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Abstract Geometric morphometrics comprises tools for

measuring and analyzing shape as captured by an entire set of

landmark configurations. Many interesting questions in

evolutionary, genetic, and developmental research, how-

ever, are only meaningful at a local level, where a focus on

‘‘parts’’ or ‘‘traits’’ takes priority over properties of wholes.

To study variational properties of such traits, current

approaches partition configurations into subsets of land-

marks which are then studied separately. This approach is

unable to fully capture both variational and spatial charac-

teristics of these subsets because interpretability of shape

differences is context-dependent. Landmarks omitted from a

partition usually contain information about that partition’s

shape. We present an interpolation-based approach that can

be used to model shape differences at a local, infinitesimal

level as a function of information available globally. This

approach belongs in a large family of methods that see shape

differences as continuous ‘‘fields’’ spanning an entire struc-

ture, for which landmarks serve as reference parameters

rather than as data. We show, via analyses of simulated and

real data, how interpolation models provide a more accurate

representation of regional shapes than partitioned data. A key

difference of this interpolation approach from current mor-

phometric practice is that one must assume an explicit

interpolation model, which in turn implies a particular kind

of behavior of the regions between landmarks. This choice

presents novel methodological challenges, but also an

opportunity to incorporate and test biomechanical models

that have sought to explain tissue-level processes underlying

the generation of morphological shape.

Keywords Geometric morphometrics � Thin-plate splines �
Shape variables � Interpolation � Local shape variation �
Modularity � Biomechanical models

Introduction

Evolutionary studies of morphological form seek to address

both questions about global properties of forms, and

questions about local variation within larger forms. Global

applications include group classification studies based on

general properties of the phenotype, such as phylogenetic

reconstructions (e.g., Cardini 2003; Caumul and Polly

2005; Catalano et al. 2010; Klingenberg and Gidaszweski

2010), genetic association studies of whole-organ shape

(e.g., Dworkin and Gibson 2006; Leamy et al. 2008), as

well as analyses of global variational properties of mor-

phological features, such as morphological integration

(e.g., Cheverud et al. 1989; Wagner 1990; Marroig and

Cheverud 2001; Young and Badyaev 2006; Ackermann

2009; Richstmeier and DeLeon 2009) and dimensionality

(e.g., Mezey and Houle 2005; Hine and Blows 2006).

Questions about local form focus on patterns of variation of

specific traits. These include modularity and integration

within complex organs (e.g., Mitteroecker and Bookstein

2007; Klingenberg 2008; Zelditch et al. 2009; Monteiro

and Nogueira 2010), genetic association studies of discrete

multivariate traits (e.g., Cheverud et al. 1991; Atchley et al.

1992; Leamy et al. 1999; Mezey et al. 2000; Zimmerman

et al. 2000), and definition of morphometric characters for

cladistic analysis (MacLeod 2002; González-José et al.
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2008). An increasingly important class of applications

attempt to interpret local shape variation in terms of the

genetic and developmental processes responsible for

shaping morphology (e.g., see Hallgrı́msson et al. 2009;

Klingenberg 2010). Those processes can themselves be

characterized by their spatial location, demanding models

built upon local aspects of shape.

Landmark-based geometric morphometrics makes

explicit use of spatial information to allow the definition,

measurement and analysis of the shape of whole landmark

configurations (Bookstein 1992). It is therefore ideally

suited to answer the first category listed: questions about

global forms. This is done by directly using untransformed

landmark coordinates (e.g., Workman et al. 2002; Leamy

et al. 2008; Márquez 2008), scores on an orthogonal basis

(e.g., principal components or uniform plus non-uniform

partial warp scores; e.g., Zimmerman et al. 2000; Dworkin

and Gibson 2006; Stelkens et al. 2009), or subsets of

principal components (e.g., Mezey et al. 2005; Burgio et al.

2009; Feng et al. 2009). Multivariate methods can be used

to find directions in phenotype space that are most asso-

ciated with particular hypotheses. For example, one can ask

which directions in shape space are most affected by

genotypic differences (e.g., Haley and Knott 1992; Leamy

et al. 1999; Klingenberg et al. 2001).

These global approaches have the important shortcom-

ing that dealing with whole configurations precludes

focusing on specific local traits, such as the shape of a

region known a priori to be affected by a particular

developmental event. When our aim is to uncover genetic

determinants of phenotypic traits, we need analytical

approaches that accommodate defining traits a priori, as in

univariate genotypic association studies. Current geometric

morphometric approaches, however, can only be applied

uneasily and heuristically to questions about local varia-

tion. Shape is a multivariate property of the form which is

contained in the relationship between changes at all land-

marks (Zelditch et al. 2004). Landmark superimposition

spreads local differences over the whole shape, making it

necessary to consider all landmarks in a configuration in

order to quantify these differences (Woods 2003).

Non-geometric measures of form, such as lengths or

areas can capture local information by virtue of referring

explicitly to a region, rather than the whole. Given this easy

precedent for defining local as what is measured in a

region, those using geometric morphometrics have some-

times succumbed to the temptation to treat landmarks

directly as traits in quantitative analyses. Consider one

naı̈ve method for capturing local shape variation—the use

of variation at a single landmark to make inferences about

local changes in form (e.g., Albert et al. 2008; Catalano

et al. 2010). It is readily apparent to most practitioners that

such individual landmarks lose almost all information

about shape, for reasons we discuss in more detail below.

We demonstrate here that analysis of subsets of landmarks

within a form similarly gives only distorted information

about local shape and shape variation. Nevertheless, the

practice of using subsets of landmarks to indicate local

variation is widespread. This approach has been used

in genetic association studies in the Drosophila wing

(Zimmerman et al. 2000; Dworkin et al. 2005; Feng et al.

2009; Klingenberg 2009), phylogenetic reconstructions of

cranial evolution in Homo (González-José et al. 2008), and

in analyses of morphological integration of the rodent

mandible (Klingenberg et al. 2003; Monteiro et al. 2005;

Zelditch et al. 2009).

We propose that local shape differences can be better

characterized through the use of interpolation functions that

predict changes at any point on the form from the entire set

of sampled points. Interpolation is widely used as a visual-

ization tool now, so what we advocate is a change in per-

spective, rather than a radical departure from current

practice. The change is to view the results of interpolation as

data, based on a testable hypothesis about the nature of the

local deformations that distinguish two forms. Using inter-

polation results in this way requires that the interpolation

model assumes a key position in our analysis. Consequently,

it seems appropriate to treat any particular interpretation of a

regional deformation as but one among many alternative

hypotheses. By expressing such changes in terms of models,

we emphasize the fact that there are assumptions associated

with any representation of deformation based on discrete

landmarks, and thus it seems logical to make these

assumptions explicit. Ultimately by tailoring our interpola-

tion models to experimentally observed developmental

changes in shape, for example through spatial heterogeneity

of growth rates under mechanical stress (Rauzi et al. 2008;

Aigouy et al. 2010), we can hope to infer something about

the processes that give rise to a more general set of changes

in form. In this contribution, we discuss criteria for selection

of continuous interpolation functions in addition to methods

to evaluate these functions at corresponding (e.g., homolo-

gous) spatial locations.

Measurement of shape

In geometric morphometrics, shapes of individual landmark

configurations are usually encoded as shape variables

measuring deviations from a reference shape. The two most

popular choices for such variables are Procrustes residuals

and partial warp scores (Dryden and Mardia 1998).

Procrustes residuals (PR) are landmark-wise differentials

between individual shapes and an optimally computed shape

mean or ‘‘atlas.’’ Partial warp scores (PW) are directions of

shape variation extracted from a basis defined with respect
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to the degree of localness (i.e., bending energy) associated

with the space of possible deformations that a reference

configuration can undergo (Bookstein 1992). Both shape

variables occupy a space nearly identical to a Euclidean

space tangent to the actual shape space at the atlas (Rohlf

1999), closely satisfying both the non-Euclidean geometry

of shape differences and the Euclidean geometry underlying

ordinary multivariate statistical analyses.

Of these two types of variables, PR invite defining traits

as subsets of landmarks because they denote a specific

location, and thus are a natural choice in studies that require

a priori definition of traits. An often overlooked conse-

quence of using PR, however, is the fact that an entire

configuration of landmarks is required to describe a single

high-dimensional observation in shape space (Woods 2003).

Shape deformations can only be measured by PR to the

extent that all residuals are used in any particular analysis;

No subset of landmarks can capture only local variation.

This is partly because superimposition induces auto-corre-

lations among landmarks within configurations (Bookstein

1992), hence distributing both global and local information

(including measurement error) over the entire set of resid-

uals (Walker 2000; van der Linde and Houle 2009), but

more fundamentally because interpretability, and hence

measurement of shape variation at a local region, depends

on the pattern of variation at neighboring regions.

Context-dependence of shape differences arises because

the proper interpretation of landmark displacement in a

region of interest depends on the pattern of displacement of

other landmarks. This spatial dependence is exemplified in

Fig. 1 with a hypothetical deformation of a Drosophila wing

relative to a reference configuration. The fact that landmarks

in the region labeled as a all have large PR might suggest

that the region is undergoing a shape change. For example,

treating the landmarks along vein L1 as a partition might

suggest that the region adjacent to L1 had changed. How-

ever, in the context of the whole wing, the fact that all the

landmarks in region a move in the same direction suggests

that a more appropriate interpretation is that region a is

being displaced by changes in region b, and that this dis-

placement preserves the shape of region a. The boundary

between regions a and b in Fig. 1 in fact lies close to an

important developmental boundary laid down early in wing

development. A pattern of change like that depicted would

have plausible interpretations in terms of differences in

growth confined to the posterior compartment.

Defining Localness

Our interest is in approaches that allow us to estimate

variational properties of specific morphological regions

selected a priori as subsets of larger structures. We refer to

these regions as focal traits (e.g., McGuigan and Blows

2010) to emphasize the fact that they are chosen to address

specific questions instead of being derived from algorithms

unrelated to these questions, such as principal components

or partial warps. We can break down changes in focal traits

further into changes at points within each region. We refer

to these infinitesimal contributions to shape deformation as

local (e.g., Cheverud et al. 1991; Atchley et al. 1992).

These changes are inferred by application of an interpola-

tion function to the landmark data. This assumes that

deformation information has ergodic properties over the

whole structure under analysis.

This notion of localness differs from the concept of non-

affine deformations (e.g., Bookstein 1992), which result

from decomposing the difference in shape between two

configurations into a global (i.e., affine) component with

uniform direction of shape change, and a local (i.e., non-

affine) one estimated as a residual from this global trend.

This residual has been minimized as a roughness penalty

during interpolation, and is uniquely defined, and thus

potentially distinct, at each local region of the shape. It is

possible to define focal traits based exclusively on non-

affine variation; however, there is no reason to assume

distinct biological bases for affine versus non-affine com-

ponents of shape change.

Estimation of Local Shape Variation

Given an anatomical structure represented by a collection

of landmarks, we wish to estimate phenotypic variation of

the shape of a focal region in relation to factors such as

genotype or environment. The estimation of local shape

variation comprises two related methodological problems,

L1
L2

L3

L4

L5

PCV

ACV

A

B

Fig. 1 Context dependence of shape differences in a hypothetical

deformation of the Drosophila melanogaster wing. Arrows represent

landmark differences between a reference, drawn as outlines of wing

veins, and a target form. Landmark displacements in the region

labeled as a suggest substantial correlated differences between target

and reference forms, even though the shape they delimit is nearly

invariant; landmark displacements in region b are of similar

magnitudes, yet describe a range of local differences in shape. L1–

L5 denote longitudinal veins discussed in text, PCV and ACV denote

posterior and anterior cross-veins, respectively
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i.e., estimating shape deformations at arbitrary regions in a

single individual, and ensuring that these measurements are

comparable across individuals. Thus, the procedure for

extraction of local shape data consists of three basic ele-

ments, namely (1) a shape deformation function, (2) a

discretization (i.e., evaluation) method, and (3) criteria for

choosing evaluation sites.

The following sections briefly explore each of these

elements. Each one can be approached in multiple ways,

and the appropriate choice may well vary with the bio-

logical question motivating a particular study. For exam-

ple, when choosing a deformation function, we anticipate

that models appropriate for the type of tissue (e.g., epi-

thelium, mesenchyme, cartilage, dermal bone) and process

(e.g., morphogenesis, growth, remodeling, regeneration)

under analysis can be developed (Humphrey 2003; Holden

2008). Similarly, spatial models can be evaluated as local

deformations using tensors, vectors, or area measurements

depending on the type of data at hand, whereas the choice

of evaluation sites should be based on inferences about

homology, for which different criteria may apply in dif-

ferent situations.

Shape Deformation Functions

Shape deformation functions allow the prediction of local

changes that distinguish two forms based on a sampled set of

locations on those forms, such as landmarks and semi-

landmarks. Generally, these functions interpolate deforma-

tions by weighting changes observed at these sampled

locations according to their distance to a point of interest.

These weights, in turn, can be defined ad hoc or derived from

a model describing the differences between two landmark

configurations as deformations of a physical object. Defor-

mations inferred in this way are often represented graphi-

cally through deformation of regular grids (Fig. 2a; Dryden

and Mardia 1998). We consider four general classes of

deformation functions, namely interpolating splines,

smoothing splines, kriging, and finite elements. We briefly

describe their basic aims and properties here, and consider

them in more detail in the Appendix, which shows the close

mathematical relationships among these methods.

Interpolating Splines

Interpolating splines use the spatial locations of a set of

landmark points (or curves) to map arbitrary locations in a

reference configuration onto corresponding locations in a

target form (Woods 2003). In the process, differences

among neighboring landmarks are smoothed according to an

optimal function so that interpolated sites receive greater

influence from nearer landmarks than from more distant

ones. One set of interpolating functions that are widely used

in geometric morphometrics are thin-plate splines (TPS;

Bookstein 1992). TPS model deformations using the phys-

ical analogy of the bending of a thin metal plate, and

−0.5

0

0.5

b

d

c

a

Fig. 2 Equivalent representations of differences between a target and a

reference Drosophila wing interpolated using thin-plate splines. a Defor-

mation of a sparse regular grid, the most commonly used deformation

representation in geometric morphometric applications; b deformation

of a dense regular grid represented as a vector field by drawing each

node as a velocity vector; c heat map representing a scalar field, with

pixel tone indicating proportional changes in local (i.e., infinitesimal)

area; d bubble plot representing a scalar field with bubble diameter

proportional to change in local area, where bubble locations correspond

to centroids of a triangulated grid anchored on sampled landmarks.

Local deformations in c and d computed as base-2 logarithms of the

ratio of local areas of target and reference shapes (e.g., a deformation

magnitude of 1 represents a local expansion by a factor of 2, whereas a

magnitude of -1 represents a local contraction by a factor of 0.5). These

values are estimated as Jacobian determinants of a TPS function
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produce the smoothest possible deformation of a configu-

ration of 2-D coordinates onto another (Bookstein 1992;

Dryden and Mardia 1998; Zelditch et al. 2004). According

to this model, deformations that are more global in scope

tend to be favored due to their lower contribution to the total

bending energy than deformations between nearby land-

marks. Alternative interpolation functions are derived from

a variety of solid and fluid dynamics models (Holden 2008),

such as elastic body splines (Davis et al. 1995, 1997), or by

modifying existing functions to control for the influence of

local deformations on interpolated values, such as done by

Approximating or Gaussian TPS (Rohr et al. 2001). We

have chosen to use TPS throughout this paper due to their

familiarity, but would nevertheless like to emphasize that

there are alternative models, some of which are potentially

more appropriate for biological problems.

Smoothing Splines

Smoothing splines generalize interpolating splines in

assuming that landmarks are measured with error. The goal

of the smoothing is to minimize the impact of that error on

computation of the splines (Hutchinson and Gessler 1994).

Smoothing splines can also be used to test among alter-

native interpolation functions.

Kriging

Kriging is a method commonly used in geostatistical

analysis to predict the value of a variable at an arbitrary site

from values of the same variable measured in a set of

adjacent sampled sites (Laslett 1994). Kriging assumes an

underlying random field that determines the spatial distri-

bution of the variable of interest, including values observed

at sampled sites as well as at all unobserved sites in

between them (Matheron 1973; Schabenberger and Gotway

2005). Predicted values are obtained as weighted sums of

observed values, and the weights chosen to minimize mean

prediction error (Goovaerts 1997). An underlying function

is chosen to model the information decay with distance

between sampled and predicted values, but this function is

generally not chosen to model deformations of a rigid set of

points, as done by interpolating splines.

Finite Element Methods

Finite element methods (FEM) predict local values within

rigid polygons or polyhedrons—the finite elements—from

changes observed at their vertices (e.g., Lewis et al. 1980).

FEM subdivide a landmark configuration into similar ele-

ments and thus interpolation is not based on a global

function as in methods described above. Within elements,

different approaches assume changes to be uniform or

modeled using a function with both uniform and non-uni-

form components (Bookstein 1986; Lewis et al. 1980;

Cheverud et al. 1983).

These descriptions suggest that these four methods rep-

resent alternative solutions motivated by the same problems,

i.e., prediction or estimation of unknown values given a

spatial distribution of samples. The Appendix further shows

that commonalities among these techniques are also

reflected also in their mathematical formulations, whereby

smoothing splines generalize interpolating splines; inter-

polating splines are indistinguishable from kriging under

certain circumstances; and FEM can be used as a spatially

discrete implementation of spline functions.

Local Evaluation of Interpolation Functions

In order to obtain a discrete representation of a deformation,

an interpolation function must be evaluated at a focal point,

where partial derivatives can be used to define various shape

descriptors (Woods 2003). These descriptors are applicable

wherever an explicit derivable deformation function is

available, but equivalent measurements could be obtained in

most cases through numerical differentiation.

Consider a general function d mapping the point p :

x; y; z anywhere in a reference shape into a corresponding

point dðpÞ in a target shape,

dðpÞ ¼
Xh

j

bjUjðpÞ þ
Xk

i

aiF rið Þ ð1Þ

where U and F are polynomials describing the affine and

non-affine components of the deformation, respectively, ri

is the distance between p and the ith sampled landmark in

the reference configuration, and a and b are estimable

parameters. Direct application of Eqn. 1, which generalizes

Eqns. 5 and 10 (from Appendix), yields a vector of bi- or

trivariate splines (or vector fields) denoted by d(p) = [dx,

dy]
T or d(p) = [dx, dy, dz]

T, respectively, which describe

shape deformation near a focal point while incorporating

information from elsewhere in a configuration. Applied to

nodes in a regular sparse grid, these splines can be used to

produce deformation plots (Fig. 2a). Alternatively, func-

tions can be visualized as approximately continuous vector

fields (Fig. 2b) to obtain a better resolved representation of

the spatial distribution of deformations implied by a model.

In either case, point values are computed using a spline

function, which, like sampled landmarks or residuals,

cannot be construed as shape variables, inasmuch as each

describes deformation contributions at a point, shape being

a property of 2- or 3-D regions instead.

A second discrete representation is given by the Jaco-

bian matrix Jxyz ¼
o dx;dy;dzð Þ

o x;y;zð Þ , which maps infinitesimal
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deformations between reference and target configurations

by measuring the rate of shape deformation at any point

along all directions simultaneously, so that

dðpÞ � dðqÞ þ Jd qð Þ � p� qð Þ

where q and d qð Þ are sampled landmarks at a reference

configuration and their corresponding deformed positions

(i.e., at the target configuration), respectively (Woods

2003). The accuracy of this approximation is a decaying

function of the distance between corresponding points,

increasing monotonically as p� qk k ! 0. Notice that

since J contains the first partial derivatives of d, the affine

component U, which is a first-order polynomial of p,

becomes a constant; therefore, J captures local information

as localized variation in the non-affine component of the

deformation. The interpretability of the first partial deriv-

atives of dðpÞ is ensured by the fact that the inferred pattern

of spatial variation has been optimized during interpolation

upon minimization of the roughness penalty (Eqns. 3, 4),

computed using the second derivative of dðpÞ.
For the 2- and 3-D cases, Jacobian matrices are given

respectively by

Jxy ¼
odx=ox ody=ox

odx=oy ody=oy

� �

Jxyz ¼
odx=ox ody=ox odz=ox

odx=oy ody=oy odz=oy

odx=oz ody=oz odz=oz

2
64

3
75

ð2Þ

Each Jacobian matrix can be directly treated as a shape

variable describing local deformation at an arbitrary point,

unlike splines or landmarks. Jacobians can be registered

and mapped onto a Euclidean space, tangent to a shape

manifold at the mean Jacobian (Woods 2003).

A Jacobian matrix gives information about the change in

shape deformation with respect to the direction of deviation

from the focal point, requiring a minimum of four and nine

vectors to characterize local variation at one point in 2- and

3-D, respectively. This poses a challenge in that it could

lead to an excessive number of variables for any modestly

sized shape. For many purposes, however, lower dimen-

sional representations of J should provide an adequate

summary of the influence of observed residuals on neigh-

boring regions. Two such representations that retain

interpretability are the determinant and the principal eig-

entensors of J, which provide, respectively, univariate and

two- or three-variate measures of local shape change

(Woods 2003; Commonwick et al. 2005).

Jacobian determinants are, for most practical applica-

tions, apt estimators of local shape deformations. If

topology is preserved between source and target configu-

rations (i.e., there are no flips or reversals in the relative

position of landmarks), these determinants are positive and

represent relative change in surface area (2-D) or volume

(3-D) in the region about the interpolation point. Thus,

det Jp

� �
¼ 1 indicates absence of area/volume change

around point p, so that only area/volume-preserving shears

have occurred; similarly, det Jp

� �
¼ 2 indicates that local

area/volume is doubled, and det Jp

� �
¼ 0:5 indicates that

local area/volume is halved. To project these estimators

onto a tangent space for statistical analysis, it suffices to

use the logarithm of the determinant after Jacobian matri-

ces have been centered at the identity matrices, i.e.,

deformations are quantified relative to a reference mean

(Woods 2003). Replacing J by its determinant transforms

the local deformation information into a scalar field

(Fig. 2c, d), consequently causing loss of information

about the geometry of local shape change which can be

compensated for by using a sufficiently dense distribution

of Jacobians. Figure 2c illustrates the same deformation

information shown in Fig. 2a, b, represented in terms of

logarithms of Jacobian determinants from spline functions.

Notice that the scalar field represented here provides

readily interpretable information regarding the distribution

of shape differences. Furthermore, local changes in areas

(Fig. 2c) are readily referable to biological processes while

local velocity vectors (Fig. 2b) are not.

Local Correspondence Among Configurations

To ensure the meaningfulness of comparisons between forms,

the points where interpolation functions are evaluated should

be chosen to maximize their biological correspondence

throughout a sample. In visualization applications, functions

are typically evaluated at nodes of regular or biorthogonal

grids (Fig. 2a; Bookstein 1986; Dryden and Mardia 1998),

rather than according to their anatomical correspondence or

homology. On the other hand, landmarks (and semi-land-

marks) are normally chosen to maximize correspondence and

ensure comparability. Criteria for discretization should be a

function of known or predicted (Boyer et al. 2011) landmark

locations. Delaunay triangulation is a useful algorithm for

choosing sets of internal (non-landmark) nodes based on

adjacency rules among landmarks (Dryden and Mardia 1998).

Given the uniqueness of the triangulation, which holds as long

as no three landmarks are co-linear and no four landmarks lie

on the same circle, triangle vertices are comparable across

specimens, much like the original landmarks and semi-land-

marks. One way triangulation patterns can then be used to

choose interpolation points consists of selecting one of the

triangle centers (e.g., incenter, circumcenter, Voronoi verti-

ces, centroid) as an evaluation point (Fig. 3a). These points, in

turn, can be incorporated as vertices for further triangulation

iterations, allowing the generation of sampling schemes

of potentially unlimited resolution (Fig. 3b). Figure 2d
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illustrates this approach by evaluating the same function and

data shown in Figs. 2a–c, at centroids of triangles generated

by one triangulation round on the original landmarks (i.e.,

closed circles in Fig. 3b). These scalar values convey local

deformation information at points which are arguably com-

parable across configurations.

The Analysis of Local Shape Variation: Examples

Case Study: Ability of Landmark- Versus Interpolation-

Based Methods to Recover a Simulated Pattern

of Variation in the Drosophila Wing

The following examples illustrate how this system for

treating interpolation results as data can be used in some

simple cases. They also show the inability of landmark data

alone to capture focal shape variation in a consistent

manner. Patterns of shape variation were simulated to

represent scenarios where obvious focal shape differences

occur despite relative constancy in magnitude of landmark

(i.e., Procrustes) residuals. These simulations also illustrate

some differences between the two available alternatives for

extracting landmark partitions to study focal shape varia-

tion, namely simultaneous alignment, where subsets of

landmarks are directly partitioned out from pre-shapes

without further alignment, and separate alignment, where

subsets of landmarks are re-registered after being parti-

tioned (Klingenberg 2009).

Simulation Method

Simulations were used to recreate data conforming to a

main effects model (i.e., MANOVA), consisting of a linear

effect representing the difference between the means of

two groups of Drosophila wings, such as might be caused

by single-nucleotide polymorphisms (SNPs; e.g., Ayroles

et al. 2009; Yang et al. 2011). Main-effect vectors were

chosen to match features (see Fig. 4) suggested by our

unpublished data on genotypic differences in the Dro-

sophila Genetic Reference Panel (DGRP; Baylor College

of Medicine/Human Genome Sequencing Center 2010).

Two vectors, v1 and v2, were produced in this manner, one

describing a wing shape with invariant anterior compart-

ment and highly variable posterior one (Fig. 4a), and

another, identical except for a focal reflection of variation

along one vein to produce wings where both compartments

are highly variable (Fig. 4b). Corresponding mean vectors

for two groups lying at opposing extremes of these vectors

were defined as 0.5vi and -0.5vi; these vectors were then

used to generate random samples of 1,000 sets of 200

vectors (i.e., 100 per group) from a multivariate normal

distribution with error covariance matrices equal to the P

matrix of 165 of the DGRP lines (J. Nye, unpublished

observations).

Simulated configurations comprise 44 Procrustes-

aligned landmarks and semi-landmarks, from which

residuals were computed and used as shape variables.

Interpolated values were computed as the base-2 logarithm

of the determinant of the Jacobian of a TPS function

evaluated at specific wing locations. These points were

located at the centroid of triangles obtained from a Dela-

unay triangulation derived from 12 Type I landmarks

defined at wing vein intersections. Landmark and interpo-

lated data were compared in terms of their ability to

recover simulated deformation scenarios using multivariate

(i.e., MANOVA) and spatially-explicit univariate (i.e.,

ANOVA) statistics.

Results

Figure 4a, b depict the two effect vectors used for simu-

lations, both as landmark differentials and as TPS inter-

polations of local deformations. These heat maps are useful

visual aids for the interpretation of local effects of land-

mark variation, and are produced by cubic interpolation of

b

a

Fig. 3 Schematic representation of two rounds of Delaunay triangu-

lation in the Drosophila wing data set discussed in the text.

a Landmarks (closed circles) are connected by adjacency rules as

defined by the triangulation algorithm, and centroids of the resulting

triangles (open circles) become evaluation points for interpolation

functions; b these points can be used along with landmarks in a

second round of triangulation, resulting in a denser set of points

(triangle centroids not shown)
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the TPS-interpolated Jacobians based on a high-resolution

grid overlaid on the entire wing surface. Comparisons of

landmark versus interpolated data are focused on the wing

regions with more pronounced effects in simulations.

These correspond to the portion of the wing anterior to the

longitudinal vein that is closest to the anterior margin, i.e.,

L2 (see Fig. 1 for vein nomenclature), and the portion

bound by longitudinal veins L4 and L5, spanning the

anterior portion of the posterior wing compartment.

As expected, effect vectors account for over 99% of the

variation of whole configurations in both scenarios, using

both types of variables (Table 1). In contrast, patterns of

focal shape variation differ between interpolated and

landmark data in the two regions of interest, namely L2 and

L4–L5, depending on deformation scenario and partition-

ing method (Table 1). Specifically, within the L4–L5

region about 100 and 97% of the variation in landmark and

Jacobian data, respectively, is explained by the main group

effect, irrespective of whether partitions are realigned

(Table 1). In contrast, in the L2 region only about 28% of

variation of interpolated values is explained by this effect

in scenario I and 97% in scenario II, consistent with the

conditions of the simulation. Landmark data shows a

highly significant effect in the L2 region in both scenarios,

with differences between group means explaining over

98% of the variation in all cases.

Despite the similarity between patterns of multivariate

variation of original and realigned landmark data, the latter

approach can approximately recover patterns of shape

variation if the correct set of points is selected as a parti-

tion. Thus, separately aligning L2 and L4–L5 configura-

tions approximately recovers the shape differences

simulated in both scenarios (Fig. 5a, b). Such contrast

between alignment schemes results from the removal of

non-shape variation during the re-superimposition of sub-

sets of landmarks, suggesting partition realignment as a

preferred approach for capturing focal shape information.

This advantage of realignment, however, is somewhat

offset by the loss of contextual information essential for

proper interpretation of shape differences. This becomes

apparent by comparing landmarks associated to the L2

region in Figs. 4b and 5b, which highlight the tendency of

superimposition to re-distribute variation among land-

marks, favoring their evenness, and potentially leading to

distorted interpretations of local deformations. This ten-

dency is particularly problematic whenever landmark var-

iation is non-uniformly distributed across a partition, where

alignment would favor a transfer of variation from highly

variable regions to those with low variation (Walker 2000).

Interpolated values integrate information from the whole

configuration when producing local estimates, and thus can

in principle be treated as individual variables that can be

used in multivariate analyses as focal estimates of shape

change, or in univariate analyses for the purpose of spatial

localization of shape differences. Figure 6 maps R2 and

P values from individual Jacobian-based ANOVAs onto a

a

b

−0.5

0

0.5

Fig. 4 Two scenarios used in simulations of patterns of variation of

Drosophila wings. Scenario I (a) differs from scenario II (b) only in

the sign of the y-coordinate of the landmark displacements on vein

L2. Tones represent base-2 logarithms of the ratio of local areas of

target and reference configurations (see text for details). Grid and heat

map interpolations are based on TPS functions

Table 1 Percentages of sample variance explained by the main effect simulated in scenarios I and II depicted in Fig. 4 for Jacobian-,

non-realigned- and realigned landmark data, with P values from corresponding MANOVAs in parentheses

Scenario Sample Original landmarks Realigned landmarks Jacobians

I Whole configuration 99.99% (0.0001) 99.36% (0.0026)

Partition L2 98.72% (0.0044) 99.29% (0.0023) 27.81% (0.1616)

Partition L4-L5 99.93% (0.0002) 99.94% (0.0002) 98.06% (0.0066)

II Whole configuration 99.99% (0.0001) 99.60% (0.0016)

Partition L2 99.72% (0.0009) 99.80% (0.0006) 96.68% (0.0113)

Partition L4-L5 99.93% (0.0002) 99.94% (0.0002) 98.30% (0.0058)

Jacobians were estimated as base-2 logarithms of determinants of Jacobian matrices derived from TPS functions
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reference wing, producing an informative representation to

assist in identifying the approximate spatial distribution of

differences between the mean shapes of two groups.

Interestingly, some heterogeneity in these values is

apparent throughout otherwise homogeneous regions (e.g.,

notice low P values within region L2 from scenario I). This

is a consequence of the underlying interpolant being a

continuous function, sensitive to fluctuations in available

parameters (i.e., landmarks), suggesting that increased

sampling of landmarks may be valuable. Figure 7 illus-

trates how an increase in semi-landmark sampling might

help local estimates become increasingly stable. There is a

larger difference in the results when increasing the number

of points by a factor of 2 and 4, than when it increases

between 4 and 8, suggesting that interpolation quality

improves non-linearly with the amount of sampling.

Case Study: Analysis of Patterns of Covariation Among

Partitions of the Rodent Mandible

The rodent mandible constitutes a model system for the study

of patterns of covariation among morphological regions

(Zelditch et al. 2008). Many such studies reference a

developmental and genetic model that postulates that the

variational properties of the fully developed mandible derive

ultimately from the physical aggregation of modular mes-

enchymal condensations, which develop as independent

units in early embryos (Atchley and Hall 1991; Hall and

Miyake 2000). Directly applied, this model generates an

expectation of modular variation that can be tested against

plausible alternatives, incorporating, for instance, effects of

reorganizing agents that become relevant later in develop-

ment, such as mechanical loading and stress (Zelditch et al.

2008). Expectations of modular variation are often repre-

sented as alternative partitions of the same morphological

variables, which are mutually tested for support (Klingen-

berg et al. 2003; Monteiro et al. 2005, Márquez 2008). In

geometric morphometrics methodology, this procedure

entails partitioning landmark configurations into subsets of

landmarks, and available methods focus on the multivariate

structure of covariation among partitions (e.g., Mitteroecker

and Bookstein 2007; Martı́nez-Abadı́as et al. 2009), scalar

measurements of partition correlation (e.g., Monteiro et al.

2005; Klingenberg 2009), or the global structure of covari-

ation (Richtsmeier et al. 2005; Márquez 2008).

As an example, we analyzed a sample of adult speci-

mens from three Sigmodontine rodent species, namely

Nectomys squamipes (NS, N = 70), Holochilus chacarius

(HC, N = 67), and Microryzomys minutus (MM, N = 53).

These samples belong to a larger study of morphological

L2

L4

L5 L5

L4

L2

a Scenario I b Scenario II

−0.5

0

0.5

Fig. 5 Drosophila wing

partitions resulting from

simulation scenarios depicted in

Fig. 4, after been separately

aligned. Tones represent

proportional magnitudes of

deformation in local area (see

text for details). Grid and heat

map interpolations are based on

TPS functions

0.5R2

1.0

0.1

0.1P
0.5

< 0.0001

a b

c d

Fig. 6 Bubble plots representing results from univariate ANOVAs

based on estimates of local area change under two simulation

scenarios of variation in the Drosophila wing (see Fig. 4 for details).

Bubble diameter is proportional to average R2 (a, b) and P values (c,

d) over 1,000 replicates. Original data consists of base-2 logarithm

determinants of Jacobians of a TPS function evaluated on a

triangulated grid (see Fig. 2) on each replicated configuration.

Original landmarks and semi-landmarks are represented by closed
circles drawn on wing veins

Evol Biol (2012) 39:419–439 427

123



integration of the rodent skull (Márquez 2008), and span

substantial ecophenotypic variation, comprising species

dwelling in similar environments but with different feeding

ecologies (NS vs. HC and MM), as well as species at dif-

ferent ends of the size spectrum of Muroid rodents in

general (NS and HC vs. MM).

A total of 18 landmarks and 51 semi-landmarks were used

to parameterize a TPS function whose Jacobians were then

evaluated at the centroids of unique sets of triangles found by

Delaunay tessellation. A scalar field of local area changes

was then computed as the base-2 logarithm of the determi-

nant of these Jacobians, consisting of 86 points located inside

the mandible area (Fig. 8). Differences among the three

species are supported by MANOVA based on full-configu-

ration data using both landmark (Wilks K = 0.0001, P & 0)

and interpolated data (Wilks K = 0.0002, P & 0).

Regions mapping developmental modules onto the adult

mandible were defined and assigned non-overlapping sets

of landmarks and semi-landmarks. For illustrative pur-

poses, and without loss of generality, six regions were

defined, spanning, respectively, (1) the distal (i.e., masti-

catory) portion of the incisor alveolus (IN), (2) the molar

alveolus (ML), (3) the ‘‘ramus,’’ including the insertion site

for the medial masseter as well as the proximal portion of

the incisor alveolus (MS), (4) the coronoid process (CR),

(5) the condyloid process (CN), and (6) the angular process

(AN) (Fig. 8). Partition-based analyses were carried out to

investigate differences between landmark- and interpola-

tion-based approaches in studies of patterns of focal shape

variation and covariation.

Pairwise differences among species, quantified as vector

differences, were computed using both whole configura-

tions and separate partitions. Interpolation-based estimates

are always based on whole configurations, and thus values

are invariant with respect to partition schemes (Fig. 9). In

contrast, interspecific differences computed using land-

mark partitions appear distorted relative to whole config-

urations (Fig. 10a), mainly due to the absence of contextual

information regardless of whether partitions are realigned

(Fig. 10b, c). This is not surprising, given that the land-

marks in the mandible do not define closed shapes, but fall

only along some edges of the regions they represent. Proper

reading of shape differences requires consideration of

landmarks in adjacent partitions. Even though realignment

would restore interpretability of landmark differences as

local shape differences, neither approach can successfully

capture both local and relative shape information with

respect to other partitions.

By assuming a continuous mapping of differences

between configurations, it becomes possible to quantify

local variation at arbitrary points using interpolated values.

Scalar fields can thus be combined into regional vectors or

simply treated as scalars (e.g., by averaging or adding

them), in multivariate and univariate tests. An example is

illustrated in Fig. 9, where results from multiple compari-

sons among NS, HC, and MM mandibles based on (uni-

variate) Jacobian determinants are mapped on a mandible,

providing an informative visualization for the spatial

localization of interspecific differences. Note that in gen-

eral, it is advisable to interpret these values jointly in the

context of their spatial distribution. Such analyses could,

R 2 2 2= 1.0 R = 0.5 R = 0.1
−0.500.5

a. x2

b. x4

c. x8

Fig. 7 Effect of landmark sampling density on interpolation. Density

multipliers with respect to original simulation study are 2 (a), 4 (b),

and 8 (c). Left column shows heat maps of TPS interpolations of local

changes in area based on each set of landmarks and semi-landmarks;

right column shows R2 values from univariate ANOVAs based on

individual Jacobians, evaluated on a triangulated grid. Bubble

diameters are proportional to average R2 values and thickness of

bubble edges are proportional to R2 standard errors, computed from

100 tests of differences between two groups of N = 50 configurations

each

incisor (IN)

molar (ML)

masseter (MS)angular (AN)

condylar (CN) coronoid (CR)

Fig. 8 Triangulation and triangle centroid selection on a reference

configuration of a rodent mandible. Triangulation based on landmarks

and semi-landmarks (grayed circles); triangle centroids (black circles)

indicate evaluation points for interpolation functions. Five partitions/

modules discussed in text denoted by distinct shades of gray
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however, help pinpoint atypically similar or dissimilar

focal regions for further testing.

To examine the effect of choice of variable on patterns of

intraspecific variation, we estimated variances of partitions

as sums of Procrustes residual or Jacobian variances stan-

dardized by number of variables (i.e., landmarks or inter-

polation points). These variances, shown in Table 2, further

suggest that these two types of variables measure different

properties of the form. Within species, original and realigned

landmark-based estimates of partition variation are posi-

tively correlated with each other (correlation coefficients are

0.97, 0.92, and 0.95 for NS, HC, and MM, respectively), and

negatively correlated with Jacobian-based estimates (aver-

age correlation coefficients are -0.64, -0.41, and -0.18 for

NS, HC, and MM, respectively). Similarly, estimates of

variation across partitions are highly correlated among all

species when computed based on landmarks (correlation

coefficients range between 0.77 and 0.94 for original and

between 0.84 and 0.95 for realigned landmarks), with mas-

seteric and angular partitions showing consistently larger

variances. In contrast, Jacobian-based estimates are highly

correlated between NS and HC (r = 0.97), with condyloid,

coronoid, and molar partitions being the most variable, but

poorly correlated between MM and both NS (r = 0.29) and

HC (r = 0.08).

This relatively higher capacity for species distinction by

Jacobian data is echoed in patterns of covariation. A simple

statistic for measuring covariation between two partitions is

the RV-coefficient (Escoufier 1973; Márquez and Knowles

2007; Klingenberg 2009), which provides a multivariate

analog to the correlation coefficient. Table 3 shows RV-

coefficients among all partitions considered in this study.

Overall, landmark-based RV-coefficients are low and homo-

geneous across partitions (range is [0.10, 0.31] for original and

[0.07, 0.24] for realigned partitions), whereas Jacobian-based

coefficients display a wider range of values (range = [0.02,

0.58]), suggesting that Jacobians reveal more informative

aspects of variation than landmark residuals.

The apparent ability of Jacobian data to produce stronger

variation and covariation signals likely results from the

integration of spatial information beyond the boundaries of

fixed partitions. Partitions like the molar, coronoid, or mas-

seteric, as defined herein, delineate particularly ‘‘open’’

outlines containing little information about their immediate

surroundings. In contrast, closed compartments, such as

vein-bounded cells in the Drosophila wing, should be largely

sufficient to determine deformation patterns within those

cells. This could explain why the large Jacobian-based cor-

relation observed between molar and coronoid partitions in

MM is not matched by landmark data (Table 3), as the signal

for this correlation is enhanced by information provided by

landmarks along the masseteric ridge, which defines a ven-

tral margin of sorts for these partitions. Conversely, this

could also explain why the angular partition, which lacks an

equivalent closing boundary, is so poorly correlated with

other partitions when using Jacobians, relative to landmarks,

highlighting the fact that the quality of discrete evaluations

of spatial functions depends largely on the density of sam-

pled points in the vicinity of such evaluations.

Discussion

A Case for Local Estimates of Shape Variation

In landmark-based geometric methods, shape is an abstract

concept defined as the property of the form that remains

a NS vs. HC

b NS vs. MM

c HC vs. MM

Fig. 9 Pairwise differences in local shape between mandibles of

three species of Sigmodontine rodents, mapped on a reference

configuration. Bubble diameter is proportional to absolute differences

in Jacobians, all drawn at the same scale. Open and closed circles
represent different signs for differences. Asterisks represent signifi-

cant comparisons, after Bonferroni adjustment. NS = Nectomys
squamipes, HC = Holochilus chacarius, MM = Microryzomys minutus
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after removing non-shape information (e.g., Zelditch et al.

2004). Estimates of variation in shape of a structure are

often based on landmark differentials. Anyone examining a

pattern of such differentials will naturally try to infer an

explanation for this variation based on what may have

happened between the landmarks, such as local expansions

and contractions. This process has largely been intuitive.

We argue for making this process algorithmic, and tying it

to explicit assumptions about the types of changes that are

most likely to have occurred. We thus see interpolation,

previously employed largely as a visualization tool, as

generating data that can be used to make, and ultimately

test, predictions about causes of differences in form. The

resulting framework assumes that differences between

forms captured by landmark residuals can be fit to a con-

tinuous function or family of functions inferred from the

joint behavior of all landmarks.

When treated as whole structures, landmark configura-

tions contain the same information as any interpolation

function derived from them. Discrepancies emerge, how-

ever, among estimates of shape differences at local (i.e.,

infinitesimal) and focal (i.e., regional) scales, where the

focus is on the behavior of regions spanning subsets of

landmarks. Focal shape, as we have shown, is context-

dependent in the sense that in order to adequately interpret

focal deformations, we often require information present

beyond the boundaries of the partition of interest. In gen-

eral, interpretability of local deformations is potentially

informed by all of the landmarks in a configuration.

b Simultaneous realignment of partitions

c Independent realignment of partitions

NS vs. HC NS vs. MM HC vs. MM

a Unpartitioned configurationFig. 10 Pairwise differences in

landmarks between mandibles

of three species of

Sigmodontine rodents, mapped

on a reference configuration.

a Differences based on full set

of landmarks; b differences

calculated without realigning

landmarks. c Differences

calculated after realigning

landmarks within each of six

partitions illustrated in Fig. 8.

Note the local distortions in

landmark orientation. Heat

maps based on TPS

interpolation of full set of

landmarks (a) or individual

partitions (b, c), with intensity

denoting magnitude of local

differences (legend as in Fig. 2).

NS = Nectomys squamipes,

HC = Holochilus chacarius,

MM = Microryzomys minutus

Table 2 Standardized variances of landmark- and Jacobian-based

partitions in mandibles of three species of rodents

Partition Species Original

landmarksa
Realigned

landmarksa
Jacobiansb

IN NS 0.271 0.141 0.383

HC 0.518 0.291 0.743

MM 0.388 0.211 0.425

ML NS 0.321 0.193 0.591

HC 0.673 0.386 1.054

MM 0.367 0.220 0.978

MS NS 0.447 0.341 0.338

HC 0.870 0.693 0.675

MM 0.701 0.557 0.525

CR NS 0.331 0.195 0.562

HC 0.826 0.471 1.108

MM 0.454 0.255 0.852

CN NS 0.356 0.249 0.604

HC 0.610 0.420 1.296

MM 0.451 0.323 0.451

AN NS 0.592 0.353 0.243

HC 0.891 0.519 0.320

MM 0.759 0.478 0.732

Jacobians were estimated as base-2 logarithms of determinants of

Jacobian matrices derived from TPS functions. Variances were

standardized by number of landmarks or Jacobian estimates. IN =

incisor, ML = molar, MS = masseteric, CR = coronoid, and AN

angular partitions; NS = Nectomys squamipes; HC = Holochilus
chacarius; MM = Microryzomys minutus
a Multiplied by 1 9 105; b Multiplied by 10
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Interpolation-based shape quantification assumes a par-

ticular form for this context-dependence. This approach

can be seen as an extension of random vector field kriging

methods used in geostatistical analysis for interpolation of

local functions (Hutchinson and Gessler 1994; Laslett

1994), albeit with an emphasis on estimation of variation

and model choice, shared with finite element methods

(FEM; Lewis et al. 1980). Unlike FEM, which estimate

shape and shape variation from pre-determined subsets of

nearby landmarks, our approach makes use of all land-

marks for such estimation. In the Appendix, we show that

the entire family of methods available for predicting vari-

ation at arbitrary points on a form share great similarities,

and in special cases are precisely equivalent.

Thus, landmark configurations can be fitted to continu-

ous functions capable of spawning arbitrarily spaced fields

of Jacobian matrices, spline vectors, or integrated scalars.

A function-based approach offers flexibility of choosing

among a variety of metrics that can yield readily inter-

pretable scalar measurements, such as those used in Figs. 6

and 9. The logarithms of these scalars estimate proportional

infinitesimal changes in local area and can be interpreted

both as focal deformations, and as local contributions to

regional variation.

A potential drawback of splines and kriging is that both

methods assume global homogeneity of the processes

underlying local variation. In kriging, a single homoge-

neous stochastic process is assumed to give rise to

observed (and estimated) values, whereas a single function

is normally used in spline-based interpolation. If the

objective of interpolation is purely to smooth differences

observed at landmarks, then it may be desirable to choose a

single function, such as thin-plate splines (TPS). If, on the

other hand, we wish to use interpolation as a tool for sta-

tistical estimation or prediction, then the guiding optimality

principle should be framed in terms of hypotheses about of

the processes underlying spatial variation. Our hypotheses

may involve different models in different parts of the form.

For instance, using a single function or stochastic process

as the basis for interpolation usually implies assuming that

spatial information is distributed isotropically around an

interpolation point (Goovaerts 1997; Holden 2008),

whereas in living tissues subcellular forces driving growth

and development are highly anisotropic (Humphrey 2003;

Rauzi et al. 2008). An apparent advantage of FEM over

splines and kriging methods is that by partitioning a mor-

phological structure into FEs, isotropy is only assumed for

points within individual elements. Thus, framed in a

hypothesis-testing context, FEM could in principle be used

to compare among alternative partition schemes corre-

sponding to specific predictions for spatial covariance

structure, with FEs defining locally isotropic regions.

Given that ordinary interpolation is used to obtain local

values within FEs, it seems that such an approach could be

seen as a quasi-discrete version of the random fields

approach underlying splines, kriging, and related approa-

ches (Matheron 1973; Grenander and Miller 1998), and it

suggests that fitting instead a patchwork of local fields

might be a useful alternative to incorporate spatial

heterogeneity.

Table 3 RV-coefficient values for landmark- and Jacobian-based mandible partitions computed from data from three rodent species

Part Species Jacobians Original partitions Realigned partitions

IN ML MS CR CN IN ML MS CR CN IN ML MS CR CN

ML NS 0.11 0.12 0.11

HC 0.09 0.28 0.17

MM 0.12 0.20 0.10

MS NS 0.22 0.15 0.31 0.14 0.18 0.17

HC 0.29 0.27 0.28 0.15 0.21 0.11

MM 0.31 0.28 0.21 0.16 0.12 0.13

CR NS 0.06 0.19 0.20 0.23 0.13 0.13 0.17 0.14 0.14

HC 0.18 0.32 0.23 0.15 0.15 0.14 0.09 0.21 0.13

MM 0.07 0.58 0.21 0.13 0.25 0.13 0.09 0.08 0.14

CN NS 0.11 0.08 0.07 0.10 0.18 0.15 0.18 0.23 0.15 0.17 0.10 0.20

HC 0.04 0.05 0.07 0.06 0.26 0.10 0.11 0.24 0.20 0.11 0.09 0.18

MM 0.09 0.06 0.10 0.19 0.10 0.12 0.12 0.24 0.11 0.11 0.12 0.14

AN NS 0.06 0.08 0.07 0.08 0.08 0.21 0.17 0.13 0.15 0.25 0.21 0.14 0.13 0.07 0.14

HC 0.05 0.13 0.06 0.07 0.05 0.16 0.21 0.18 0.18 0.19 0.13 0.24 0.15 0.10 0.09

MM 0.05 0.04 0.03 0.02 0.05 0.12 0.11 0.10 0.15 0.27 0.12 0.10 0.12 0.11 0.17

Jacobians were estimated as base-2 logarithms of determinants of Jacobian matrices derived from TPS functions. IN = incisor, ML = molar, MS

= masseteric, CR = coronoid, and AN angular partitions; NS = Nectomys squamipes; HC = Holochilus chacarius; MM = Microryzomys minutus
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An interesting consequence of using interpolation-based

methods concerns a shift in relevance of homology con-

straints. Landmark homology is often a primary consider-

ation when establishing comparability across forms.

Treating shape as a continuous function relaxes this con-

straint somewhat by requiring only homology of broad

regions or whole configurations. Decisions such as the

number of landmarks and semi-landmarks to sample and

the number of interpolated points to evaluate can be based

solely on practical criteria. Proper registration, however,

remains a critical issue. Both registration and interpolation

could in principle be done on deformation functions

directly. At present, however, it remains unclear which

functions can be empirically justified; for now, landmark

homology is the best supported criterion to ensure mean-

ingful registration of shapes.

The recursive triangulation approach we have used

seeks to balance the need for discrete sampling on a con-

tinuous surface imposed by interpolation methods and the

homology requirements imposed by registration. In prac-

tice, the number of measured sites is limited by sample size

and computational demands, and thus it may often be

useful to have criteria for prioritizing sampling locations in

order to maximize the quantity and quality of information

in a sample. Examples of such criteria include (1) prefer-

ring points that minimize redundancy across spatially

adjacent regions within individuals, (2) emphasizing

regions with the highest variation across individuals, or (3)

focusing sampling on specific areas of interest, e.g., by

using spatial redundancy as a vehicle to increase mea-

surement robustness. Algorithms can be designed to itera-

tively sub-sample sites across configurations with the

general aim of finding sampling nodes that adaptively

optimize a particular criterion.

A drawback of using interpolating or random field

functions to estimate spatial variation is their susceptibility

to spatial autocorrelation of measured deformations (e.g.,

Laslett 1994). On the one hand, autocorrelation of errors

may affect the precision of estimates by obscuring actual

trends of variation (Laslett 1994); perhaps more problem-

atic, however, is the fact that evaluating continuous inter-

polation functions at discrete locations tends to produce

patterns of interpolated values that are more influenced by

landmarks in their immediate vicinity. If a user chooses to

minimize the number of landmarks, for example to speed

the sampling process, the quality of the interpolated

information will suffer. As shown in simulations (see

Fig. 7), this issue can be mitigated by increasing the den-

sity of sampled landmarks and semi-landmarks prior to

interpolation, thus decreasing the weight of individual

landmarks on interpolated values in their immediate sur-

roundings. The use of interpolation-based analyses may

thus alter the tradeoff between how well a form is sampled,

and how many individuals can be sampled.

Landmarks and Jacobians Capture Different Aspects

of Local Shape Variation

Even though most users of geometric morphometric

methods would reject treating individual landmark coor-

dinates as meaningful univariate variables, subsets of

landmarks are typically considered appropriate objects to

capture local shape information. Access to local informa-

tion, in turn, is crucial to answer many biologically relevant

questions. Defining parts in terms of collection of land-

marks often implies treating individual coordinates as

unstructured (i.e., exchangeable) random variables in

multivariate analyses, thus losing spatial information nec-

essary to ascertain their specific contribution to shape. Such

loss of spatial information is not limited to specific subsets,

because adjacent subsets and, in fact, whole configurations

may affect local information such that it can become

impossible to accurately interpret deformations without

fully taking into account their spatial context.

Our results demonstrate that landmark partitions con-

tain insufficient information to infer the shape transfor-

mations of the morphological regions that they

presumably sample. The choice of whether one uses the

simultaneously aligned data or the realigned partitions

(Klingenberg 2009) merely alters the specific aspects of

shape variation that are lost. Simultaneous alignment

preserves deformation patterns defined in the context of

whole pre-shapes, therefore accurately localizing focal

deformations for the purpose of visual representation. At

the same time it confounds local and global sources of

variation, implying that simultaneously aligned partitions

tend to overestimate shape variation (Klingenberg 2009).

This is particularly visible in regions with nearly invariant

shape that are adjacent to highly variable ones (see

Fig. 4). In contrast, separately aligned partitions accu-

rately estimate focal variances by mapping each partition

to its own shape space. Such realignment, however, could

lead to a systematic misrepresentation of the shape of

partitions by ignoring their context and redistributing

landmark variation during Least Squares fit (e.g., van der

Linde and Houle 2009). All of these issues derive from

the fact that shape is a property of whole configurations

that cannot, in general, be allocated to arbitrary focal

points without distortion or loss of information. Further-

more, as shown in the study of rodent mandibles, artificial

segmentation of otherwise integrated information may not

only lead to misconstruing local shape changes, but also

to a loss of statistical power.
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A Role for Explicit Models in Geometric

Morphometrics

Using explicit modeling as a core measurement and esti-

mation approach in geometric morphometrics is, we argue,

an unavoidable consequence of using landmarks to infer

shape. All geometric morphometric analysis entails

assumptions about the ergodicity of landmark configura-

tions, i.e., whether information at a landmark predicts

variation at inter-landmark regions. Use of explicit models

adds a novel layer of decision-making to geometric mor-

phometrics for which there are few guidelines at present.

The interpolation function used in previous examples, TPS,

has been chosen not because of empirical or theoretical

support of any kind, but due to their mathematical prop-

erties (Bookstein 1992). TPS produces the smoothest

possible interpolation, and thus tends to spread local

information globally (Rohr 2003; Holden 2008), so that

even highly localized deformations tend to influence

inferred deformations at regions with little actual landmark

data. There are, in fact, a variety of alternatives to TPS

modeled after other non-rigid systems (reviewed by Rohr

2003; Holden 2008), such as those based on elastic solids

(Davis et al. 1995, 1997), which may prove better suited to

model localized deformations in biological forms.

Model choice is rarely a straightforward affair but

available approaches, i.e., least squares, Bayesian, maxi-

mum likelihood, and information-based methods, could in

principle be adapted to facilitate this choice in geometric

applications (cf. Grenander and Miller 1998). It is clear that

models should be treated as falsifiable hypotheses of shape

deformation.

Prospects

A large number of biological questions related to the nature

of morphological variation are meaningful only in the con-

text of local variation. We have briefly explored methods

appropriate for addressing some of these questions, such as

testing for associations between genomic variation and local

morphological variation, or comparing variation patterns to

a priori hypotheses of morphological integration. These

questions, in turn, are key to efforts to link genetic, devel-

opmental, and morphological variation, that is to build a

genotype-phenotype map (Wagner and Altenberg 1996;

Houle 2010), and thus models for the analysis of biological

shape should arise from mechanistic, i.e., genetic and

developmental, considerations. The search for models that

can explain phenotypic variation is a problem with a much

wider appeal. For instance, these efforts constitute the basis

for a number of disciplines, such as computational mor-

phodynamics (Chen and Brodland 2008; Roeder et al. 2011),

which combine visualization techniques and mathematical

modeling to understand the mechanisms at gene and cellular

levels that underlie the development of macroscopic struc-

tures (e.g., Farhadifar et al. 2007; Blanchard et al. 2009;

Aegerter-Wilmsen et al. 2010). Development of model-

based geometric morphometrics may be able to link the

‘‘languages’’ of functional genomics, developmental

mechanics, and phenotypic variation.

It remains to be explored whether available interpolation

functions, such as TPS and related radial basis functions,

provide promising avenues for the incorporation or con-

solidation of biologically relevant models into shape

analysis. These functions are based on mechanical defor-

mation models that represent the behavior of particular

materials under pressure or stress (Holden 2008). The

resulting deformations are thus metaphors, and hence

potentially problematic when used as models of biological

variation. The fact that many of the experimentally-based

attempts to link development and form mathematically are

based on biomechanical and mechanochemical properties

of viscoelastic fields undergoing stress (reviewed by

Humphrey 2003; Davidson et al. 2009; Roeder et al. 2011),

suggests ample common ground to pursue unitary models

to explain both patterns and mechanisms underlying shape

variation. Some examples include the organizing role of

anisotropic cortical strain distributions on planar cell

polarity (e.g., Aigouy et al. 2010), cell and tissue defor-

mation (e.g., Rauzi et al. 2008; Blanchard et al. 2009;

Rauzi and Lenne 2011), growth (e.g., Nelson et al. 2005;

Shraiman 2005), and epithelial packing (Farhadifar et al.

2007; Aegerter-Wilmsen et al. 2010). Models derived from

these processes could increase the accuracy of interpolated

estimates of local shape and be tested for empirical support

at a macroscopic level.
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The following sections provide mathematical details for the

interpolation approaches discussed in this work, empha-

sizing common principles shared by these methods.
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Interpolating Splines

Interpolating spline functions use information contained in

landmark-wise differences between two configurations to

map every location in a reference configuration onto a

target form (Woods 2003). In general, m-dimensional in-

terpolant functions are optimized by minimizing a rough-

ness penalty q 2 R
m (m = 1, 2, 3), defined in terms of the

second order partial derivatives of the interpolant function

UðpÞ

q Ux;y

� �
¼
Z Z

R2

o2U
ox2

� �2

þ o2U
oy2

� �2

þ2
o2U
oxoy

� �2

dxdy ð3Þ

for the 2-D case (Dryden and Mardia 1998), and

q Ux;y;z

� �
¼
Z Z Z

R3

o2U
ox2

� �2

þ o2U
oy2

� �2

þ o2U
oz2

� �2

þ2
o2U
oxoy

� �2

þ2
o2U
oxoz

� �2

þ2
o2U
oyoz

� �2

dxdydz

ð4Þ

for the 3-D case (Meinguet 1979). The minimized sum of

q Uð Þ over splines is the minimum penalty incurred from

deforming a set of fixed set of landmarks into another set of

equivalent (e.g., homologous) landmarks (Bookstein 1992),

and it is termed the total bending energy. Minimization of

Eqns. 3 and 4 leads to the smooth interpolation of deformation

values at arbitrary locations of the form.

The interpolating splines emphasized in this study,

namely TPS, belongs to a class of interpolants termed

radial basis functions (RBF; Rohr 2001; Holden 2008),

with general form

UðpÞ ¼
Xh

j

bjUjðpÞ þ
Xk

i

aiR p� qik kð Þ ð5Þ

where UðpÞ represents the interpolation function at the 2- or

3-D point p (Holden 2008). In this formalism, a deformation

is modeled as the sum of an affine component, given by UðpÞ,
and a function R that provides the non-affine component of

the deformation, which smoothes the propagation of

deformations throughout an object as a function of the

distance between the interpolation point p and sampled

landmarks qi (i = 1, …, k). Thus, the influence of a landmark

on the non-affine component of an interpolated site decays

with the distance between the two locations, i.e., p� qik k.
Finally, bj and ai are weights for the affine and non-affine

components, respectively. Eqns. 3 and 4 can be solved as a

set of linear equations with general form:

R Q
Q 0

� �
a
b

� �
¼ P

0

� �
ð6Þ

which describes a deformation of a reference configuration

Q onto a known target configuration P (Holden 2008).

Deformation functions Ri ¼ R p� qik kð Þ are collected in

matrix R, and we solve for vectors of coefficients a and b.

A set of thin-plate splines is given by the function

U1ðpÞ; . . .;UmðpÞ½ �T¼ bþ ApþWT rðpÞ ð7Þ

where bþ Ap defines the affine component of the

deformation, b (m 9 1), A (m 9 m), and W (k 9 m) are

represented by coefficients a and b in Eqns. 5 and 6, and

rðpÞ ¼ R p� q1ð Þ; . . .;R p� qkð Þð ÞT is computed using the

logarithmic interpolants Ri ¼ r2
i log ri (for 2-D) and Ri ¼ ri

(for 3-D), where ri represent the Euclidean distances

between each landmark and the interpolation point in the

reference (Bookstein 1992; Dryden and Mardia 1998).

Unknown coefficients in Eqn. 7 are estimated using the set

of linear equations

R

1T
k

QT

1k

0

0

Q

0

0

2
64

3
75

W

bT

AT

2
64

3
75 ¼

P

0

0

2
64

3
75 ð8Þ

where Rij elements from R (k 9 k) are computed using the

interpolation function between all possible pairs of land-

marks in the reference (using Rij ¼ 0 for i = j), 1k (k 9 1)

is a vector of ones, and Q and P (k 9 m) are the reference

and target configurations being compared, respectively

(Dryden and Mardia 1998).

Smoothing Splines

One generalization of the spline methodology treats the

choice and adjustment of interpolant functions as an esti-

mation problem, where landmarks are assumed to be

measured with error that is minimized prior to computation

of the splines (Hutchinson and Gessler 1994). In this

approach, sampled landmarks q are modeled as instances

of an intrinsic function g qð Þ, so that qi ¼ g qið Þ þ ei qið Þ,
where ei denotes an error function (Hutchinson and Gessler

1994; Laslett 1994). The idea is to choose the function g

that best predicts the values at sampled landmarks (Laslett

1994). The optimal function is the one that minimizes the

quantity

Xn

i¼1

qi � g qið Þ½ �2þkq g qð Þð Þ

where k [ 0 is a smoothing parameter, estimable through

cross-validation (Wahba 1990; Hutchinson and Gessler

1994), and q is as defined in Eqns. 3 and 4, so that kq can

be treated as a roughness penalty (Dryden and Mardia

1998). When TPS are used as the g function, the system in

Eqn. 8 becomes
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Rþ kIk

1T
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Q
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0
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3
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0

0

2

64

3

75 ð9Þ

which also can be used for interpolation. Smoothing splines

could be used to test among alternative spatial patterns of

roughness penalties (k) given an interpolation function, as

well as for choosing among alternative g functions. Sim-

ulations have shown, however, that the use of cross-vali-

dation to optimally fit splines for spatial prediction often

leads to over-smoothing and a consequent loss of valuable

spatial information, an issue that seems related to fluctua-

tions in the spatial density of the samples used for inter-

polation (Laslett 1994).

Kriging

Kriging is a method for linear prediction of the value of

a variable using the information contained in a set of

neighboring samples (Laslett 1994). Kriging presupposes

the existence of a random field ZðpÞ : p 2 D � R
mf g

spanning a continuous domain D and observed at sam-

pled points q, which determines the value of the variable

of interest at each location (Matheron 1973; Schaben-

berger and Gotway 2005). The value at any arbitrary site

p is given by the linear predictor ẐðpÞ, defined by

ẐðpÞ ¼
Xk

i¼1

kiZ qið Þ ¼ KZ qð Þ

where K ¼ k1; . . .; kk½ � for k landmarks, and ki are weights

for the q landmarks, which are computed based on the

information content at each landmark about the true value

of the random field at the estimation site ZðpÞ (Goovaerts

1997). The goal of kriging is to find the weights ki that

minimize the mean square prediction error MSPEðpÞ ¼
E ZðpÞ � ẐðpÞ
� �2
h i

, under the unbiasedness constraint

E ẐðpÞ � ZðpÞ
� 	

¼ 0 (Goovaerts 1997).

The central element of kriging prediction is the covari-

ance function r t � sð Þ, which describes the relationship

between the difference between points t and s, and their

values in the random field, i.e., Z tð Þ � Z sð Þ (Cressie 1993).

A common approach in spatial analysis consists of fitting

an arbitrary continuous function to an empirical (discrete)

variogram and using this function to derive a covariance

function (Goovaerts 1997; Cressie 1993). More generally,

kriging estimates the covariance function underlying the

residual portion eðpÞ of the random field Z given the linear

model

ZðpÞ ¼
Xh

j¼1

bjgjðpÞ þ
Xk

i¼1

aiK p� qik kð Þ ð10Þ

where
Pk

i¼1 aiK pið Þ ¼ eðpÞ defines the residual and
Ph

i¼1 bigiðpÞ ¼ E ZðpÞ½ � the trend of the field, with gðpÞ ¼
g1ðpÞ; . . .; ghðpÞ½ � a linear combination of known functions

(Matheron 1973; Hutchinson and Gessler 1994). A com-

parison between Eqns. 5 and 10 suggests similarities

between the trend of the random field in kriging and the

uniform component of a deformation in terms of splines,

and between the unique residuals at each point estimated

using kriging with the non-affine component of the inter-

polating splines. In fact, when the rank of the function

monomials gðpÞ equals the degree of the derivative used to

estimate the roughness parameters in splines (see Eqns. 3

and 4) minus one, kriging and interpolating splines are

identical methods (Hutchinson and Gessler 1994).

Alternative kriging strategies differ in their treatment of

the trend as a universal constant, as a local constant, or as a

function, such as an interpolant function, upon which

locally predicted mean values are modeled (Goovaerts

1997). The latter, termed universal kriging has been

developed in the context of shape deformations by Mardia

et al. (1996), whose work has demonstrated that 2-D TPS

are in fact universal kriging predictors with covariance

function given by r rð Þ ¼ r2
i log ri.

Finite Elements

Finite element methods (FEM) extract local deformation

information by generalization or interpolation of the dis-

placement at landmarks forming the vertices of rigid

polygons or polyhedrons (Lewis et al. 1980). Two types of

FEM have been applied in morphometric studies, namely

homogeneous FE, in which shape changes within an ele-

ment are assumed to be uniform throughout (Bookstein

1986; Moss et al. 1987), and non-homogeneous FE,

whereby interpolation is used to model the deformation as

a non-linear function of the changes observed at landmarks

(Lewis et al. 1980; Cheverud et al. 1983; McAlarney 1995;

McAlarney and Chiu 1997).

In homogeneous FEM, a set of normalized landmark

displacements of an individual with respect to a reference

configuration, A, are used to estimate tensors and principal

strains via eigendecomposition of the sum of squares and

cross-products matrix ATA (Bookstein 1986; Moss et al.

1987). The resulting eigenvectors can be envisaged as the

principal axes of the ellipse that results from deforming the

circumference that passes through all of the vertices of an

element in the reference configuration to match the target

configuration (Dryden and Mardia 1998). Non-homoge-

neous FEM, on the other hand, use normalized landmark

displacements between reference and target configuration

to parameterize a system of continuous functions whose

purpose is to find a common set of coefficients that explain
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both these displacements and all the deformations inside

the element boundaries (Lewis et al. 1980). If we denote a

shape transformation at the ith vertex of a triangle as

Ti ¼ Qi þ Ri; i ¼ 1; 2; 3ð Þ, where T and Q represent the

target and reference configurations, respectively, and R

represents a deformation, then for any arbitrary point p

within Q, we can write the interpolated value of the

deformation at this point as

rp ¼
X3

i¼1

kiRi ð11Þ

(Lewis et al. 1980) where k denotes vertex-specific weights

derived from an interpolation function. In practice, Eqn. 11

can be parameterized using polynomials (Pepper and

Heinrich 1992), or an interpolator, such as TPS (Bookstein

1986).

Both types of FEM require a priori choices regarding the

shape and location of finite elements, and the absence of

unambiguous criteria to make this choice (Cheverud and

Richtsmeier 1986) is generally perceived a weakness of the

method (McAlarney and Chiu 1997; Dryden and Mardia

1998). In the case of homogeneous FEM, the assumption of

spatial uniformity of interpolated values suggests a pref-

erence for elements of small size, the optimal choice being

to use triangles (2-D) and tetrahedrons (3-D), compiled

together as a mesh (Pepper and Heinrich 1992). Even

though this choice should lead to relatively precise esti-

mates, it also imposes undesirable restrictions, namely the

fact that triangles can only undergo affine deformations

(Dryden and Mardia 1998), limiting their usefulness as

shape descriptors. Non-homogeneous FEM, on the other

hand, can be applied to more complex volumes (e.g.,

Cheverud et al. 1983), which in turn requires making ad

hoc choices regarding which landmarks to use as element

vertices, once again incorporating arbitrary elements in the

measurement of shape (Zienkiewicz 1971; McAlarney and

Chiu 1997; Dryden and Mardia 1998). Additional issues

with FEM are the lack of a standard approach for com-

putation of a mean and registration (Cheverud et al. 1983),

and the absence of a clear-cut separation of global and

local components of a deformation, due to the fact that both

components are defined only within elements.

Comparison Among Alternative Methods

The common purpose of shape analysis by interpolation,

smoothing, or kriging methods is the estimation or pre-

diction of an unknown local deformation value Z(p) as a

function of its spatial location, based on observed landmark

deformations, Z(q). Measurements Z(q) are used to infer or

parameterize an underlying function g[Z(p)], which is then

applied throughout the whole structure under analysis. An

analogous function is also derived in non-homogeneous

FEM to estimate values within FE.

The function g[Z(p)] comprises two parts: an affine

component that captures the portion of the total shape

deformation that is shared throughout the whole structure

under analysis, and a non-affine component that captures

local deviations from the global trend, modeled using a

covariance function tracking the influence of sampled

points as a function of the distances amongst them.

Splining methods select the function g among the universe

of possible functions that minimizes the deformations

required to explain the differences between two shapes

(Bookstein 1986), according to an a priori deformation

model. In kriging, on the other hand, g defines a random

field whereby local deformations, whether measured or

predicted, are treated as stochastic realizations of an

intrinsic process (Matheron 1973). In practical applications,

however, the two methods largely overlap (Hutchinson and

Gessler 1994).

Thus, interpolation-based shape analyses by smoothing,

kriging or finite elements methods are all closely related,

and become indistinguishable from interpolating splines

under the circumstances we have outlined.
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