
calculate moments for k , 0, and the resulting formulas
hold for the lth moment when k , 1/l. Thus, if k , 1
and S � GPD(k, t),

d [ EðSÞ ¼ t

1� k
ð5Þ

and if k , 1=2, the variance is given by

VarðSÞ ¼ d2

1� 2k
: ð6Þ

Higher moments can also be derived and are provided
in appendix b.

RESULTS

We first consider the dynamics of adaptation in terms
of fitness ranks. Given an initial wild-type sequence with
rank i, and labeling the selection coefficients of the i� 1
beneficial mutations as s ¼ (s1, . . . , si�1), Gillespie

(1983, 1984, 1991) showed that the probability of
moving from the wild-type sequence of rank i to the
beneficial mutation of rank j is

PijðsÞ ¼
sjP

i�1
k¼1 sk

: ð7Þ

This assumes the probability that a mutation with
selection coefficient s survives drift is given by Haldane’s
approximation 2s (Haldane 1927) or is at least pro-
portional to s. We assume that Equation 7 holds through-
out unless stated otherwise. Orr (2002) showed that if
the unknown fitness distribution belongs to the Gumbel
domain of attraction, natural selection moves a popula-
tion on average from initial rank i to the beneficial
mutation with rank j according to

EðPijðSÞÞ ¼
1

i � 1

Xi�1

k¼j

1

k
; ð8Þ

where the selection coefficients S ¼ (S1, . . . , Si�1) are
treated as random draws from the tail of a distribution in
the Gumbel domain of attraction. Here we generalize
this result for fitness distributions in all three domains
of attraction. Before deriving the general results, we
explore adaptation under this model when k /�‘ and
k / ‘. Although these extreme cases are clearly not
biologically realistic (see below), they provide an in-
tuitive framework for understanding adaptation given
more realistic values of k. They also connect the ‘‘move
rules’’ for adaptation that we derive below to those used
in other models of adaptation.

Adaptation as k /�‘: We first consider the limiting
form of the transition probabilities, based on Equation
7, for the Weibull domain as k / �‘. If S � GPD(k, t),
then as k decreases, S becomes less variable. Ultimately,
Var(S) / 0 as k /�‘, as can be seen from Equation 6.
Despite this, we will see that Pij(S) converges to the
discrete uniform distribution on the integers 1, 2, . . . ,
i � 1, which is the most variable of all of the possible
distributions for Pij(S).

Suppose Sj is the jth largest draw from a sample of size
i � 1 from the GPD(k, t) and d ¼ t/(1 � k). If k / �‘

Figure 1.—The three domains of at-
traction under the generalized Pareto
distribution (GPD). (A) The Gumbel
domain corresponds to the GPD with
k ¼ 0, and the Fréchet domain corre-
sponds to the GPD with k . 0. (B)
The Weibull domain corresponds to
the GPD with k , 0.
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and t / �‘ such that d remains fixed, then the
probability density function for Sj becomes increasingly
concentrated at the mean and in the limit is equal to
the mean with probability 1. The precise formulation of
this limit follows from Equation A15 in appendix a and
Equation 4, where we show that

lim
k/�‘

Sj ¼ lim
k/�‘

d
1� k

�k
ð1� U �k

j ;i�1Þ ¼ d ð9Þ

for all j ¼ 1, 2, . . . , i � 1. Thus, from Equation 7,

lim
k/�‘

PijðSÞ ¼ lim
k/�‘

SjP
i�1
l¼1 Sl

¼ 1

i � 1
ð10Þ

for 1 # j # i � 1.
In words, as k decreases adaptation becomes more

and more random in terms of the identity of the
beneficial mutation fixed, although it becomes less
variable in terms of the fitness effects [since Var(S) /
0]. In the limit, each beneficial mutation has the same
probability of being ‘‘grabbed’’ by natural selection.
Interestingly, this ‘‘equally often’’ or ‘‘random’’ move
rule has been studied extensively in various models of
adaptation, including NK models (Kauffman and
Levin 1987; Kauffman 1993) and the block model
(Perelson and Macken 1995).

Adaptation as k / ‘: In the Fréchet domain, as k

increases, the distribution of S becomes more variable.
In fact, Var(S)¼ ‘ for k $ 1=2. However, we will see that
as S becomes more variable Pij(S) becomes less variable,
assuming that Equation 7 holds. From Equation 4

SjP
i�1
l¼1 Sl

¼
U �k

j ;i�1 � 1P
i�1
l¼1 U �k

l ;i�1 � ði � 1Þ

¼
1� U k

j ;i�1P
i�1
l¼1

Uj ;i�1

Ul ;i�1

� �
k
�ði � 1ÞU k

j ;i�1

: ð11Þ

It follows from Equations A15 and A16 in appendix a that

1� U k
j ;i�1P

i�1
l¼1ðUj ;i�1=Ul ;i�1Þk � ði � 1ÞU k

j ;i�1

/
0 if 1 , j # i � 1
1 if j ¼ 1

�
ð12Þ

as k / ‘. We thus find that

lim
k/‘

PijðSÞ ¼ lim
k/‘

SjP
i�1
l¼1 Sl

¼ 0 if 1 , j # i � 1
1 if j ¼ 1:

�
ð13Þ

In words, the limiting form of adaptation under the
Fréchet domain corresponds to ‘‘perfect’’ or ‘‘gradient’’
adaptation, in which the fittest allele is always fixed by
natural selection. This move rule has also been well
studied in adaptation theory (Orr 2003b).

We have thus found that the two extreme (limiting)
forms of adaptation correspond to two well-character-
ized move rules in adaptation: when k /�‘ (Weibull),
evolution gives no preference to any of the more fit

alleles and uses a random (i.e., equally often) move rule,
whereas when k / ‘ (Fréchet), evolution uses a perfect
move rule. Assuming that Equation 7 holds, adaptation
can be viewed as a continuum between random and
perfect adaptation with the location along the contin-
uum specified by the shape parameter k of the GPD
(Figure 2). As pointed out by Orr (2002), adaptation
under the Gumbel domain (k¼ 0) falls exactly between
these two extremes (see Figure 2).

Mean transition probabilities in the general case: To
calculate E(Pij(S)) for the general case, we assume Sj is
the jth largest observation from a sample of size i � 1
from the GPD(k, t). Note that by Equation 7, Sj could
represent either the jth largest selection coefficient or
the fitness effect. Then by Equation 4 and by noting
Uj;i�1�Beta( j, i� j), where Uj;i�1 is the jth smallest draw
from a sample of size i� 1 from the uniform distribution
on [0, 1] (see appendix a),

EðPijðSÞÞ ¼ E
SjP

i�1
k¼1 Sk

� �
¼ 1

i � 1
E

Sj

S

� �

� 1

i � 1

EðSjÞ
EðSÞ

¼ 1� k

tði � 1ÞEðSjÞ

¼ 1� k

i � 1

EðU �k
j ;i�1Þ � 1

k
; ð14Þ

using Equation 5. We denote the increasing factorial by
x(n)¼ x(x 1 1) . . . (x 1 n� 1) and from Equation A6 of
appendix a, we find

EðU �k
j ;i�1Þ ¼

ði � 1Þ!
ð j � 1Þ!

Gð j � kÞ
Gði � kÞ ¼

jði�jÞ
ð j � kÞði�jÞ

ð15Þ

and thus

EðPijðSÞÞ ¼ E
SjP

i�1
k¼1 Sk

� �
� k� 1

kði � 1Þ 1�
jði�jÞ

ð j � kÞði�jÞ

 !
:

ð16Þ
Equation 16 is based on a law of large numbers

argument that the sample mean S approximates d,
which can be seen in the second line of the derivation of
Equation 14. The validity of this approximation is
discussed in detail in appendix c (Equation C2 with
r ¼ 1). Although we expect small sample sizes (we
are assuming that beneficial mutations are rare), this
approximation is quite accurate even for relatively small
i (Figure 3). The accuracy of the approximation is
determined by Var(S), and as Var(S) decreases as k

decreases (see Equation 6), the approximation im-
proves as k becomes small. Remarkably, this relationship
is exact when the S’s are drawn from the exponential
distribution. Thus we get perfect argreement with
Equation 8 derived by Orr (2002) as k / 0 (see below).

When evaluated at k ¼ 0, Equation 16 yields the
indeterminate form 0/0, but we can examine the limit
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as k goes to zero. In particular, by Equations 4, 14,
and 16

k� 1

kði � 1Þ 1�
jði�jÞ

ð j � kÞði�jÞ

 !
¼ 1

i � 1

EðSjÞ
EðSÞ

¼ 1� k

i � 1
E

e�k lnUj ;i�1 � 1

k

� �

/
Eð�lnUj ;i�1Þ

i � 1
ð17Þ

as k / 0. However, if U is uniform, then �ln(U) is
exponentially distributed with mean 1, and the jth
largest observation from an exponential has mean

Eð�lnUj ;i�1Þ ¼
Xi�1

l¼j

1=l ð18Þ

and thus,

lim
k/0

EðPijðSÞÞ ¼ lim
k/0

k� 1

kði � 1Þ 1�
jði�jÞ

ð j � kÞði�jÞ

 !

¼ 1

i � 1

Xi�1

l¼j

1

l
; ð19Þ

where x(n) ¼ x(x 1 1) . . . (x 1 n � 1) is again the
increasing factorial. Thus Orr’s result, Equation 8, for
the Gumbel domain is recovered.

The jth largest fitness effect Sj will have finite mean
only if k , 1 and finite variance for k , 1

2: However,
PijðSÞ ¼ Sj=ð

Pi�1
k¼1 SkÞ is a uniformly bounded random

variable, since 0 # Pij(S) # 1. Therefore the expected
value of Pij(S) and in fact all of its moments will exist
regardless of k. However, Equation 16 is a valid
probability distribution only for k , 1. For 1

2 # k , 1,
the above approximation is extremely poor (Figure 3),
as Var(S) is infinite and the law of large numbers
approximation fails. For 0 , k , 1

2, the approximation
is better, though still not good. Equation 16 is plotted in
Figure 2 for i ¼ 10 and �3 # k # 1=2.

While Equation 16 provides a simple formula for the
mean transition probabilities, Equation 14 provides the
key insight into their behavior. Equation 14 shows, for
example, that when k ¼ �1, there is a decreasing linear
relationship between E(Pij(S)) and U. If k¼�2, there is
a quadratic relationship, and when k ¼ �1

2, there is a
one minus a square-root relationship, and when k ¼ 1

2,
there is a reciprocal of a square root.

Expected rank after a single step: To fix notation,
throughout we assume that the rank of the wild type is i.
We define the distribution of the random variable Y by

Figure 2.—Mean transition probabilities from Equation 16 as a function of the shape parameter k of the GPD. Each curve in
the top center plot represents the probabilities for one allele. The top curve provides the probabilities of fixing the allele of rank 1,
the next is for the allele of rank 2, etc. The histograms show the transition probabilities for specific values of k.
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PðY ¼ jÞ ¼ EðPijðSÞÞ; ð20Þ

where E(Pij(S)) is given by Equation 16. Note that
Equation 19 establishes that Equation 16 reduces to
Equation 8 when k ¼ 0. Using Equation 8, Orr (2002)
showed that the expected value of the rank of the allele
fixed through natural selection for a population starting
at rank i is given by

EðY Þ ¼ i 1 2

4
: ð21Þ

Thus a wild type starting at rank 10 will on average be
replaced by the third fittest allele. To calculate this in
the general case, we assume that Equation 16 holds and
find that for k , 1

EðY Þ ¼ 1 1
i � 2

2

1� k

2� k

� �
: ð22Þ

appendix d provides details of this derivation. If k ¼ 0
then E(Y) ¼ (i 1 2)/4, in agreement with Orr’s
result (Equation 21 above). If k � �1, as suggested by
Rokyta et al. (2008), then E(Y) ¼ (i 1 1)/3, and
limk/�‘EðY Þ ¼ i=2. This reflects the move rule noted
earlier for this case. When natural selection chooses a
mutation randomly it will, on average, reduce fitness
rank by one-half. Figure 4 shows Equation 22 plotted
for various values of i as a function of k along with
simulations. As with the mean transition probabilities,
the approximation is poor for k $ 1

2.
Orr (2002) showed that for the Gumbel domain (k¼

0), the variance in rank change for a single step in
adaptation is given by

VarðY Þ ¼ ði � 2Þð7i 1 6Þ
144

: ð23Þ

An outline of the derivation for the general case is
provided in appendix d. The final result is given by

VarðY Þ ¼ ð1� kÞði � 2Þ½ðk2 � 4k 1 7Þi 1 6ð1� kÞ�
12ð3� kÞð2� kÞ2 :

ð24Þ

When k ¼ 0, Equation 24 reduces to Orr’s result
(Equation 23).

One complete step of adaptation: After a population
substitutes a beneficial mutation through natural selec-
tion, it acquires a new set of neighboring sequences.
Thus the fitness rank of the new wild-type sequence can
change depending on the number of new neighbors
that have higher fitnesses. The process through which
a new wild-type sequence acquires new neighbors is
described in detail by Rokyta et al. (2006) in the case in
which the fitness distribution belongs to the Gumbel
domain of attraction. To illustrate the idea, consider a
sequence of length L ¼ 1000. Initially, the wild-type
sequence has some rank, say i¼ 10; i.e., if the fitnesses of
the wild-type sequence and its 3000 single-mutation
neighbors are listed in increasing size, the wild type’s
fitness is 10th from the top. Now assume natural selec-
tion moves the population up the list to the sequence
having rank Y¼ 5. The new sequence had rank 5 among
the 3001 sequences including the original wild type
and its single-mutation neighbors, but now those sequ-
ences, except for the original wild type, differ from
the new wild type by two mutations and are thus no
longer accessible to natural selection. The new wild-type
sequence now has a new set of 2999 accessible sequences

Figure 4.—The expected fitness rank after a single step in
adaptation. The dashed lines give the theoretical expectation
according to Equation 22, and the solid lines give the averages
of 10,000 simulated data sets. Simulations were performed us-
ing R (R Development Core Team 2006).

Figure 3.—The effect of rank of the wild-type i and the
shape parameter k on the accuracy of the law of large numbers
approximation used to calculate the mean transition probabil-
ities. The dashed curves represent the probability of fixing the
best allele (j ¼ 1) as a function of the GPD shape parameter k
according to Equation 16. The solid lines are simulation results
assuming a GPD(k, 1) with sample size of 10,000. Simulations
were performed using R (R Development Core Team 2006).
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plus the original wild type and thus, potentially, a new
fitness rank. We can imagine that these 2999 sequences
are all assigned fitnesses from the same distribution as for
the original set and are again listed in increasing order.

Equation 25 below describes the probability distribu-
tion for the new rank given that the current sequence had
rank Y in the first set of draws from the fitness distribu-
tion. This result is independent of the distribution used to
assign fitness, so long as it remains the same for each set
of sequences and the rank remains small relative to the
number of draws. The asymptotic distribution of the
number of values larger than the current fitness in a new
sample of fitness values, i.e., the number of exceedances
in a new sample, was derived by Gumbel and Von

Schelling (1950). Assuming 3L is large, the number of
exceedances, X, has a negative binomial distribution,
regardless of the original distribution, such that

PðX ¼ x jY Þ ¼ x 1 Y � 1
x

� �
1

2

� �x1Y

; ð25Þ

where Y is the starting fitness rank, and X is the number
of draws larger than the current value. It follows from
the negative binomial distribution given by Equation 25
that E(X j Y) ¼ Y 1 1 and Var(X j Y) ¼ 2Y.

Assuming that X is the rank of the wild type after a
single step due to natural selection relative to its new
neighbors in sequence space, we find by Equation 22 that

EðX Þ ¼ EðEðX jY ÞÞ ¼ EðY Þ1 1 ¼ 2 1
i � 2

2

1� k

2� k

� �
ð26Þ

and by Equations 22 and 24 that

VarðX Þ ¼ EðVarðX jY ÞÞ1 VarðEðX jY ÞÞ
¼ Eð2Y Þ1 VarðY Þ

¼ 2 1
ði � 2Þð1� kÞ

2� k

� �

1
ð1� kÞði � 2Þ½ðk2 � 4k 1 7Þi 1 6ð1� kÞ�

12ð3� kÞð2� kÞ2 :

ð27Þ
Probability of adaptation—exact vs. approximate: In

the above sections we assumed that the transition
probabilities are given by PijðsÞ ¼ sj=ð

P
k skÞ. However,

this formula is valid only when s is small and the
probability of fixation, denoted by P(s), is proportional
to s. In this section we investigate some of the implica-
tions on the theory when the small s approximation
does not hold. We consider P(s) ¼ 1 � e�2s (Kimura

1983) to be a more valid approximation.
We begin by considering S in the Gumbel domain.

That is, we assume that S is distributed according to the
exponential distribution with mean t. If F(s) ¼ P(S # s)
is the cumulative distribution function for S, then it
follows from elementary probability that U [ 1� F(S)¼
e�S/t is uniformly distributed on the interval [0, 1].

Therefore, e�2S¼U 2t and P(S)¼ 1� e�2S¼ 1�U 2t. Now
using the relationship between the uniform distribution
and the GPD given by Equation 4, we get 1 � U 2t �
GPD(�2t, 2t). Therefore,

PðSÞ ¼ 1� e�2S � GPDð�2t; 2tÞ: ð28Þ

That is, if S is in the Gumbel domain then the
probability of fixation is in the Weibull domain, where
the shape and scale parameters have the same magni-
tude. Thus if the small s assumption is not valid, then
the transition probabilities under the Gumbel domain
given by Equation 8 can be replaced by Equation 16 with
k¼�2t. However, consider, for example, t¼ 0.1. This is
a fairly large average selection coefficient and it would
be expected that the approximation P(s) � 2s would
not hold, but the GPD(�0.2, 0.2) still looks very much
like an exponential. So it appears that the results under
the Gumbel domain are fairly robust to violations of the
small s assumption. If we apply Equation 22 with k¼ 0.2,
we get E(Y) ¼ (5 1 3i)/11; this compares with k ¼ 0,
where E(Y) ¼ (i 1 2)/4 ¼ (6 1 3i)/12. So the mean
change in rank is very similar, whether one uses the more
accurate probability of fixation or the 2s approximation.

Under the Weibull domain, PðPðSÞ# xÞ ¼ P(S #

�1
2 lnð1� xÞ) ¼ 1� ð1� k lnð1� xÞ=2tÞ�1=k, which is

only approximately GPD when ln(1 � x) � �x. This
distribution is still in the Weibull domain of attraction.
However, Martin and Lenormand (2008) showed that
to have extreme observations under a right-bounded
distribution, the wild type must have fitness fairly close the
boundary, which dictates that P(s) � 2s. Under the
Weibull domain it appears that extreme value theory is
valid whenever the approximation P(s) � 2s is valid.

For the Fréchet domain when k . 1, E(S)¼‘ and so it
would appear that small s approximations will certainly
not hold. As P(s)¼ 2s may not be a valid approximation,
we again consider P(s) ¼ 1 � e�2s and now we examine
the behavior of adaptation as k / ‘. In appendix e, we
show that if Sj is the jth largest draw from a sample of size
i � 1 from the GPD(k, t), then

lim
k/‘

Sj ¼ ‘ ð29Þ

for 1 # j # i � 1. It follows directly that if PðSjÞ ¼
1� e�2Sj is the probability that an allele with fitness Sj

survives drift, then

lim
k/‘

PijðSÞ ¼ lim
k/‘

PðSjÞP
i�1
l¼1 PðSlÞ

¼ 1=ði � 1Þ ð30Þ

for 1 # j # i� 1. Thus, the limiting form of the transition
probabilities for the Fréchet domain converges to the
same limit as for the Weibull domain.

Note that Equations 13 and 30 lead to conflicting
views of the limiting behavior of the transition proba-
bilities under the Fréchet domain. At first glance, it
would appear that the conclusion drawn from Equation
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30 is the valid one, as it is based on the more accurate
formula for the probability of fixation. However, the
limiting transition probabilities in Equation 30 are
valid only if all Sj are large simultaneously, which is a
near impossibility, because the selection coefficient
Si�1 diverges to infinity at a very slow rate, while the
largest selection coefficient S1 diverges very rapidly
(see appendix e). However, it is possible to allow k / ‘
and still have each Sj small enough to be biologically
relevant, provided we allow t to vary with k. An
alternative to Equation 13 would be as follows. Suppose
Sj is the jth largest draw from a sample of size i � 1
from the GPD(k, t). If k / ‘ and t } k�k, then
Sj ¼ ðt=kÞðU �k

j ;i�1 � 1Þ} ððkUj ;i�1Þ�k � 1Þ=k, where Uj;i�1

is the jth smallest draw from a uniform distribution.
Since (kU)�k / 0 with probability one (see appendix

e), Sj / 0 as k / ‘. Therefore P(Sj) � 2Sj and

lim
k/‘

PðSjÞP
i�1
l¼1 PðSl Þ

¼ lim
k/‘

SjP
i�1
l¼1 Sl

¼ 0 if 1 , j # i � 1
1 if j ¼ 1:

�
ð31Þ

Thus, an increasingly heavy-tailed distribution (k large)
with a very small-scale parameter (t small) has the
property that the fittest allele fixes with probability
approaching one.

Average fitness improvement for a single step: Up to
this point, we have considered adaptation only in terms
of fitness rankings. We now begin to explore the
expected behavior of adaptation in terms of fitness
effects or, equivalently, selection coefficients. For a
single step in adaptation, the population begins with
rank i and beneficial fitness effects S1, S2, . . . , Si�1. The
population then increases its fitness by DW, which is
equal to Sj with probability Sj=ð

Pi�1
k¼1 SkÞ. By symmetry

the results below do not depend on rank order and thus
we can treat them as an unordered sample from the
GPD. If we assume that S1, . . . , Si�1 is an (unordered)
sample from the GPD(k, t), then

EðDW Þ ¼ E
Xi�1

j¼1

SjPijðSÞ
 !

: ð32Þ

Again we assume that the selection coefficients are small
enough so that the transition probabilities can be
approximated by PijðSÞ ¼ Sj=(

Pi�1
j¼1 Sj). Thus, using

Equation 32 and Equation B5 in appendix b, we get

EðDW Þ ¼ E
S2

1 1 S2
2 1 . . . 1 S2

i�1

S1 1 S2 1 . . . 1 Si�1

� �

¼ ði � 1ÞE S2
1

S1 1 S2 1 . . . 1 Si�1

� �

¼ E
S2

1

S

� �

� EðS2Þ
d

¼ 2ð1� kÞd
1� 2k

: ð33Þ

Also

VarðDW Þ ¼ EððDW Þ2Þ � ðEðDW ÞÞ2

¼ E
Xi�1

j¼1

S2
i PijðSÞ

 !
� ðEðDW ÞÞ2: ð34Þ

Again, using Equation B5 of appendix b,

VarðDW Þ ¼ E
S3

1 1 S3
2 1 . . . 1 S3

i�1

S1 1 S2 1 . . . 1 Si�1

� �
� 2ð1� kÞ

1� 2k
d

� �2

¼ ði � 1ÞE S3
1

S1 1 S2 1 . . . 1 Si�1

� �
� 2ð1� kÞ

1� 2k
d

� �2

� EðS3
1 Þ

d
� 2ð1� kÞ

1� 2k
d

� �2

¼ d2 6ð1� kÞ2
ð1� 2kÞð1� 3kÞ � d2 4ð1� kÞ2

ð1� 2kÞ2

¼ 2d2ð1� kÞ2
ð1� 2kÞ2ð1� 3kÞ :

ð35Þ

Note that the results of this section do not match Orr’s
results exactly when k ¼ 0, but instead provide large i
approximations. For example, if we evaluate Equation
33 at k¼ 0, we get E(DW)¼ 2d. However, the exact result
in Orr (2002) (using our new notation) is EðDW Þ ¼
2ðði � 1Þ=iÞd. Note that for k ¼ 0 the Var(DW) ¼ 2d2,
which matches only the leading term in i in Orr’s
formula, VarðDW Þ ¼ 2d2ði � 1Þði2 1 2Þ=i2ði 1 1Þ.

Why do the results in earlier sections match Orr

(2002) exactly when k ¼ 0, while the results of this
section only approximate those of Orr (2002) at k¼ 0?
The distribution of Y is derived using the approximation
PðY ¼ jÞ ¼ ð1=ði � 1ÞÞEðSj=SÞ � ð1=ði � 1ÞÞEðSjÞ=EðSÞ.
The validity of this approximation (used in Equation 14) is
justified by the law of large numbers and is rigorously
established by Equation C2 in appendix c with r ¼ 1.
However, it is a remarkable fact that when k ¼ 0, this is
not an approximation, but rather an exact result. This
implies that the mean and the variance of the rank
distribution E(Y) and Var(Y) agree with the results
derived in Orr (2002) when k ¼ 0. However, in this
section we use the approximations ð1=ði � 1ÞÞEðS2

j=SÞ �
ð1=ði � 1ÞÞEðS2

j Þ=EðSÞ and ð1=ði � 1ÞÞEðS3
j =SÞ � ð1=

ði � 1ÞÞEðS3
j Þ=EðSÞ, which also follow from Equation C2

in appendix c with r¼ 2 and r¼ 3, but are no longer exact
results when k ¼ 0. However, as noted after Equation C2
in appendix c, the above approximations are quite
accurate even for small sample sizes. As stated previously,
the accuracy of the above approximations is determined
by Var(S), and since Var(S) decreases as k decreases (see
Equation 6), the approximation improves as k becomes
small.

The probability of parallel evolution: Consider two
populations that begin with the same wild-type se-
quence and that have the same set of i � 1 beneficial
mutations. What is the probability that these two popu-
lations independently arrive at the same new sequence at
the next step of adaptation? Assuming the distribution
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belongs to the Gumbel domain, Orr (2005) showed
that this probability ¼ 2/i. In the general case, let
S1, S2, . . . , Si�1 be a random sample from the GPD with
k , 1

2. Then from Equation B5 of appendix b, from
Equation 7, and using the law of large numbers appro-
ximation, we find

E
Xi�1

j¼1

P 2
ij

 !
¼
Xi�1

j¼1

E
SjP
i�1
l¼1 Sl

� �2

� 1

ði � 1Þ2d2

Xi�1

j¼1

ES2
j

¼ EðS2Þ
d2ði � 1Þ

¼ 2ð1� kÞ
ð1� 2kÞði � 1Þ : ð36Þ

Thus,

PðParallel evolutionÞ � 2ð1� kÞ
ð1� 2kÞði � 1Þ : ð37Þ

For k¼ 0 the result is close to Orr’s with i replaced by i�
1. The smallest probability occurs when k ¼ �‘, which
corresponds to random adaptation as described above.
As k decreases the probability of parallel evolution
decreases, but the decrease is slow and asymptotes to
half of what it is in the Gumbel domain.

Mean fitness improvement after multiple steps: We
now compare the average fitness improvement over
multiple steps for the Gumbel and Weibull domains.
Similar calculations assuming the Fréchet domain are
generally not possible, as most of the expectations do
not exist (see discussion). In general, for single-step
results, the model yields results that change continu-
ously with k (Figures 2–4). The differences between the
domains become much more pronounced when con-
sidering multiple steps in adaptation.

If we denote the absolute fitness of allele j by Wj and
view it as a random variable from some unknown
distribution, then we define the fitness effect of allele j
by Wj � Wi, where Wi is the fitness of the wild-type
sequence. Selection coefficients are given by (Wj�Wi)/
Wi. Recall that in all of the previous results the fitness of
the wild type was assumed to be fixed and nonrandom
(Wi ¼ wi). Therefore, any result previously derived for
selection coefficients involving the GPD(k, t) is valid for
fitness effects, provided t is replaced by wit. Results that
do not depend on the scale parameter t will be the same
under both conventions. However, in this section we
view the fitness of the wild type as a random variable,
which changes over multiple steps. It is inconvenient to
rescale by Wi at each step, and therefore it is more
appropriate to deal with fitness improvement. In what
follows we admit to a slight abuse of notation. Through-
out we use the same notation for fitness effects that was
previously used for selection coefficients. We define the

fitness effect of the jth fittest allele by Sj [ Wj�Wi. If we
define d ¼ E(W � Wi j Wi, W . Wi), then the fitness im-
provement results above (Equations 33 and 35) still
hold.

For the Gumbel domain, because the distribution of
beneficial fitness effects is exponential, we can exploit
its memoryless property. If fitness effects follow the
exponential with mean t, then the distribution of
beneficial effects after the fixation of a beneficial
mutation will remain the same. More precisely, if S is
distributed as an exponential with mean t, then the
conditional distribution of S given S exceeds S* is also
exponential with mean t. That is, the new distribution
of beneficial fitness effects after substituting a muta-
tion with effect s* is given by

f ðs j s*Þ ¼ f ðs 1 s*Þ
1� F ðs*Þ ¼

ð1=tÞe�ðs1s*Þ=t

e�s*=t
¼ 1

t
e�s=t: ð38Þ

Under the Gumbel domain, the distribution of benefi-
cial effects stays the same after the fixation of a
beneficial mutation and does not depend on s*.

This invariance property is only partially true for the
GPD. A shifted GPD is still GPD, but unlike the expo-
nential, the scale parameter changes, and the shifted
distribution depends on s*. Thus, under the GPD in the
Weibull domain (k , 0), smaller and smaller fitness
effects will be observed after each step in an adaptive
walk. Thus,

f ðs j s*Þ ¼ f ðs 1 s*Þ
1� F ðs*Þ

¼ 1

t 1 ks*
1 1

k

t 1 ks*
s

� �� k11
k ð39Þ

and E(S j S*)¼ (t 1 kS*)/(1� k)¼ d 1 (kS*)/(1� k).
Assuming the fitness distribution remains the same, the
population reaches a new fitness of Wi 1 DW. The new
distribution of beneficial fitness effects is just the GPD
shifted by DW. We denote a random variable with this
distribution by S(1). Denote the original mean fitness
relative to Si as d0 instead of d. Then,

EðS ð1Þ jDW Þ ¼ t 1 kDW

1� k
¼ d0 1

k

1� k
DW : ð40Þ

Thus by Equation 33 we get

d1 [ EðS ð1ÞÞ ¼ d0 1
k

1� k
EðDW Þ ¼ d0

1� 2k
: ð41Þ

Iterating we obtain

dn ¼
dn�1

1� 2k
¼ d0

ð1� 2kÞn : ð42Þ

Thus, the mean fitness effect decreases to zero geo-
metrically fast in the Weibull domain, whereas in the
Gumbel domain the mean fitness effect is invariant
under shifts. For example, if k¼�1, then dn¼ d0(1/3)n.
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Note that DW actually depends on i and that Equation
33 is only an approximation. However, the dependence
on i is weak and dn would be even smaller if we acco-
unted for i. The results are, therefore, conservative.
Equations 41 and 42 also hold for 0 , k , 1

2 in the
Frechét domain, and in this case the mean fitness effects
increase geometrically fast.

DISCUSSION

Previous adaptation theory has lived with a certain
tension. On the one hand, the theory’s most important
conclusion is that adaptation is characterized by robust
patterns: we can say a good deal about the evolution of
DNA sequences independent of knowledge of many
biological details (e.g., fitness distribution, gene size,
etc.). On the other hand, these conclusions have followed
from one major assumption: that the distribution of
fitness, while unknown in detail, belongs to the Gumbel
domain of attraction. As noted earlier, the Gumbel
domain is broad and includes most familiar distribu-
tions (normal, exponential, gamma, logistic, etc.). The
Gumbeldomain also represents the focus ofmost classical
extreme value theory and allows many elegant, closed-
form solutions, e.g., to the distribution of spacings be-
tween upper-order statistics. For these reasons and others,
the Gumbel domain of attraction provides a natural
starting point for a theory of adaptation based on extreme
value theory. Not surprisingly, Gillespie (1983, 1984,
1991), Orr (2002, 2003b, 2005), and Rokyta et al. (2006)
all assumed that the distribution of fitness, while un-
known, belongs to the Gumbel domain.

Extreme value theory shows, however, that three
domains of attraction are possible for distributions
meeting minimal conditions: Gumbel, Fréchet, and
Weibull. Although the Fréchet and Weibull domains
might first seem less biological than the Gumbel—
distributions belonging to the Fréchet domain, in
particular, are somewhat exotic, lacking all or higher
moments—this impression is obviously far from con-
vincing. Moreover, history suggests caution about casual
inferences about the naturalness of various distribu-
tions: while early work in mathematical finance often
employed Gumbel statistics, data from equity markets
now reveal heavy tail distributions of stock returns; i.e.,
these distributions likely belong to the Fréchet domain
of attraction. Analogously, early theoretical work from
Gillespie (1984) suggests Gumbel statistics, but empir-
ical data in Rokyta et al. (2008) reject the Gumbel
domain in favor of a uniform distribution (k��1) in the
Weibull domain. It is important, therefore, to study the
consequences for the theory of adaptation of departures
into the Fréchet and Weibull domains of attraction.

We have studied this problem here. Our approach
took advantage of a general version of extreme value
theory that encompasses all three domains of attraction.
In particular, we analyzed adaptation via the GPD, which

provides the distribution of values above a high thresh-
old. (In the case of adaptation, the high threshold
represents the fitness of the wild-type allele, while
‘‘excesses’’ above this threshold represent the fitnesses
of rare beneficial mutations.) By varying a single
parameter, k, one can ‘‘tune’’ the GPD for the cases of
Gumbel, Fréchet, or Weibull domains of attraction.

Our findings show that Gumbel-based results in the
genetics of adaptation are often robust to modest
departures into the Weibull and, especially, the Fréchet
domains of attraction. But in some cases (e.g., k ,�1

2 or
extended adaptive walks through sequence space), real
departures from Gumbel results arise. Because our
findings for the Fréchet and Weibull domains also differ
from each other, it is worth briefly summarizing our
results for these domains separately, emphasizing when
they are and are not similar to those for the Gumbel
domain.

The Fréchet domain: Our results for the Fréchet
domain are nearly indistinguishable from those of the
Gumbel domain, at least in cases that are biologically
relevant. Although this finding might at first seem sur-
prising, it can be explained in two different ways. The
first involves a simple weak selection approximation. If
absolute fitnesses are given by Wj for 1 # j # i � 1,
then the selection coefficients among beneficial muta-
tions are given by

Sj ¼
Wj �Wi

Wi
� ln Wj � ln Wi ; ð43Þ

assuming weak selection so that ln(1 1 s) � s. Impor-
tantly, if W belongs to the Fréchet domain, then ln W is
in the Gumbel domain (Embrechts et al. 1997), and
thus our problem reduces to considering the spacings
between order statistics for the Gumbel domain. This is
the problem that was already addressed by Orr (2002).
We thus arrive at an important conclusion: if selection is
weak and a fitness distribution belongs to the Fréchet
domain of attraction, the patterns of adaptation will
closely resemble those in the Gumbel domain of attrac-
tion. This follows immediately from the fact that if W
belongs to the Fréchet domain, ln W belongs to the
Gumbel.

A second way to see why previous Gumbel results are
robust to fitness distributions in the Fréchet domain does
not involve weak selection. Recall that by Equation 4 we
can express S in terms of a uniformly distributed random
variable such that S ¼ ðt=kÞðU �k � 1Þ. If we assume that
0 , k , 1 so that d¼ E(S)¼ t/(1� k) , ‘, then we can
rewrite the above to get S ¼ ðdð1� kÞ=kÞðU �k � 1Þ,
which implies that

ln
k

1� k

S

d
1 1

� �
¼ �k lnðU Þ: ð44Þ

If k . 0 is small, we can use the result that ln(1 1 x)� x
to say that
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k

1� k

S

d
� �k ln U ð45Þ

and ln(U) follows the exponential distribution. Note
that since the distribution of S/d does not depend on d

and has mean equal to one, the above approximation
does not require that S be small. It requires only that k/
(1� k) be small enough for the approximation to hold.
If the above approximation holds, then

S � �ð1� kÞd ln U ¼ �t ln U ; ð46Þ

where �t ln U follows the exponential distribution with
mean t. Note that x� ln(1 1 x) is a reasonably accurate
approximation for x as high as 0.4, so the Gumbel
domain is robust with respect to moderate departures
into the Fréchet domain.

Finally we consider extremely heavy-tailed distribu-
tions, i.e., k . 1. A sample drawn from such a distribution
will depend heavily on the scale parameter t. If the scale
parameter is moderate, then the selection coefficient for
the fittest allele will be unreasonably large. If the scale
parameter is small, then the fitness for the higher ranked
alleles will be undetectably small. Therefore, it seems
biologically impossible to produce a scenario in which
one could draw reasonable inferences under the Fréchet
domain that depart significantly from the Gumbel do-
main. This is one of our most important conclusions.

The Weibull domain: As pointed out in Rokyta et al.
(2008), a right-truncated distribution is not at all
unreasonable. For example, even if the phenotypic
effects of mutations show no apparent upper bound,
the translation of phenotype into fitness might yield a
truncated distribution. A pattern of diminishing returns
(i.e., a concave mapping of phenotype onto fitness),
such as is commonly seen for biochemical reactions
(Hartl et al. 1985), could produce an apparent right
truncation point for fitness effects, regardless of the
underlying distribution of phenotypic effects. Recent
theoretical work by Martin and Lenormand (2008)
shows that selection to a phenotypic optimum in a
‘‘geometric’’ model of evolution can lead to a Weibull-
type distribution of mutational effects, although a
Gumbel-type distribution remains a good approxima-
tion in the case of many independent characters. There
is also empirical evidence from two different viruses to
suggest that the Weibull domain may be appropriate in
some circumstances (Rokyta et al. 2008).

While the pattern of variability in samples may differ
substantially between the Gumbel and Weibull domains,
predictions for the first step in an adaptive walk de-
veloped by Orr (2002) for the Gumbel domain easily
generalize to the Weibull domain (Figure 2). In general,
the results describing an average gain after one step are
smaller under the Weibull domain than under the
Gumbel domain (Figure 3). For example, k ¼ �1 (as
suggested by Rokyta et al. 2008) represents a uniform
distribution and k ¼ 0 represents the exponential

distribution. By comparing Equation 21 to Equation
22, we see that the first step in adaptation moves the
population on average two-thirds toward the one-step
optimum under the uniform model vs. three-fourths
under the exponential. Also, using Equation 37 we see
that parallel evolution is 1.5 times more likely under the
exponential than under the uniform, although both
models predict that the probability of parallel evolution
is inversely proportional to the rank of the wild type. The
mean fitness improvement after one step in adaptation
under the exponential distribution is again 1.5 times
larger than under the uniform (see Equation 41).

Predictions under the two models differ even more
when considering multiple steps. Under the Weibull
domain, the mean of the fitness distribution decreases
geometrically in the number of steps; i.e., after n steps
the mean of the fitness distribution is dn ¼ d/(1 � 2k)n.
The memoryless property of the exponential distribu-
tion, on the other hand, guarantees that the mean of the
fitness distribution remains the same after each step.

Much of the present theory of adaptation rests on the
assumption of SSWM conditions. However, the geo-
metrically decreasing change in mean fitness suggests
that even if SSWM conditions hold during the first step
of adaptation, they may fail to do so during later steps.
This represents a marked change from results seen
under the Gumbel domain.
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APPENDIX A: ORDER STATISTICS OF THE UNIFORM DISTRIBUTION

Our results rely extensively on properties of the order statistics of the uniform distribution. Thus, for completeness,
we summarize some relevant results. Suppose that U1, U2, . . . , Un are independent and identically distributed uniform
random variables on the interval [0, 1]. Let U1;n , U2;n , U3;n , . . . , Un;n be the order statistics. Thus, U1;n ¼
min(U1, . . . , Un) and Un;n ¼ max(U1, . . . , Un). If Uj;n is the jth smallest observation from a uniformly distributed
random sample of size n, then Uj;n � Beta( j, n 1 1 � j) with density given by

fUj ;n
ðuÞ ¼ n!

ð j � 1Þ!ðn � jÞ! uj�1ð1� uÞn�j : ðA1Þ

If (Uj;n, Ul;n) are the jth and lth smallest observations, then their joint density is given by

fUj ;n ;Ul ;n
ðu; vÞ ¼ n!

ð j � 1Þ!ðl � j � 1Þ!ðn � lÞ! uj�1ðv � uÞl�j�1ð1� vÞn�l ðA2Þ

for 0 , u , v , 1 and j , l. The conditional distribution of Uj;n/Ul;n has the same distribution as the jth smallest
observation from a sample of size l � 1. Thus,

Uj ;n

Ul ;n
jUl ;n � Uj ;l�1: ðA3Þ

To see this, note that the conditional density of Uj;n given Ul;n is

fUj ;n jUl ;n
ðu j vÞ ¼ fUj ;n ;Ul ;n

ðu; vÞ=fUj ;n
ðuÞ

¼ 1

v

ðl � 1Þ!
ð j � 1Þ!ðl � j � 1Þ!

u

v

� �j�1
1� u

v

� �l�j�1
: ðA4Þ

Let T ¼ Uj;n/Ul;n; then by the standard change of variables formula the conditional distribution of T given Ul;n is

fT jUj ;n
ðt j vÞ ¼ ðl � 1Þ!

ð j � 1Þ!ðl � j � 1Þ! t j�1ð1� tÞl�j�1; ðA5Þ

implying that the conditional distribution of T is Beta( j, l � j), which corresponds to the marginal distribution of the
jth smallest observation from a sample of size l � 1 (see Equation A1).

From the properties of the beta distribution, the kth moment of Uj;n is given by

EðU k
j ;nÞ ¼

n!

ð j � 1Þ!
Gð j 1 kÞ

Gðn 1 1 1 kÞ ¼
jðn11�jÞ

ð j 1 kÞðn11�jÞ
: ðA6Þ

Note that

E
U k

j ;n

U k
l ;n

 !
¼ E E

U k
j ;n

U k
l ;n

jUl ;n

 ! !
¼ EðU k

j ;l�1Þ ðA7Þ
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and thus from Equation A6

E
U k

j ;n

U k
l ;n

 !
¼ ðl � 1Þ!
ð j � 1Þ!

Gð j 1 kÞ
Gðl 1 kÞ ¼

jðl�jÞ
ð j 1 kÞðl�jÞ

; ðA8Þ

where x(n) is the increasing factorial x(n) [ x(x 1 1)(x 1 2) . . . (x 1 n � 1) and G(x) is the gamma function.
We make use above of limiting properties of the kth moments of Uj;n as k / ‘. From Equation 6.1.46 in Abramowitz

and Stegun (1965) that states

lim
m/‘

mb�a Gðm 1 aÞ
Gðm 1 bÞ ¼ 1 ðA9Þ

we find that

Gð j 1 kÞ
Gðn 1 1 1 kÞ � ð1=kÞn11�j /0 ðA10Þ

and

Gð j 1 kÞ
Gðl 1 kÞ � ð1=kÞl�j /0 ðA11Þ

as k / ‘. Thus

lim
k/‘

EðU k
j ;nÞ ¼

n!

ð j � 1Þ! lim
k/‘

Gð j 1 kÞ
Gðn 1 1 1 kÞ ¼ 0 ðA12Þ

and

lim
k/‘

E
U k

j ;n

U k
l ;n

 !
¼ ðl � 1Þ!
ð j � 1Þ! lim

k/‘

Gð j 1 kÞ
Gðl 1 kÞ ¼ 0: ðA13Þ

From Markov’s inequality we know that for any e . 0

P
U k

j ;n

U k
l ;n

. e

 !
#

1

e
E

U k
j ;n

U k
l ;n

 !
: ðA14Þ

Thus

lim
k/‘

U k
j ;n ¼ 0 in probability ðA15Þ

from Equation A12 and for l . j

lim
k/‘

U k
j ;n

U k
l ;n

¼ 0 lim
k/‘

U k
l ;n

U k
j ;n

¼ ‘ in probability ðA16Þ

from Equation A13.

APPENDIX B: MOMENTS OF THE GENERALIZED PARETO DISTRIBUTION

Suppose S � GPD(k, t) with density given by Equation 2 and k # 0, and l is any positive integer. If k ¼ 0, the GPD
reduces to the exponential distribution with mean d ¼ E(S) ¼ t. It can be verified from the exponential distribution
that E(Sl)¼ l!dl. For k , 0, a rescaling of S gives a beta distribution. If V¼�kS/t, then V� Beta(1,�1/k) with density

fV ðvÞ ¼
�1

k
ð1� vÞ�1=k�1: ðB1Þ

It follows from properties of the beta distribution that
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d ¼ EðSÞ ¼ t

�k
EðV Þ ¼ t

1� k
ðB2Þ

and

VarðSÞ ¼ t2

k2 VarðV Þ ¼ t2

ð1� 2kÞð1� kÞ2 ¼
d2

1� 2k
: ðB3Þ

In general,

EðSlÞ ¼ tl

ð�kÞl EðV lÞ

¼ tl

ð�kÞl
1

�k

Gðl 1 1ÞGð�1=kÞ
Gðl 1 1� 1=kÞ

¼ tl

ð�kÞl
l !

ð�1=k 1 1Þð�1=k 1 2Þ . . . ð�1=k 1 lÞ

¼ tl l !

ð1� kÞð1� 2kÞð1� 3kÞ . . . ð1� lkÞ

¼ dl ð1� kÞl�1l !

ð1� 2kÞð1� 3kÞ . . . ð1� lkÞ : ðB4Þ

Thus, if l is any positive integer and d ¼ E(S) ¼ t/(1 � k), then

EðSlÞ ¼ dl ð1� kÞl�1l !

ð1� 2kÞð1� 3kÞ . . . ð1� lkÞ : ðB5Þ

APPENDIX C: VALIDITY OF THE APPROXIMATION USED TO CALCULATE THE MEAN
TRANSITION PROBABILITIES

If X1, X2, . . . , Xn are iid random variables with mean d, variance s2, and finite fourth moments, then

lim
n/‘

nE
1
�X
� 1

d

� �2

¼ s2=d4: ðC1Þ

The proof of this is a straightforward Taylor series argument that holds for any random sample from any distribution
with finite fourth moments. It essentially states that 1= �X converges in mean to 1/d, at the same rate as �X converges to d.

Let S1, S2, . . . , Si�1 be rank-ordered observations from a GPD with k # 0. Then

lim
i/‘

ffiffiffiffiffiffiffiffiffiffi
i � 1
p jEðSr

j =
P

i�1
l¼1 SlÞ � ð1=ði � 1ÞÞEðSr

j Þ=EðSÞ j
ð1=ði � 1ÞÞEðSr

j Þ=EðSÞ #
ffiffiffiffiffiffiffiffiffiffi
VarS
p

=d

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k
p ðC2Þ

or for large i,

EðSr
j Þ

ði � 1ÞEðSÞ ð1� eÞ# E Sr
j =
Xi�1

l¼1

Sl

 !
#

EðSr
j Þ

ði � 1ÞEðSÞ ð1 1 eÞ; ðC3Þ

where e � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2kÞði � 1Þ

p
. Note that the upper bound on the right side of Equation C2 that establishes the

relative error in the approximation E(Sr
j =
Pi�1

l¼1 Sl ) by ð1=ði � 1ÞÞEðSr
j Þ=EðSÞ is the same for all powers r.

To derive this result, replace E(Sr
j =
Pi�1

l¼1 Sl ) with ð1=ði � 1ÞÞEðSr
j =SÞ and EðSÞ with d on the left side of

Equation C2, giving

ffiffiffiffiffiffiffiffiffiffi
i � 1
p jEðSr

j =
P

i�1
l¼1 Sl Þ � ð1=ði � 1ÞÞEðSr

j Þ=EðSÞ j
ð1=ði � 1ÞÞEðSr

j Þ=EðSÞ ¼ d
ffiffiffiffiffiffiffiffiffiffi
i � 1
p

EðSr
j Þ
jEðSr

j =SÞ � EðSr
j Þ=d j : ðC4Þ
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Applying the Cauchy–Schwartz inequality gives

d
ffiffiffiffiffiffiffiffiffiffi
i � 1
p

EðSr
j Þ
jEðSr

j =SÞ � EðSr
j Þ=d j #

d
ffiffiffiffiffiffiffiffiffiffi
i � 1
p

EðSr
j Þ

E

����Sr
j

1

S
� 1

d

� �����
#

d

EðSr
j Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðS2r

j Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ði � 1ÞE 1

S
� 1

d

� �2
s

: ðC5Þ

It follows by Equations 4 and A12 that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðS2r

j Þ
q

=EðSr
j Þ/1 as i / ‘, and it follows from Equation C1 that ði � 1Þ

E(1=S � 1=d)2/VarðSÞ=d4 ¼ 1=ð1� 2kÞd2 as i / ‘.

APPENDIX D: DERIVATIONS OF EQUATIONS 22 AND 24

Assuming that Equation 7 holds and noting that
Pi�1

j¼1 EðPijðSÞÞ ¼ 1, we find

k� 1

k
� k� 1

kði � 1Þ
Xi�1

j¼1

jði�jÞ
ðj � kÞði�jÞ

¼ 1 ðD1Þ

and thus

i � 1

1� k
¼
Xi�1

j¼1

jði�jÞ
ð j � kÞði�jÞ

: ðD2Þ

We can use this equation to calculate the mean rank after a fixation event. Again, we denote the fitness rank of the
population after the fixation of a beneficial mutation by the random variable Y:

EðY Þ � 1 ¼
Xi�1

j¼1

Eðð j � 1ÞPijðSÞÞ

¼ k� 1

k

i � 2

2
� k� 1

kði � 1Þ
Xi�1

j¼1

ð j � 1Þjði�jÞ
ð j � kÞði�jÞ

¼ k� 1

k

i � 2

2
� k� 1

kði � 1Þ
Xi�1

j¼1

ð j � 1Þði�j11Þ
ð j � kÞði�jÞ

: ðD3Þ

Let k* ¼ k � 1; then

ð j � 1Þði�j11Þ
ð j � kÞði�jÞ

¼ ði � k*� 1Þ
ð j � 1Þði�j11Þ

ð j � 1� k*Þði�j11Þ
: ðD4Þ

Then it follows from Equation D2 that

Xi�1

j¼1

ð j � 1Þði�j11Þ
ð j � kÞði�jÞ

¼ ði � k*� 1Þ
Xi�2

j¼1

jði�jÞ
ð j � k*Þði�jÞ

¼ ði � k*� 1Þ
Xi�1

j¼1

jði�jÞ
ð j � k*Þði�jÞ

� i � 1

i � 1� k*

 !

¼ ði � k*� 1Þ i � 1

1� k*
� ði � 1Þ

¼ ði � kÞ i � 1

2� k
� ði � 1Þ: ðD5Þ

Thus
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EðY Þ � 1 ¼ k� 1

k

i � 2

2
� ðk� 1Þði � kÞ

kð2� kÞ 1
k� 1

k

¼ k� 1

k

i

2
� i � k

2� k

� �

¼ i � 2

2

1� k

2� k

� �
: ðD6Þ

Thus

EðY Þ ¼ 1 1
i � 2

2

1� k

2� k

� �
: ðD7Þ

To derive the variance in the rank after one step for the general case, it is convenient to begin with the factorial
moments. It can be shown that for i $ 4

EðY � 1ÞðY � 2Þ ¼ 1� k

3� k

ði � 2Þði � 3Þ
3

: ðD8Þ

Since E(Y � 1)(Y � 2) ¼ E(Y2) � 3E(Y) 1 2,

VarðY Þ ¼ EðY 2Þ � ðEðY ÞÞ2 ¼ EðY � 1ÞðY � 2Þ1 3EðY Þ � EðY Þ2 � 2: ðD9Þ

Therefore

VarðY Þ ¼ 1� k

3� k

ði � 2Þði � 3Þ
3

1
3ð1� kÞ

2� k

i � 2

2
1 1� 1 1

i � 2

2

1� k

2� k

� �� �2

; ðD10Þ

which further simplifies to

VarðY Þ ¼ ð1� kÞði � 2Þ i � 3

2ð3� kÞ 1
1

2ð2� kÞ �
ð1� kÞði � 2Þ

4ð2� kÞ2
	 


¼ ð1� kÞði � 2Þ½ðk2 � 4k 1 7Þi 1 6ð1� kÞ�
12ð3� kÞð2� kÞ2 : ðD11Þ

APPENDIX E: THE ORDER STATISTICS FROM THE FRÉCHET DOMAIN

If Sj is the jth largest draw from a sample of size i � 1 drawn from the GPD(k, t), we begin by describing the
properties of E(Sj) as a function of k. Note that

EðSjÞ ¼ tE
U �k

j ;i�1 � 1

k

� �
¼ t

k

jði�jÞ
ð j � kÞði�jÞ

� 1

 !
, ‘ ðE1Þ

provided j . k. It follows that E(Sj) is finite (infinite) whenever EðU �k
j ;i�1Þ is finite (infinite). From Equation A1 of

appendix a

EðU �k
j ;i�1Þ ¼

ð1

0

ði � 1Þ!
ð j � 1Þ!ði � 1� jÞ! uj�1�kð1� uÞi�1�j du; ðE2Þ

which will be finite whenever uj�1�k , u�1 and infinite when uj�1�k $ u�1. Therefore, E(Sj) , ‘ if j . k and E(Sj) ¼ ‘ if
j # k. For example, if k ¼ 1, then E(S1) ¼ ‘, but the higher ranked fitnesses j . 1 have finite mean. As k increases,
the number of fitness effects with infinite means increases. When k . i � 1, then all of the beneficial mutations will
have infinite mean fitnesses.

We now consider the limiting behavior of the random variable Sj as k / ‘ by showing that

lim
k/‘

Sj ¼ ‘ ðE3Þ

for 1 # j # (i � 1). First note that

Sj ¼ t
U �k

j ;i�1 � 1

k
ðE4Þ
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is asymptotically equal to tU �k
j ;i�1=k. To show that Sj / ‘ as k / ‘ for j , i� 1, it is enough to show that kU k

j ;i�1/0 for
j , i � 1. From Equation A6 of appendix a, we have

EðkU k
j ;i�1Þ ¼ k

ði � 1Þ!
ð j � 1Þ!

Gð j 1 kÞ
Gði 1 kÞ : ðE5Þ

From Equation A9 of appendix a,

k
Gð j 1 kÞ
Gði 1 kÞ � kð1=kÞi�j /0 ðE6Þ

as k / ‘, provided j , i � 1. Therefore, EðkU k
j ;i�1Þ/0, which implies that kU k

j ;i�1/0 in probability.
For j¼ i� 1, the above argument does not hold, since Equation E6 does not converge to zero. Therefore, j¼ (i� 1)

requires a separate argument. From Equation 29, we need only to show that U �k
i�1;i�1=k/‘ as k / ‘ in probability. For

any x . 0 we have

P
U �k

i�1;i�1

k
. x

� �
¼ 1� P

U �k
i�1;i�1

k
# x

� �

¼ 1� P Ui�1;i�1 .
1

xk

� �1=k
� �

¼ P Ui�1;i�1 #
1

xk

� �1=k
� �

¼ 1

xk

� �ði�1Þð1=kÞ

/1 as k/‘: ðE7Þ

Thus limk/‘Sj ¼ ‘ for 1 # j # (i � 1).
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