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1.1 MUTATION ACCUMULATION 
The IVe population (Houle and Rowe 2003) was the base for this experiment.  IVe was derived 
from the outbred IV population that has been maintained under similar conditions in the 
laboratory since 1975 (Charlesworth and Charlesworth 1985).  It is maintained under crowded 
conditions in ten bottles at 25ºC, and probably has an effective size of at least a few hundred 
individuals.  IVe  is marked with an ebony allele that spontaneously occurred in the IV 
population, and was subsequently backcrossed into a sample of the IV population to yield a 
population homozygous for ebony.  Inbred lines were derived by full-sib mating of single pairs 
of flies for 40 generations, and checked for residual heterozygosity at generation 35 using 
transposable element insertion sites (Houle and Nuzhdin 2004).  Two of the surviving inbred 
lines showing low TE heterozgosity and high fitness, IVe-33 and IVe-39, were chosen as base 
genotypes for mutation accumulation.   
  IVe-33 and IVe-39 were each used to found 75 MA sublines, and thereafter these were 
maintained by full-sib mating of virgin flies, except in rare instances.  We minimized selection 
within sublines by allowing single pairs to lay eggs for a short time, and collecting all offspring 
that eclosed within 13 days.  Parents to initiate the next generation were chosen at random with 
respect to development time.  Individual pairs often failed to produce offspring, so we set up four 
vials for each subline.  Two vials (A and B) had a single pair of parents, and two (C and D) had 
four pairs.  These were ordered a priori, so that if several males and females eclosed from the A 
vial, we set up the next generation from the A vial.  If A did not produce the 12 flies necessary to 
set up A-D vials, we would use B vial offspring instead.  Finally, if both A and B did not 
produce sufficient offspring, we pooled flies from vials A, B and C, preferentially choosing flies 
from A, then B, then C.  If these three vials still did not produce sufficient flies, we would resort 
to flies from the D vials as well.  Every other generation, we set up an E vial with four pairs of 
parents, which was reared at 17ºC to provide an additional backup to replace the subline if all the 
vials A-D failed.  The two lines differed in their failure rates. Individual IVe-33 pairs (A and B 
vials) failed to produce sufficient offspring 14.1% of the time, while IVe-39 pairs failed 28.5% 
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of the time.  In IVe-33 we founded a generation from one of the four-pair vials 6% of the time, 
and for IVe-39 14% of the time (Houle and Nuzhdin 2004).  
 MA sublines were gradually lost over generations.  The typical course for subline loss 
would be that all available vials did not produce sufficient offspring at some generation, so that 
the full complement of vials could not be set up.  Those sublines that were later lost would never 
subsequently produce enough flies to increase the number of vials, and eventually the number of 
potential parents would dwindle until flies of only one sex were obtained.    
 
1.2 WING MEASUREMENT 
We measured wings of live flies using an automated image-analysis system (Wingmachine, 
Houle et al. 2003).  We imaged the upper surface of the left wing, except in rare instances when 
that wing was damaged, when we substituted the right wing. Prior to wing measurement, subline 
populations were expanded to a larger size in two or more generations.   We extracted the 
locations of 12 vein intersections from cubic B-splines (Lu and Milios 1994) fit to the vein 
structure of each wing (see Fig. 1 in Mezey and Houle 2005). Outliers were manually checked 
against the images, and spline position corrected when necessary. Splining and error correction 
was accomplished in the Java program Wings (Van der Linde 2004-2008).  Throughout the 
paper, coordinate data has units of centroid size in μm × 10, and centroid size has units of 1 μm. 

One grain of live baker’s yeast was added to these vials to improve fecundity and 
production.   We assumed that no fixation of mutations took place during the subline populations 
during this expansion phase, so the number of generations of mutation accumulation was the 
number of generations of inbred propagation.  Flies whose wings were measured were reared in 
vials with six female parents and a similar number of male parents. Parental flies were discarded 
after four days, and offspring collected without anesthesia to avoid interfering with wing 
expansion.   Flies were measured in four different experiments during the mutation accumulation 
process, summarized in Table S1.  
 Control genotypes were available in the first of these experiments, conducted in 1998 at 
generation 73 of mutation accumulation.  Control populations were derived from embryos 
cryopreserved at generation 0 of the mutation accumulation experiment (Houle and Nuzhdin 
2004).  Five pairs of IVe39 flies were recovered at generation 47 of mutation accumulation, and 
each was used to found an independently maintained population at a size of ten vials/generation.  
At generation 73 the control populations thus had undergone 26 generations of evolution, 
including mutation and natural selection, while the MA sublines had experienced 73 generations 
of mutation under conditions minimizing the strength of natural selection.  The increased 
population size of these control populations relative the MA sublines enabled selection to reduce 
the impact of new mutations on the mean phenotype.  Unfortunately, cryopreserved IVe33 
embryos did not survive to generation 47 (Houle and Nuzhdin 2004).  In addition, we had to 
revive all the remaining cryopreserved IVe39 embryos at generation 47 to obtain the ten control 
flies.  The IVe39 control populations were lost before subsequent experiments.  
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1.3 PREPARING DATA FOR ANALYSIS 
Extraction of data from wing images and error correction was accomplished in the Java program 
Wings (Van der Linde 2004-2008).   Once a batch of wings is splined, Wings uses the minimum-
volume ellipsoid (MVE) approach (Rousseeuw and van Zomeren 1990) to identify outlier wings, 
and overlays the fitted spline model onto the wing image, allowing the user to evaluate the fitted 
splines.  Outliers that were due to poor fit by the automated splining algorithm were corrected 
manually using an interface in Wings that allows the user to alter the control points of the spline 
model until it fits the image well.  Outliers due to a flawed wing image (a fold or tear in the 
wing, or a failure to properly position the wing in the field of view) or a wing with a major 
developmental defect were discarded before analysis.  

The data we analyzed consisted of the locations of 12 vein intersections. These were 
aligned by generalized Procrustes least squares superimposition (Rohlf and Slice 1990).  The 
resulting data gives the x- and y- coordinates of the displacement of each landmark from the 
centroid, measured in units of centroid size.  Throughout the paper, coordinate data has units of 
centroid size in μm × 10, and centroid size has units of 1 μm.   

We did a second round of outlier detection on the residuals from ANOVAs on each 
coordinate separately, and on scores along the first 22 principal components derived from the 
data, with gender and subline genotype as main effects.  Configurations more than 4.5 S.D. from 
on any coordinate or score were checked manually for fit of the splines to the image using the 
editing procedure in Wings.  Splining and manual adjustments were performed by two observers 
(DH and JF), but the identity of the editor introduced negligible variance and was ignored in the 
subsequent analyses. Even following correction, 185 wings had values on some traits or principal 
components that lay more than 4.5 S.D. from the mean. These wings were genuinely atypical, 
and not due to splining errors. They were approximately randomly distributed over genotypes. 
Analyses including and omitting these observations produced very similar estimates of genetic 
components. We report only analyses with outliers omitted.  

The distribution of both the data and the residuals following the analyses outlined below 
was symmetrical and approximately normal.  The distribution of residuals along each of the 
principal components of the shape data and centroid size departed significantly from normality 
(P<0.01 by Cramer-vonMises’ test) due to heavy tails (median kurtosis 0.88). Skewness was 
generally small (median -0.06).  Centroid size had high kurtosis (7.7 in males, 5.9 females), and 
positive skew in males (0.38 due to rare males that achieved sizes typical of females), and 
negatively skewed in females (-1.27) due to a long tail of flies that have male-typical sizes.  Both 
departures are due to the sensitivity of size to nutritional conditions.  

Canonical variates and discriminant analyses on subline means revealed that that the 
homozygotes of subline IVe-39-64 had a phenotype typical of an IVe-33 subline in each of the 
three experiments it was measured in.  We included homozygous crosses with IVe-39-64 in our 
analyses as an IVe-33 subline, but deleted all crosses where  IVe-39-64 was mated with other 
IVe-39 sublines. The residuals of all variables in the final data set differed significantly from 
normality, but visual inspection of q-q plots suggests that the departures are quite small.  
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1.4 MUTATION MODELS 
We define a mutation model for a single trait. Within each line, IVe-33 and IVe-39, 
accumulation begins with a single homozygous reference genotype with sex-specific phenotypic 
means.  A total of n loci are capable of influencing a trait, and the ith site has a haploid mutation 
rate ui.  We assume that mutations are rare enough that we can neglect the possibility that these 
will change the population grand mean in the short term, and that mutation rates are low, so that 
each mutation that occurs during the duration of the mutation-accumulation experiment is 
unique.  In analyses including both sexes, we assume that the mutational effects are the same in 
each sex.  A mutation at a single site causes deviation ai from the mean in heterozygous 

condition and 2 i i ia d g   in homozygous condition, where di is the dominance deviation at site 

i. More generally, both homozygous and heterozygous effects may be altered by epistatic 
deviations when in mutationally altered background, rather than the original inbred line 
genotype, which we treat as a reference genotype.  We assume that there is no bias to the 
epistatic effects, so that the expectation of the epistatic deviations remains 0 throughout the 
experiment. The probability that each individual carries a new mutation at the ith site is 2ui.   . 
   For mutations with selection coefficients much less than the inverse of the effective 
population size, the per generation rate of fixation in a subline is ui.  After t generations of 

mutation accumulation, the among subline variance due to site i will be 2
i it g   E  in 

homozygotes and 2
i it a   E  in heterozygotes. Over all n loci affecting the trait the total genetic 

variance among the full set of homozygous sublines is 2 ,SV tU g   E  assuming no epistatic 

interactions.  Among heterozygous crosses between sublines the variance is 2EbV tU a    , 

again assuming no directional epistasis. From this, and equations (1) and (2) in the Methods 

section, we can see that 2M sV V t , and that 2Mns bV V t .  

Wing phenotypes were measured in both homozygous and heterozygous genotypes.  The 
phenotypes of homozygotes of the jth subline at time t have components  

 ( ) ( )2 2jjtr jt jt r jjt ijt jt r jjt
i

Y b c e A c e          

where bjt is the heterozygous effect of the autosomal genotype of the jth subline, c denotes 
departures from the additive model due to a combination of dominance and epistatic interactions, 

and ( )r jje  the unique effects on individual r.  The total heterozygous effect j ij
i

b A , where Aij 

is an indicator variable that is 0 if no mutation was fixed at site i in line j, and ai if one was fixed.   
The phenotype of heterozygotes with maternal parent subline j and paternal parent subline k at 
time t has components  

 ( ) ( )jktr jt kt jkt r jkt ijt ikt jkt r jkt
i i

Y b b e A A e               
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where εjk represents the epistatic deviations from the additive model. Assuming that each 
mutation is unique, heterozygous genotypes formed by crossing sublines are never homozygous 
for any new mutations, and all departures from an additive model in the heterozygotes must be 
due to epistatic interactions.  The homozygous genotypes may deviate from the additive 
expectation due to a combination of epistasis and dominance, so the terms c and ε and their 
variances are not comparable. 
 The covariances of relatives are derived from these phenotypic effects by defining each 
effect as independent of all other effects, so that only terms that involve squares of each of the 
components have non-zero expectations.  For example, the covariance between maternal half 
sibs, the rth offspring of cross j × k at time t with that of the sth offspring of cross j × m at time x 
where x>t, is  

 
       ( ) ( )

2

E E

E

jktr jmxs jt kt jkt r jkt jx mx jmx s jmx

jt b

Y Y b b e b b e

b V

              
   

 

as subline j is the only source of common effects.  Ignoring the time dimension, there are five 
degrees of relationships within the complete diallel crosses that generate unique covariances 
between relatives.  The covariances generated by each relationship are given in Table S3 in the 
form of the coefficients of the variances of the causal variances of the b, c and ε effects.  

The covariances associated with the additive effect of a subline can be interpreted in 
terms of the mutation model as  

 

2

2 2E E E .2
Mns

b jt ijt
i

tVV b A tU a
                
  

Similarly, the among sub-line variance can be used to estimate VM  as  

 2 24 4 E E 2S b c c MV V V tU a V tU g tV             

Consequently we expect that M MnsV V  because 2 2S bV t V t .  

Complete diallel data also offer the opportunity to estimate many additional variance 
components, including sex-specific, X-linked additive, interaction effects, and parental effects.  
Unfortunately, analyses of more complex models did not converge.  
 
1.5 ANALYSES 
To make inferences about fixed effects, we used multivariate analyses of variance and 
covariance implemented in the GLM procedure in SAS  (SAS Institute 2004).  Effect sizes and 
consistency of effects were judged using least squares means or parameter estimates.  We 
attempted to implement mixed model multivariate analyses of variance using maximum 
likelihood in the Mixed procedure in SAS, but in most cases multivariate models with more than 
a few traits did not converge.  

The animal model program Wombat (Meyer 2007, 2010) used for our quantitative 
genetic analyses assumes that individuals at the head of the pedigree are outbred, so we directly 
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calculated the relationship matrix using the coefficients in Table S3.  Covariances were scaled to 
the 192 generations of the experiment by multiplying each relationship coefficient by the 
proportion of the 192 generations that the two genotypes shared accumulated mutations.  For 
example, the covariances for individuals from generation 167 and 192 were multiplied by 
167/192.   We assumed that each subline was completely inbred as the expected within-subline 
variation due to unfixed mutations is approximately 4VM (Lynch and Hill 1986), negligible 
relative to the variances accumulated over the 192 generations of the experiment. We then 
calculated the generalized inverse of this relationship matrix using SAS IML (SAS Institute 
2004), and furnished this matrix to Wombat using the GIN option. 

Following suggestions of Meyer (Meyer 2008),we used the parameter expanded 
expectation maximization  (PX-EM) algorithm, which converges relatively rapidly from starting 
values far from a maximum, in combination with the average information (AI) algorithm which 
converges quadratically when close to a maximum, but poorly far from the optimum.  
Experimentation suggested that cycling between the two was a useful generic method, as it was 
difficult to anticipate whether initial values were poor or not.  In most cases we used 10 rounds 
of PX-EM, followed by 10 rounds of AI.  If convergence had still not occurred we repeated this 
cycle as many times as necessary.   For the first analysis of each data partition, the initial 
parameter estimates were calculated as a proportion of the phenotypic variance-covariance 
matrix, while later analyses of variant models used estimates from previous WOMBAT runs as 
initial values.  Starting covariance matrices were checked to determine if they were singular. If 
they were, the values were ‘bent’ by reducing the largest eigenvalues, while increasing the 
smallest ones by an equal total amount until full rank was achieved (Hayes and Hill 1981).  

 
1.6 ESTIMATING AVERAGE DOMINANCE 

To estimate the dominance implied by our data, we solved 

 

 

 

2 2 2

2

2

2 2

1
2E E , 2 E

2

2 E

E ,1

2 2E 2E

M Mns

Mns

U a d COV a d U a
V V

V U a

d COV a d

a a

                
  

   
      

. 

Under the limiting condition of a perfect correlation between d and a, d xa  and  

  2, ECOV a d x a    . Then 

 

2 2 2

2 2

2

E E1

2 2E 2E

0
4 2

M Mns

Mns

M Mns

Mns

x a x a V V

Va a

V Vx x

V

        
      


   
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and 

 

1 1
2 4

1
2

1
2 1

4

M Mns

Mns

M Mns

Mns

V V

V
x

V V

V


  




  

. 

The most familiar parameterization of dominance denotes the dominance, h, as the proportion of 
the homozygous effect seen in heterozygotes.  Then under the assumption that d=xa,   

 
 2

1

2

h a xa a

h
x

 




. 

Simulations suggest that neither variance in x nor variance in d independent of a affect this 
result.  Estimates of dominance are shown in Table S9. 
 
1.7 COMMON SUBSPACE ANALYSIS 

Consider two populations A and B with covariance matrices MA and MB.   A naive algorithm to 
estimate the common subspace is to assess the variances in MA and MB along the eigenvectors of 
the matrix derived from the pooled data MA+B.  If the variance in either MA and MB is less than 
the significance threshold, that eigenvector is declared to be in the corresponding nearly null 
space, and dropped from the common subspace. The flaw in this algorithm is that the 
eigenvectors of  MA+B  do not necessarily find directions with minimal variance in MA and MB. 
To improve on this algorithm we exploited a result from Flury (1983) that exploits ‘generalized’ 
eigenanalysis of C the product one covariance matrix (MB) premultiplied by the inverse of 

another covariance matrix (MA).  The matrix 1
A B
C M M  will approach the identity matrix if 

MA=MB.   As MA and MB become more unequal, the diagonal elements of C will become more 
different from 1, being larger when the corresponding direction in B has more variance than that 
in A, and smaller in the converse case where A has more variance than B.  Flury (1983) showed 

that the eigenvectors of C,  CV , estimate directions that have most extreme ratios of variances in 

MB relative to MA, and therefore the largest and smallest ratios of variances in population B 

relative to A.  The eigenvectors, CV , are not necessarily orthogonal, although the scores on the 

vectors within populations are constrained to be uncorrelated.  The eigenvalues, CΛ , estimate the 

ratio of variances in those directions. Thus, the largest element of max,C Λ  identifies the 

direction where ratio of the variance in population B  to variance in population A is greatest. The 

smallest eigenvalue min  correspondingly estimates that direction where the variance in A is 

maximal relative to that in B.  This operation is also used in canonical variates analysis, where it 
is used to find the directions in a space that maximize the ratio of between group variance to 
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within group variance.  Our subspace-finding algorithm is based on the idea that CV is more 

likely to identify directions with non-significant variation in one matrix than the eigenvectors of 
MA+B.   

The modified subspace partitioning algorithm for matrices MA and MB  then proceeds as 
follows. The eigenvectors of the matrix MA+B  without significant variation identify most axes of 
the doubly-null subspace.  MA and MB, are projected into a space of reduced dimension, based 
on the eigenvectors of the pooled matrix MA+B with significant genetic variance.  We then 

calculated 1
r Ar Br

C M M , decomposed Cr into its eigenvectors, CV , then evaluated the 

evolvability of MAr and MBr along each of these eigenvectors.  If any variances were less than 
the minimum eigenvalue statistically supported for the corresponding matrix (MA or MB) we 
reduced rank r by one, and repeated the analysis until all variances on the eigenvectors of Cr 
were greater than the minimal supported eigenvalues for MA and for MB.  In most cases, the first 
or last eigenvectors were the nearly-null directions, although for a few comparisons the only 
nearly-null variances were found on one of the interior eigenvectors of Cr.  To project a p p  

covariance matrix MX into r-dimensional space we use the first r columns of the eigenvector 
matrix of MA+B,  VA+B 

 
    T

Xr A B Xr A Bn r n r  
M V M V

 
where the brackets indicate a submatrix and  T indicates transpose.  
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 Supplementary Results 
 

2.1 TESTING FOR INBREEDING DEPRESSION AND DIRECTIONAL DOMINANCE 
The Cross 2003 experiment simultaneously reared inbred and outbred genotypes, so we could 
test for directional dominance and inbreeding depression. Multivariate analyses of variance were 
carried out with main effects inbreeding status, sex, and genotype, block and male and female 
parental subline nested in genotypes, and wing size as a covariate. Subline effects were treated as 
random, while other effects were fixed.  The results show highly significant three-way 
interactions between inbred status, sex and genotype, but ambiguous evidence for a main effect 
of inbreeding status (results not shown). The main effect of inbreeding status was highly 
significant in MANOVAs within each sex and genotype combination. We estimated the vector 
difference between inbred and outbred flies within each combination of sex and genotype, and 
no two of these vectors were similar in direction (range of angles 60º to 87º).  The average angle 
between all six pairs of these vectors is 75º, which is close to the 80º difference expected 
between random vectors.  These results suggest that the complex interactions with  inbreeding 
status are due to sex- and genotype-specific differences between outbred and inbreds, rather than 
a consistent mean difference due to inbreeding.  Such differences are consistent with the pattern 
of variation shown in Fig. 1, as inbreds are more extreme in their phenotypes, and thus can be 
expected to show mean differences of random direction from outbreds depending on the small 
sample of sub-lines sampled in each block.   
 

2.2 CONVERGENCE OF THE NON-SEGREGATIONAL MODEL 

The non-segregational model invariably showed convergence problems in Wombat at ranks 
higher than 7 or 8.  Convergence of higher rank models came only after the average information 
(AI) and parameter-expanded (PX) EM algorithms had failed in some iterations, and Wombat 
carried a single round of EM maximization which was deemed to have converged.  Simulations 
show that this behavior appears in WOMBAT when the eigenvectors of the between-group 
covariance matrix diverge sufficiently from that of the variance component matrix being fit, and 
when the effective sample size is small (Meyer and Kirkpatrick 2008; K. Meyer, pers. comm.). 
 
2.3 EVOLVABILITY IN THE FIRST 7 DIMENSIONS OF EACH DATA PARTITION 

The lower rank of non-segregational matrices may explain some of the differences in 
evolvability evident in Table 1.  Table S8 gives scalar measures of evolvability calculated over 
the space defined by each matrix’s first seven eigenvectors, in which each matrix is full rank.  
Note that the phenotypic spaces defined by each partition may be different.  The maximum 
possible evolvability, emax, is the eigenvalue associated with the first eigenvector of each matrix 
(Schluter 1996).  This is a useful standard to compare with evolvabilities in other directions 
(Kirkpatrick 2009).  The remaining measures of evolvability in Table S8 are those suggested by 
Hansen and Houle (2008): evolvability, conditional evolvability ( c ), autonomy ( a ), and 
respondability ( r ).  The interpretation of these measures is briefly covered in the Analysis 
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Philosophy section of the Discussion.  Comparison of max,e e and r  between non-segregational 

and homozygous models shows that each of these is about 2.5 times larger in the homozygous 
analysis than the non-segregational analysis, similar to the 2.75 ratio in the 24 dimensional shape 
space;  the higher homozygous evolvabilities are not an artifact of the lower estimated 
dimensionality in the non-segregational model.  Respondability is only modestly larger than e , 
suggesting that responses are not deflected very far away from the selected direction.    
To interpret the value of c and a , it is important to realize that conditional evolvability is highly 
dependent on the phenotypic space considered.  For matrices of less than full rank, 0c  , so the 
shape conditional evolvabilities of all M matrices is predicted to be 0.  In general, c will be 
smaller the more traits that are considered.  In seven phenotypic dimensions, c is 40% of e  in 
the non-segregational model, and 65% of e  in the homozygous model.  This implies that the 
deviations from additive gene action explore a higher-dimensional space than the additive effects 
themselves. 
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Supplementary Tables 
 
Table S1.  Wing data obtained.  

Experiment 
Generation of 

MA Genotypes Line Sublines 

Wings 
measured 
♂ ♀ 

1998 74 Homozygotes 33 1 16 0
1998 73 Homozygotes 39 27 989 0
1998 0 Control homozygotes 39 5 313 0
2002 167-173 Homozygotes 33 29 1470 1575
2002 166-172 Homozygotes 39 20 970 981
Diallel 2002 170 2 partial diallels 39 8 565 573
Diallel 2003 192 7 complete diallels 33 27 1347 1339
Diallel 2003 191 6 complete diallels* 39 17 973 964
Totals   6653 5432
*Subline IVe-39 64 had a phenotype typical of an IVe-33 each time it was measured. Consequently, we 
analyzed it as an IVe-33 subline. IVe-39 64 was a parent in two diallel crosses in 2003, and all 
heterozygotes with IVe-39 64 as a parent were excluded from analyses.  

 

Table S2. Means for all variables in each data partition.  See attached file ‘Table S2 
MAmeans.csv’.  
 

 

Table S3. Coefficients of covariance relationships between genotypes. 
  
Cross 1 Cross 2 Relationship Vb Vc Vε
i × i i × i Inbreds with inbreds 4 1 0 
i × i i × j Inbreds with half sibs 2 0 0 
i × j i × j Full sibs 2 0 1 
i × j i × k Half sibs 1 0 0 
i × j k × l Unrelated 0 0 0 
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Table S4. MANOVA testing for control and MA differences  within the 1998 experiment.  
  

Effect Random? 
Error 
SSCP 

df 
F Wilk’s λ P Num. Den. 

Treatment Fixed Genotype 
in 
treatment 

22 7 0.31 0.509 0.98 

Genotype 
in 
treatment 

Random Error 616 22113 7.71 0.034 <0.0001 

Block Fixed Error 22 1270 2.32 0.961 0.0005 
 

 

Table S5.  Likelihood ratio tests of the best-fitting non-segregational model by the AICC 
criterion, relative to the next simplest model.  

Sex Genotype Rank AICc parameters df* D† P 
♂ 33 7 467842 386 16 517.5 <0.0001
♂ 39 7 583579 386 16 555.42 <0.0001
♀ 33 7 482952 386 16 353.44 <0.0001
♀ 39 7 405297 386 16 355.96 <0.0001
♂ 33 and 39 8 1058986 401 15 866.32 <0.0001
♀ 33 and 39 7 896047 386 16 833.04 <0.0001
Both 33 7 952639 386 16 1040.14 <0.0001
Both 39 7 993126 386 16 1100.12 <0.0001
Both 33 and 39 7 1961351 386 16 1901.6 <0.0001

*df =parameters of best model –parameters of next best model 
†D=−2 ln (likelihood of best model/likelihood of next best model) 
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Table S6. Likelihood ratio tests of the best-fitting homozygous model by the AICC criterion, 
relative to similar models.  Likelihoods should increase with number of parameters, but more 
complex models often returned lower likelihoods. The P values for these cases are denoted ‘NA’ 
as no likelihood ratio test could be performed in those cases.  

Sex Genotype Rank AICc params df* D† P 
♂ 33 10 304569 428 12 -83.78 <<0.0001
♂ 33 11 304510 440 0 0  
♂ 33 12 304516 451 11 15.7 0.15
♂ 33 13 304554 461 21 -1.66 NA
♂ 39 11 375239 440 11 -37.32 0.0001
♂ 39 12 375224 451 0 0 
♂ 39 13 375244 461 10 0.7 1.00
♂ 39 14 375276 470 19 -13.54 NA
♀ 33 11 319968 440 11 -48.44 <<0.0001
♀ 33 12 319942 451 0 0  
♀ 33 13 319950 461 10 12.2 0.27
♀ 33 14 319985 470 19 -4.1 NA
♀ 39 11 202536 440 11 -50.32 <<0.0001
♀ 39 12 202508 451 0 0  
♀ 39 13 202553 461 10 -24.22 NA
♂ 33 and 39 14 685050 470 8 -53.7 <<0.0001
♂ 33 and 39 15 685013 478 0 0  
♂ 33 and 39 16 685027 485 7 -0.26 NA
♀ 33 and 39 15 526308 478 7 -43.8 <<0.0001
♀ 33 and 39 16 526279 485 0 0 
♀ 33 and 39 17 526306 491 6 -15 NA
Both 33 13 625571 461 17 -61.1 <<0.0001
Both 33 14 625545 470 8 -16.36 0.04
Both 33 15 625545 478 0 0  
Both 33 16 625562 485 7 -3.18 NA
Both 39 13 580087 461 9 -77.48 <<0.0001
Both 39 14 580027 470 0 0 
Both 39 15 580037 478 8 6.12 0.63
Both 39 17 580120 491 21 -50.58 NA
Both 33 and 39 17 1213501 491 9 -122.76 <<0.0001
Both 33 and 39 18 1213406 496 4 -17.7 0.0014
Both 33 and 39 19 1213396 500 0 0  
Both 33 and 39 20 1213425 503 3 -22.9 NA

 
*df =|parameters of best model –parameters of comparison model| 
†D= 2 ln (likelihood of comparison model/likelihood of best model) 
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Table S7. Estimated mutational and residual variance-covariance matrices.  Table is in separate file 
‘Table S7 All M R matrices.csv’ 

 
 

Table S8. Scalar evolvability measures calculated on the first 7 dimensions of each M matrix.   
Measures are evolvability, e , conditional evolvability, c , autonomy, a , and respondability, r , 
defined in Hansen and Houle (2008).  
  Non-segregational model Homozygous model 

Sex Genotype maxe  e  c  a  r  maxe e  c  a  r  
♂ 33 6.9 2.23 0.84 0.39 2.93 19.9 7.19 3.37 0.49 8.86 
♂ 39 19.3 6.16 2.07 0.37 8.18 33.3 11.51 5.42 0.49 14.57
♀ 33 4.5 1.97 0.70 0.38 2.46 17.9 7.48 3.37 0.46 9.13 
♀ 39 18.2 5.32 0.94 0.19 7.86 51.6 13.50 4.66 0.36 18.87
♂ 33 and 39 11.9 4.01 1.72 0.45 5.26 24.9 9.97 5.90 0.61 11.90
♀ 33 and 39 9.4 2.91 1.05 0.38 3.84 27.2 10.14 5.26 0.54 12.39
Both 33 6.2 2.51 1.06 0.44 3.10 15.3 7.54 3.43 0.48 8.94 
Both 39 21.3 6.47 1.81 0.31 8.71 36.0 11.75 5.69 0.50 15.00
Both 33 and 39 11.5 4.04 1.53 0.40 5.11 24.3 10.21 6.48 0.65 11.83
 

 

Table S9. Average dominance of mutations.   
   h 
Sex Genotype  Shape Size 
♂ 33  0.24 0.26 
♂ 39  0.31 0.31 
♀ 33  0.22 0.29 
♀ 39  0.27 0.23 
♂ 33 and 39  0.27 0.29 
♀ 33 and 39  0.23 0.24 
Both 33  0.24 0.27 
Both 39  0.32 0.33 
Both 33 and 39  0.26 0.29 
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Supplementary Figure 
 
Figure S1. Multidimensional scaling of the distance matrix among the unstandardized M 
matrices.  Distances calculated in the subspace defined by the first 5 eigenvectors of the pooled 
genotype and sex M matrix. The six points to the upper left are from genotype IVe-39, those to 
the lower right are from IVe-33, while the six intermediate points are for the pooled genotype 
estimates.  
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