
When the debate over whether to fund a human genome 
project flowered in the late 1980s, one of the scientific 
arguments offered in opposition was that only a small 
part of the genome was really worth knowing — the 
3–5% that was then estimated to lie in and close to 
protein-coding regions1,2. The alternative approach  
to a genome project was molecular genetics as usual: 
first identify a region of the genome that is of functional 
interest, then target it for sequencing. Calls to continue 
this traditional model for dealing with genotyping were 
rapidly swept aside, and the Human Genome Project was 
realized in a few years.

Over the past 15 years, many authors have proposed 
that phenomics — large-scale phenotyping — is the 
natural complement to genome sequencing as a route 
to rapid advances in biology3–8. The response to these 
propositions has mostly been silence, implying that 
‘phenotyping as usual’— measuring a limited set of 
phenotypes that seem the most relevant — is adequate. 
We disagree and argue that the case for phenomics is as 
compelling now as the case for genomics was 25 years 
ago and indeed shares many similarities with that case.

Phenomic-level data are necessary to understand 
which genomic variants affect phenotypes, to under-
stand pleiotropy and to furnish the raw data that are 
needed to decipher the causes of complex phenomena, 
including health, crop yields, disease and evolution-
ary fitness. Our limited ability to understand many 
important biological phenomena suggests that we are 
not already measuring all important variables and that 
broadening the possibilities will pay rich dividends. 
Fundamentally, we can choose between focusing our 
efforts on what we already think is important or decid-
ing that much of what we do not yet measure will prove 
useful and interesting. The question ‘why not measure it 

all?’ was fortunately affirmatively answered for genomes; 
it is now time to ask the same question for phenotypes.

The time is ripe to consider the value of phenomic-
level efforts for several reasons. First, technologies for 
high-throughput phenotyping are becoming increas-
ingly available. Second, conceptual, analytical and 
bioinformatics approaches that enable the use of very 
high-dimensional data are advancing rapidly. Third, 
dynamic models that link phenomena across levels — 
from genes to cells, to organs and through to the whole 
organism — are in reach. Finally, in most cases, pheno-
typic data continue to be the most powerful predictors 
of important biological outcomes, such as fitness, disease 
and mortality. Although analyses of genomic data have 
been successful at uncovering biological phenomena, 
they are — in most cases — supplementing rather than 
supplanting phenotypic information.

In this Review, we identify the scientific rationales 
for carrying out phenomics research and outline cur-
rent approaches to obtaining phenomic data. We then 
describe some of the conceptual challenges to taking 
full advantage of phenomic-level data. Finally, we con-
sider how to establish phenomics as an independent 
discipline.

What is phenomics?
The current usage of the word ‘phenome’ to refer to the 
phenotype as a whole is due to the evolutionary biolo-
gist Michael Soulé9. We now define phenomics as the 
acquisition of high-dimensional phenotypic data on an 
organism-wide scale. Although phenomics is defined in 
analogy to genomics, the analogy is misleading in one 
respect. We can come close to completely characteriz-
ing a genome but not a phenome, because the informa-
tion content of phenomes dwarves those of genomes: 
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Pleiotropy
The ability of a single genetic 
change to affect more than 
one phenotype.
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Abstract | A key goal of biology is to understand phenotypic characteristics, such as health, 
disease and evolutionary fitness. Phenotypic variation is produced through a complex web 
of interactions between genotype and environment, and such a ‘genotype–phenotype’ 
map is inaccessible without the detailed phenotypic data that allow these interactions  
to be studied. Despite this need, our ability to characterize phenomes — the full set  
of phenotypes of an individual — lags behind our ability to characterize genomes.  
Phenomics should be recognized and pursued as an independent discipline to enable the 
development and adoption of high-throughput and high-dimensional phenotyping.
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phenotypes vary from cell to cell and from moment to 
moment and therefore can never be completely char-
acterized. Phenomics will always involve prioritizing 
what to measure and a balance between exploratory and 
explanatory goals.

To interpret high-dimensional phenomic data, espe-
cially when they span multiple levels of organization, we 
also need a phenomic conceptual framework. luckily, 
this framework can build on well-established intellec-
tual traditions for analysis of phenotypic data, including 
quantitative genetics, evolutionary biology, epidemiology 
and physiology. These fields provide tools to account for 
multiple sources of variation10,11 and to untangle causes 
from correlations12–14.

Why phenomics?
Studying the genotype–phenotype map. Phenomics is 
most frequently justified as enabling us to trace causal 
links between genotypes and environmental factors and 
phenotypes (the G–P map; BOX 1). Studies of both the 
genomes and the phenomes of individuals in segregating 
populations can be carried out in an approach known 
as Mendelian randomization15–17 (BOX 2). Indeed, phe-
nomic projects that combine genomic data with data 
on quantitative variation in phenotypes have recently 

been initiated in many species (TABLE 1), with the aim of 
understanding the G–P map6.

Phenomic data are essential for accessing the pleio-
tropic effects of genetic variation in the G–P map. The 
explicit and systematic study of the pattern of pleiotropy  
is just beginning18–20. Pleiotropy often surprises us. 
For example, the foraging gene was initially discovered 
because of its influence on larval behaviour in Drosophila 
melanogaster21, but it has now been shown to integrate 
a wide range of phenotypes in response to variation in 
food availability and is a possible analogue of metabolic 
syndrome in humans22. In humans, such information 
about pleiotropy can predict the side effects of medical 
interventions.

Identifying the genetic basis of complex traits. An 
implicit premise of genomics is that inheritance is best 
studied by accumulating a list of all the genetic variants 
that influence a phenotype, rather than studying the 
phenotype in detail. The results of the recent flood of 
genome-wide association (GWA) studies suggest that for 
many traits this reasoning is backwards. The details of 
genetic causation are turning out to be so complex that 
they validate the continued use of phenotype-centred 
approaches to study inheritance.

Box 1 | The genotype−phenotype map

The concept of a genotype−phenotype (G−P) map is a 
widely used metaphor for the multiple ways in which 
genotypic information influences the phenotype of  
an organism. The term dates at least to 1970 when  
Jim Burns proposed linking population genetic and 
biochemical variation116, but the importance of the 
relationship between genotype and phenotype has long 
been apparent. Two early versions of the G−P map 
concept are the epigenetic landscape of Conrad Hal 
Waddington117 and Richard Lewontin’s concept  
of evolution as taking place in the space of all  
possible genotypes (G space) and the space of  
all possible phenotypes (P space)118.

This relationship is shown in part a of the figure, which 
indicates the mean position of a population in G and P 
spaces over two generations. There are four key parts  
to the evolutionary process, shown as numbered arrows: 
(1) the epigenetic process creates the phenotype using 
genotypic information; (2) natural selection acts in  
P space to change the average phenotype of parents 
away from the average phenotype of all individuals;  
(3) the identity of successful parents determines which 
genotypes are preserved; and (4) genetic processes such 
as mutation and recombination alter position in G space.
An alternative concept of the G–P map at the level of the 
individual is shown in part b of the figure. An individual 
can be conceptualized as occupying a single point in  
G space, and this position plus the environment (including 
other individuals, such as parents) combine to create the 
internal phenotypic state of the organism throughout its life. These internal phenotypes include cellular, tissue level 
and physiological properties. These internal phenotypes in turn shape external phenotypes such as morphology and 
behaviour. Phenotypes can in turn shape the environment that an individual occupies, creating complex feedback 
relationships between genes, environments and phenotypes. The importance of the environment suggests that we 
should explicitly broaden the G–P map to the genotype–environment–phenotype (G–E–P) map.
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Observational study
A study in which conclusions 
are drawn from differences 
between subjects that are  
not under the control of  
the investigator.

Odds ratio
The ratio of the probability that 
an event will occur in one group 
to the probability that it will 
occur in another, for example, 
diseased versus healthy groups. 
It is a measure of effect size for 
binary variables.

Heritability
The proportion of the observed 
phenotypic variation that is 
attributable to genetic variation.

GWA studies have revealed well-supported associa-
tions, but these generally explain only a small proportion 
of the phenotypic variance. A striking example is human 
height, for which 180 stringently validated loci collec-
tively explain only about 10% of the genetic variation23. 
Similar results have been obtained for other complex 
human traits, including Crohn’s disease, breast, prostate 
and colorectal cancers, lupus erythematosus, type 1 and 
type 2 diabetes, lipid metabolism and heart attacks24–26. 
The most important explanation for this ‘missing  
heritability’ (REF. 27) is likely to be that the population-
wide effects of most variants are tiny because the vari-
ants are rare or their effect sizes are small28. Thousands 
of polymorphisms are therefore implicated to explain 
the observed genetic variation29. Quantitative genetic 
models have long assumed that the number of variants 
is effectively infinite as a convenient approximation30,31, 
and GWA study results suggest that this assumption is 
closer to reality than most researchers believed possible. 
Quantitative genetic summaries of inheritance32 remain 
more informative than lists of thousands of genomic 
regions with inferred effects.

Prospective studies show that traditional risk factors 
for human disease, such as family history, blood chem-
istry or weight, are more effective predictors for many 
diseases than SnP associations33–38. Models including 
both traditional risk factors and genetic data for predic-
tions are, at best, only marginally better at predicting 
disease than models based on traditional risks alone 
(BOX 3). Additional phenotypic information may be 
more informative than lengthening the list of genetic 
associations.

Causal explanations at the phenotypic level. The sim-
plest justification for phenomics is that the characteris-
tics of organisms of greatest interest to most biologists 
are phenotypes rather than genotypes. Such crucial phe-
notypes include morbidity, mortality and reproduction 
of humans; yield, efficiency and resistance of plants and 
animals under domestication; resistance of pests to our 
attempts to control them; and the ability of species to 
adapt to human-induced changes. We need to explain 
why phenotypes vary in a population or between spe-
cies. This cannot be done without directly studying 
phenotypes.

Rapid progress on any biological problem rests on 
the hope that there is at least one viewpoint to each 
problem that makes causation relatively simple. To 
express this concept, buchanan et al.39 used the meta-
phor of the G–P map as an hourglass (FIG. 1), in which 
the narrow waist of the hourglass represents a factor 
that can explain phenomena that seem complex at other 
levels. Sometimes a genetic cause is the simplest (for 
example, cystic fibrosis and macular degeneration), but 
other traits can be best explained at the phenotypic level 
(for example, the effect of obesity on diabetes risk) or 
at the environmental level (for example, the effect of 
asbestos on cancer risk). Access to phenomic and envi-
ronmental data would enable simple explanations to be 
tested at these other levels of causation. It is also possi-
ble that the causation of some phenomena is inherently 
complex, in which case there is no hourglass shape to 
the causal map (FIG. 1d).

How can measuring vast numbers of variables help 
to uncover simple causal explanations? We do not know 
what the explanations are until we find them, and only 
by first expanding the universe of possible predictors 
can we hope to uncover these explanations. For example,  
Robson and Gwynne40 studied male mate preference in 
crickets in relation to nine morphological traits. They 
predicted that females with large body size, legs, mandi-
bles and spines would have the highest mating success; 
their results disproved all these predictions and showed 
that there was strong stabilizing selection for mandible 
length and directional selection for smaller head width. 
Only by including more traits in this study could the 
small number of traits that really matter emerge. Fitness 
is the phenotype crucial to understanding evolution, as 
variation in fitness is the cause of natural selection. Two 
components determine the fitness of a genetic variant. 
First, the pleiotropic effects of a variant on the phenotype 
as a whole are determined by the G–P map. Second, phe-
notypes interact with the environment to cause variation 

 Box 2 | Mendelian randomization

Mendelian randomization refers to the natural genetic experiments that are set up 
by genetic segregation within families and variation in environmental exposures 
among individuals during their lives119. The result is that a variety of genotypes are 
found in any given environment (such as a family or a geographical area) and each 
genotype is exposed to a wide range of environmental conditions. In many cases, 
the proximal effects of genotype on a potential causal factor are known. The 
genotype is essentially a treatment effect that allows causal hypotheses to be 
tested, even when the hypothesis is a purely phenotypic one. For example, it is well 
established that various lipid-related phenotypes in humans, such as the 
concentrations of high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C) and triglycerides, are associated with risk of 
coronary heart disease (CHD)120. It is important to establish which of these factors 
have a causal effect on CHD so that therapies can be targeted at the causal 
phenotype. In a multivariate observational study, the effect of triglycerides on 
CHD disappeared when both HDL-C and LDL-C were included as predictors121. 
Does this mean that the level of cholesterol is an important cause of CHD and 
triglycerides are not or that the effect of triglycerides is through cholesterol? 
Available drug interventions cannot answer this question, as they also affect all of 
the major lipid phenotypes120, but Mendelian randomization has been informative.
In the case of lipid metabolism, a regulatory variant at the apolipoprotein A5 
(APOA5) locus has a large, well-replicated effect on triglyceride levels122,123.  
A Mendelian randomization meta-analysis using this APOA5 polymorphism suggests 
a direct role for triglyceride concentration in causing CHD. Each copy of the minor 
APOA5 allele raised mean triglyceride concentration by 16% and lowered HDL-C 
concentration by 3.5%. There was no significant effect on LDL-C. Analysis of 
case–control studies showed a highly significant 18% increase in CHD (odds ratio 
of 1.18) for every minor allele carried, strengthening the case for an effect of 
triglycerides on CHD that is not mediated by LDL-C or HDL-C. This exemplary 
study shares several features of genome-driven research that argue for additional 
phenomic research. First, there is no detailed model that explains the causal effect 
of the APOA5 protein on triglyceride levels. Second, the fact that triglycerides are 
changed by the largest amount does not necessarily indicate that this protein is 
causal — perhaps the 3.5% change in HDL-C is actually of more importance. Third, 
the fact that some phenotypic differences have been detected does not indicate 
that differences in unstudied phenotypes were not also caused by the 
polymorphism, and these may themselves have important effects. Clearly, 
phenomic studies that control for more genetic effects and include a wider range 
of phenotypes will enable better causal inferences.
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Table 1 | Example phenome projects*

species Description Funding Phenotypes Genotyping URLs

Plants International Plant 
Phenomics Network (IPPN). 
Focus on development 
and implementation of 
phenotyping, rather than 
specific taxa

Consortium of 
nationally funded 
labs, including 
the Australian 
Plant Phenomics 
Centre and the 
German Jülich 
Plant Phenotyping 
Centre

High-throughput, 
robotic, non-invasive 
imaging across the 
life cycle of small, 
short-lived model 
and crop plants; 
metabolomes; 
quantitative 
phenotyping 

• http://www.plantphenomics.
com

• http://www.plantphenomics.
org.au

• http://www.fz-juelich.de/icg/
icg-3/jppc

Arabidopsis Collaboration between 
groups working on A. thaliana, 
resulting in phenotyping 
and GWA studies on an 
overlapping set of 191 inbred 
lines 

US NSF and NIH 
funding for initial 
GWA studies. 
Phenotyping 
supported by 
diverse grants 
to individual 
investigators

107 mostly 
quantitative 
phenotypes included 
in initial GWA 
studies126, including 
resistance to 
pathogens, flowering 
traits, ionome and 
life history traits. No 
intensive phenotypes

250,000 SNPs 
genotyped using 
a chip

• http://walnut.usc.edu/2010/
GWA

Drosophila Drosophila Genome Reference 
Panel. Informal voluntary 
phenotyping by over 26 
researchers. Lines released 
in 2009 

Sequencing 
funded by the 
Human Genome 
Sequencing Center 
at Baylor College 
of Medicine. A few 
investigators are 
individually funded 
to phenotype, but 
no overall funding

Extensive 
variety, including 
physiology127, disease 
resistance, gene 
expression, behaviour 
and morphology.  
A few phenotypes are 
intensively measured. 
No standardization 

Drosophila 
Population 
Genomics 
Project: 50 lines 
sequenced. 
Human Genome 
Sequencing 
Center at Baylor 
College of 
Medicine: 192 
lines sequenced

• http://flybase.org/static_
pages/news/whitepapers/
Drosophila_Genetic_
Reference_Panel_Whitepaper.
pdf

• http://www.hgsc.bcm.tmc.edu/
project-species-i-Drosophila_
genRefPanel.hgsc

• http://www.dpgp.org

Mouse The Mouse Phenome 
Database (MPD) collects 
phenotype information for 
common inbred lines;  
125 published and 36 
unpublished phenotyping 
contributions 

Overall funding 
from NIH but 
phenotyping 
efforts are funded 
separately

Extensive variety, 
no standardization. 
No intensive 
phenotyping

Assembled SNP 
typing of inbred 
lines 

• http://www.jax.org/phenome

EuroPhenome captures data 
from any mouse phenotyping 
effort, including the European 
Mouse Disease Clinic 
(EUMODIC) consortium 
for phenotypic screening 
of mutant lines and inbred 
lines. Favours standardized 
phenotyping pipelines 
from the European Mouse 
Phenotyping Resource 
of Standardised Screens 
(EMPRESS) 

European Union Extensive variety, 
including physiology, 
morphology and 
behaviour. Images 
and samples are kept 
for later intensive 
analysis. Phenotyping 
is largely binary or 
ordinal. Sample sizes 
are variable

European 
Conditional Mouse 
Mutagenesis 
(EUCOMM) 

• http://www.europhenome.org
• http://www.eumodic.org
• http://www.empress.har.mrc.

ac.uk

Rat National BioResource 
Project — Rat is phenotyping 
~150 established strains. 
Phenotyping done centrally 

Japanese Ministry of 
Education, Culture, 
Sports, Science and 
Technology

109 phenotypes, 
extensive variety, 
favouring physiology 
and behaviour. 
Many qualitative 
phenotypes. 
Standardized 
phenotyping, small 
sample size 

357 simple 
sequence length 
polymorphisms 
cover genomes. 

• http://www.anim.med.
kyoto-u.ac.jp/nbr

Dog Canine Phenome Project. 
Phenotyping by volunteer 
scientists, veterinarians, dog 
owners, breeders and trainers. 
Online questionnaires for 
dog owners on pedigree, 
phenotype and medical history 

NIH, supplemented 
by contributions.

Emphasis on 
heritable diseases 
relevant to human 
health, behaviour 
and breed-specific 
defects 

SNP typing of 
various dog 
breeds. Collection 
of samples for 
future sequencing 

• http://www.caninephenome.
org
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Effect size
The magnitude of the inferred 
effect of one variable on 
another. The effect size of a SNP 
is the difference in phenotype 
between genotypes with and 
without one of the nucleotides.

Prospective study
An observational study in 
which phenotypes are 
measured at the beginning  
of the study and the fate of 
individuals is tracked over 
subsequent time intervals.

Stabilizing selection
A type of natural selection 
that favours intermediate 
phenotypes.

Directional selection
A type of natural selection  
in which fitness increases 
monotonically with increasing 
or decreasing phenotype.

Endophenotype
A phenotype correlated with or 
possibly causally related to a 
disease state. In psychiatric 
research, endophenotype is 
synonymous with biomarker.

Biomarker
A phenotype that is 
objectively measured and 
used as an indicator of other 
biological processes.

Function-valued trait
A phenotype that is a 
continuous function, such as  
a surface or a time course.  
It is also known as an infinite 
dimensional trait.

in fitness. understanding this second important com-
ponent is an entirely phenomic problem. The effects of 
a variant on fitness through all the phenotypes that it 
influences sum up to determine its fate; these effects 
need to be comprehensively enumerated to fully charac-
terize the fitness effects of a variant41. Causation of other 
phenotypic states such as disease can be investigated  
using the same approach used for fitness42.

Goals and technical challenges
Towards comprehensive, quantitative measurement. 
We distinguish two ways of being comprehensive: first, 
one can sample a wide variety of phenotypes, which we 
term extensive phenotyping; second, we define inten-
sive phenotyping as characterizing a phenotype in 
great detail. For example, measuring gene expression 
in one tissue at one developmental stage gives data on 
an extensive range of genes, whereas repeated sampling 
of the expression of a single transcript through time 
would be intensive. both approaches can be important, 
so phenomics will be enabled by decreasing the labour 
and monetary costs of phenotyping and increasing its 
intensity. Current phenomic efforts (TABLE 1) largely 
adopt extensive sampling by choosing a wide range 
of conventional, low-dimensional measurements. 
Increasing the quantitative information obtained by 
phenotypic measurements is another important goal 
for phenomics. Many human phenotype data represent 
qualitative judgments, for example, those relating to 
disease states or environmental exposures. Although 
phenotypes are sometimes truly categorical — such 
as dead or alive — in most cases, the underlying state 
is quantitative43. The continuous and multivariate 
nature of most phenotypes suggests that categorical 
phenotyping discards information (FIG. 2). The desire 
to obviate the use of qualitative phenotype categories 
is partly driving the push to find endophenotypes and 
biomarkers44. For many sets of phenotypes, such as the 

shape of an organism, or the change in a phenotype 
through time, the phenotype is best thought of as a 
function-valued trait, rather than as discrete measure-
ments that can be used to capture the shape of the  
function45.

Data analytical challenges. Traditional statistics empha-
size relationships between modest numbers of predictor 
variables and single outcome variables. Phenomic data, 
however, raise the possibility of addressing the ‘many-
to-many’ relationships that are inherent in G–P maps. 
Techniques to deal with many-to-many data have been 
developed in other fields (such as econometrics and 
chemometrics)46 but are less well known in biology.

Phenomics will increase both the number of pheno-
types, p, that can be measured and the sample size, N. 
Increases in p will often outstrip increases in N, resulting 
in ‘large p, small N’ (lPSn) data sets. In lPSn situations, 
many models will be capable of fitting or over-fitting the 
data, resulting in a poor performance when the model 
is applied to new data. A popular but inadequate way 
of coping with lPSn data sets is dimension reduction 
— that is, decreasing the number of predictor variables 
before analysis — but in phenomics, we cannot make 
a biologically informed choice about dimension reduc-
tion, as the important features are not known a priori. 
A family of statistical techniques, including ridge and 
LASSO regression47, can fit well-behaved models without 
dimension reduction in the lPSn case. These methods 
generally apply a penalty for complex models that is 
tuned by cross-validation.

Several lines of evidence suggest that the true dimen-
sionality of phenotypic variation is very high and that 
dimension reduction will discard information, leaving 
us with an even more daunting prospect than lPSn — 
having to deal with ‘high-dimension, small sample size’ 
(HdSn) data. There is direct evidence that the dimen-
sionality of genetic variation underlying morphometric 

Table 1 (cont.) | Example phenome projects*

species Description Funding Phenotypes Genotyping URLs

Human Consortium for Neuropsychiatric 
Phenomics. Large (52 investigator) 
interdisciplinary effort. Genomic 
data, brain structure and function and 
behaviour in case–control study of three 
major psychiatric syndromes 

NIH Brain imaging, behaviour 
and cognitive phenotypes 

Northern Finland 
Birth Cohorts, 
case–control 
genotyping

• http://www.phenomics.
ucla.edu

UK Biobank. Prospective study of 
500,000 individuals, now finishing 
recruitment phase 

MRC, 
Department 
of Health, 
Wellcome 
Trust

Baseline questionnaire and 
physical measurements; 
storage of blood and urine 
for eventual analysis and 
integration with the UK 
NHS health records

Samples taken 
for later analysis

• http://www.ukbiobank.
ac.uk

Personal Genome Project aims to recruit 
volunteers for genome sequencing 
and supplements that with phenotype 
data from biologically knowledgeable 
volunteers. Participant number is going 
from 10 to 100, with 100,000 as a goal 

Private Images, cell lines and 
medical history

Primary goal 
is genome 
sequencing. One 
participant fully 
sequenced

• http://www.
personalgenomes.org

*We include projects that emphasize the characterization of the phenotypic effects of existing genetic variation rather than systematic mutagenesis projects.  
GWA, genome-wide association; MRC, Medical Research Council; NIH, National Institutes of Health; NHS, National Health Service; NSF, National Science Foundation.
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Gene count score
Framingham offspring score
Gene count score incorporated 
into Framingham offspring score

Over-fitting
The prediction by a statistical 
model of error instead of the 
relationship of interest. An 
over-fitted model has poor 
predictive power.

Ridge and LASSO 
regression
Regression techniques that 
choose models that both fit 
well and minimize the number 
of predictor variables (LASSO) 
or their total effects (Ridge).

Cross-validation
The process of choosing a 
statistical model based on its 
ability to predict data that are 
not used to fit the model. It is 
commonly accomplished by 
splitting one data set into two, 
with one part used for training 
and the other for validation.

Dimensionality
The number of orthogonal 
directions in a space defined 
by multiple phenotypic 
measurements that have 
independent variation.

Partial least-squares 
regression
A statistical technique that 
identifies the combinations of 
variables in one set that best 
predict the variables in 
another set.

Random forest
An algorithm that classifies 
observations into categories 
using a family of hierarchical 
rules randomly chosen from  
a large family of such rules.

Support vector machine
A set of machine-learning 
algorithms for finding the 
polynomial functions of 
predictors that best separate  
a data set into two categories.

variation is very high18,42,48, perhaps as high as the 
number of traits measured. For example, an index of 30 
seemingly unrelated phenotypic traits of milk-producing  
cows predicts their longevity surprisingly well49. As 
described above, GWA studies implicate many diverse 
genes, supporting the idea of high dimensionality.

Such high-dimensional data can be addressed with 
many potential models, so choosing which models to 
investigate is crucial. To make intelligent choices, we 
should take advantage of prior knowledge17,50, for exam-
ple, by specifying that causal relationships flow from 
some classes of variable (such as SnPs) to others (RnA 
abundances)51 or structural equation models that explore 
hypothetical causal models52. Where prior information 
is insufficient to choose among models, we should use 
information from all reasonable models53,54. When the 
prediction of an outcome is the primary goal of an analy-
sis, there is now a rich and growing family of techniques 
that are well suited to HdSn data, such as partial least- 
squares regression55, random forests56 and support vector 
machines57.

Current statistical approaches emphasize relation-
ships that can be unambiguously demonstrated to a 
very high degree of confidence, for example, by holding 
the false discovery rate below some threshold. Although 
this is justifiable when choosing the most promising can-
didates for follow-up studies, it will generally result in 
an extremely biased view of reality. A prime example is 
GWA studies, in which the use of very stringent statisti-
cal tests to minimize false-positive findings creates the 
appearance of missing heritability28. The use of statisti-
cal testing to classify predictors into ‘yes’ or ‘no’ effects 
discards information in the same way as does classifying 
continuous phenotypes into discrete categories. A wide 
range of effect sizes occurs in nature.

Causally cohesive models. G–P maps extend across 
all hierarchical levels of biological organization and 
are highly nonlinear. Most current attempts to under-
stand maps are based on linear approximations of local 
behaviour at one hierarchical level. Currently, approxi-
mate and descriptive models remain useful58, given our 
relative ignorance about the basis of variation in many 
complex traits, but to fully use phenomic data, we need 
to replace such models with nonlinear systems dynamic 
models.

 Models that have an explicit link to the genotype can 
be called causally cohesive genotype–phenotype (cG–P) 
models59. A cG–P model forces components of the G–P 
map to cohere in a logically consistent and ordered way, 
enforcing explicit formulations of hypotheses, thereby 
increasing the prediction space. doing so can both cata-
lyze and constrain empirical work by identifying key 
unsolved questions and the type of data needed to solve 
them. cG–P models can function as intellectual meeting 
places for various experimental disciplines. Such mod-
els would ideally span the life cycle of organisms, from 
instantaneous regulatory changes to generation-length 
phenomena such as development and ageing (spanning 
15 orders of magnitude), and explain the behaviour of 
biological systems from the molecular to the whole-
organism level (spanning nine orders of magnitude)60.

 understanding hierarchical, spatial and temporal 
flows is the aim of several efforts to link genetic varia-
tion to phenotypes by means of dynamic modelling61–67.  
A noteworthy example is a dynamic model of tooth shape 
in mammals68: this model generates predictions of the 
three-dimensional surface for entire teeth by integrating 
intracellular gene regulation and intercellular signal-
ling with cellular properties such as growth, adhesion 
and shape. It can mimic the range of variation in teeth 

Box 3 | Determining the added value of replicated genetic associations

A useful measure of the predictive value of a model for a 
binary outcome, such as diseased versus healthy, is the 
area under the curve (AUC) statistic, which is the area 
under the receiver operating curve124. The AUC statistic 
gives the probability that a prediction of risk for an 
individual is correct. An ineffective criterion gives 
AUC = 0.5 and a perfect one gives AUC = 1.0.The results  
of a prospective study of the risk of type 2 diabetes in a 
sample of 5,000 middle-aged adults37 are shown in the 
figure. Indices of risk based solely on the number of 
high-risk alleles previously identified in genome-wide 
association studies or on more sophisticated models that 
weight genotypes by their disease risk both give a modest 
but potentially useful AUC = 0.54. The prediction is far 
better using the Framingham offspring score. This simple 
index is based on measurements of traditional risk factors 
— fasting glucose, body mass index, high-density 
lipoprotein cholesterol, triglycerides, family history of 
diabetes and blood pressure — and gives AUC = 0.78. 
When the Framingham offspring score is combined with 
the high-risk allele count, the AUC remains 0.78. This 
suggests that, rather than detecting novel pathways, 
genetic information is explaining variation in the 
traditional risk factors that we already know about.
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by simple changes to the parameters of the signalling 
network that are hypothesized to mimic underlying 
genetic variation. Results from the model are suitable 
for comparison with intensive phenomic measurements 
of actual teeth.

Such models can be embedded in an explicit popu-
lation framework, allowing the effects of mating sys-
tem, selection regime and genetic architectures to be 
predicted62,69. For example, nonlinear cG–P models 
have been used to show how genetic variation affecting  
the form of cis-regulatory input functions may reshape the  
G–P map by changing the relative importance of cis and 

trans variation62, to disclose the relationships between 
possible statistical genetic architectures and the anatomy 
of regulatory networks69, and to refine single-locus genet-
ics by providing a direct link between classical models of 
gene action and gene regulatory biology70.

non-genetic models have been used to integrate 
properties of biological systems across the full hierar-
chy of spatial scales. The virtual Physiological Human 
Initiative (vPH)–Physiome Project71,72 has produced 
detailed hierarchical models of several mammalian 
organ systems by integrating the theoretical and experi-
mental efforts of a large network of investigators. For 
example, a model ensemble of the heart links genetic 
variation and protein pathways to the integrative func-
tion of cardiac cells, tissues and the intact heart. To do so, 
it incorporates models of biochemical processes, electri-
cal activation, mechanical contraction, fluid mechanics, 
energy supply and use and cell signalling72. despite the 
enormous complexity of such models, they have dem-
onstrated explanatory power73. The heart models can 
now be modified to correspond to the morphology and 
organ-level behaviour of individual patients by integrat-
ing data from magnetic resonance imaging (MRI)72. The 
heart model ensemble is now being used in a cG–P con-
text to study how genetic variation is propagated from 
the ion channel level to the whole organ phenotype.

Phenomic tools
A broad categorization of phenotypes we would like to 
be able to characterize is shown in TABLE 2, along with the 
capabilities to do extensive and intensive sampling. The 
combined measurement of all these phenotype classes 
on the same individuals is particularly challenging. We 
highlight a few of the most promising technologies for 
phenomic-scale measurement and the ways in which 
they need to be improved.

Transriptomics and epigenomics. nucleic acid-based 
measurements of transcriptomes and epigenomes are 
the most widely known source of extensive phenomic 
data. Many large data sets are available in different spe-
cies. Gene expression profiling is widely used in disease 
settings such as the diagnosis and prediction of cancer 
outcomes74,75. The vast number of features that can be 
measured, however, obscures important challenges. 
Gene expression varies with cell type and developmen-
tal stage, and obtaining intensive data sets is challenging. 
It is frequently difficult to obtain homogeneous tissue, 
particularly when expression is rare or transient or in 
tissues that are difficult to access, such as brain or heart. 
RnA data sets have been widely used to make inferences 
about causal relationships17,76, but mixed samples violate 
the assumptions behind such inferences77. Techniques 
suitable for intracellular or single-cell assays are  
being developed78.

Proteomics and metabolomics. Proteomics and metabo-
lomics are increasing their throughput owing to a similar 
set of procedures: separation to simplify the sample fol-
lowed by mass spectrometry to identify the compounds 
present. both approaches integrate a wide variety of 

Figure 1 | causation scenarios. The blue shaded areas denote the network of 
causation that produces the phenotypic state of an organism. Genotypes (red squares) 
and environmental factors interact to create phenotypes. The waist of the hourglass 
shows the key determinants of the phenotype. The key factor is a | a phenotypic state, 
such as obesity; b | an environmental factor, such as smoking (note that a genetic 
factor may affect whether this environment is experienced); c | a genetic factor, such 
as sickle-cell haemoglobin. d | There is no key factor, and the genotype–phenotype 
map is truly many to many.
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post-transcriptional and regulatory events. In particu-
lar, metabolites provide important data on the environ-
ment that different individuals experience. Proteomic 
analyses can detect most peptides in a sample79, although 
detection of rare molecules in complex mixtures is still 
problematic80. Metabolomes are substantially less com-
plex than proteomes, but the universe of metabolites 
is not fully characterized81,82. Typical high-throughput 
metabolomic analyses resolve the abundance of <30 
compounds82. In humans, metabolome-wide association 
studies have identified metabolites reliably associated 
with phenotypes such as blood pressure83 and coronary 
heart disease84.

Imaging. Imaging is ideal for phenomic studies owing to 
the availability of many technologies that span molecu-
lar to organismal spatial scales85, the intensive nature of 
the characterization and the applicability of generic seg-
mentation techniques to data. Spatial or temporal data 
on many phenotype classes such as morphology, behav-
iour, physiological state, and locations of proteins and 
metabolites can be captured in intensive detail by imag-
ing. Spectroscopic imaging of crop plants can be used 
to predict many properties on very large populations86. 
Imaging technologies vary widely in the rate of measure-
ment. Two-dimensional images from photography and 
traditional microscopy are cheap and quick to acquire, 

so specimen handling time is often the limiting factor in 
their acquisition. The simplest three-dimensional imag-
ing combines information from different real or virtual 
slices through a specimen, which are then combined to 
reconstruct the three-dimensional form. volumetric 
imaging of live specimens can be accomplished by com-
puterized tomography scans or MRI. Scanners, however, 
are expensive and scan times are long. data can be recov-
ered in multiple modalities simultaneously, for exam-
ple, by combining optical images with positron emission  
tomography of metabolites87 or recovery of multiple fluo-
rescent features, but these approaches often require sub-
stantial time and expense to prepare samples.

Behaviour. behaviour presents special challenges for 
phenomics because of its temporal nature and context 
dependence, which result in high variance. One trend is 
the intensive study of behaviour in free-living animals 
using increasingly miniaturized and sophisticated auto-
mated data loggers88. State-of-the-art technology com-
bines such features as global positioning system locators, 
accelerometers, electroencephalography or neural activ-
ity recorders and video. These technologies are still 
expensive and rarely allow large samples of animals to be 
measured. More promising for high throughput is video 
tracking of groups of confined89 or free-living90 animals 
coupled with automated image analysis. For humans, 
web-based tools to recover behavioural data from  
volunteer subjects may prove particularly effective6,91.

Phenome projects
Some of the most promising phenome projects are listed 
in TABLE 1. none of these pioneering projects comes close 
to realizing the full phenomic vision, largely because of 
the costs and shortcomings of phenotyping capabilities. 
For example, the mouse phenome projects address an 
extensive range of phenotypes and are among the best 
organized, but the sample of non-mutated genotypes 
being characterized is relatively small and the sample 
size of individuals is limited. Organized phenomic 
efforts are underway in the dog, rat and fruitfly com-
munities, but deficiencies in coordination, funding, 
phenotyping or standardization are apparent to various 
degrees. More generally, model organisms such as yeast92 
and Caenorhabditis elegans93 are hotbeds for the devel-
opment of high-throughput phenotyping, but we know 
of no coordinated phenomic efforts other than those 
listed in TABLE 1.

Paradoxically, the prospects for phenomics in humans 
are particularly great, despite the obvious challenges of 
long lifespans, the inability to replicate genotypes or to 
perform many types of experiments. The personal and 
institutional interest in health already leads to repeated 
measurement of the phenotypes of many individuals 
throughout life as a result of medical care or long-term 
studies. The range of human phenotypes that are already 
being measured is extensive and research constantly 
expands it94.

Several longitudinal and multi-generational epidemi-
ological studies have already been used to study health-
related phenotypes95–97. For instance, the Framingham 

Figure 2 | Quantitation of eye colour. Eye colour is traditionally categorized into 
blue, brown or intermediate, but Liu et al.125 quantitatively estimated the average hue 
and saturation of each iris from digital images. When the qualitative designation of 
eye colour is plotted in hue saturation space, there is a substantial overlap between 
the categorical assignments. A genome-wide association study of these data could 
identify ten loci influencing hue and/or saturation, three more than were detected in 
a study based on the three-category phenotype. A completely phenomic approach to 
eye colour would also capture the spatial pattern of eye colour, resulting in a 
potentially much higher dimensional phenotype space. Figure is reproduced, with 
permission, from REF. 125 © (2010) Public Library of Science.
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Heart Study investigates risk factors involved in cardio-
vascular disease among healthy individuals. Since 1948, 
investigators have collected data on hundreds of traits 
in over 14,000 individuals spanning three generations. 
The traits cover many of the phenotypic classes listed in 
TABLE 2, plus environmental influences, medical history 
and causes of mortality95,96. The Cohorts for Heart and 
Aging Research in Genomic epidemiology (CHARGe) 
consortium (please see Further information for a link to 
this consortium) has derived important insights into the 
genetic architecture of cardiovascular health and ageing 
using data from the Framingham Heart Study, as well as 
other longitudinal studies98. byars et al.99 recently used the 
Framingham data to demonstrate that natural selection 
has been acting in this population. There is already a huge 
amount of phenomic information in research results, 
medical records and the personal experience of each indi-
vidual that could be used to enhance designed studies. 
Such data have been archived at many centres100–102, and  
a web-based repository (the database of Genotypes  
and Phenotypes (dbGaP; please see Further information 
for a link to this database)) has been established103.

Three of the most comprehensive phenomic efforts 
planned in humans are listed in TABLE 1. Although these 
visionary studies are tremendously exciting, examination 
of their details makes clear how far we still must go to 
obtain comprehensive phenomic data. The Consortium 
for neuropsychiatric Phenomics (CnP) is a centrally 
funded project with a truly phenomic vision6 but focuses 
on a restricted set of neural and psychological phenotypes, 
and sample sizes are relatively small. The prospective epi-
demiological uK biobank has enrolled 500,000 subjects 

and is enabling phenomic-level studies by providing access 
to full medical records and by storing blood and urine, 
but the actual measurements being taken are modest in 
scope. George Church’s Personal Genome Project envi-
sions obtaining phenomic information and the complete 
genomic sequence of 100,000 volunteers. The phenomic 
component of this project is unrealized (please see Further 
information for links to these initiatives).

The future of phenomics
The basic requirements of an ideal phenomics effort 
are easy to state but difficult to achieve: genomic infor-
mation on a large sample of genotypes, which are each 
exposed to a range of environments; extensive and inten-
sive phenotyping across the full range of spatial and 
temporal scales; and low cost. It is clear that the cost of 
a phenome project using current technology would be 
extremely high. We see the attractiveness of a phenome 
project as analogous to that of the Human Genome 
Project in the late 1980s. When originally proposed, the 
genome project attracted opposition because of the lack 
of a basic map and the high cost of sequencing1. When 
the project was reshaped to make technology develop-
ment to lower costs an initial priority and basic mapping 
was added to the project, it attracted substantial support 
from the molecular genetics community2. Consequently, 
we believe that the path to the phenome begins by build-
ing the infrastructure for phenomic projects, rather than 
immediate large-scale phenotyping. Three attractive 
targets permit progress towards these goals: technology 
development, statistical and analytical capabilities, and 
incentives to integration.

Table 2 | Phenotyping across the biological hierarchy 

Level extensive intensive

DNA, RNA Solved and costs declining rapidly. Limited by 
bioinformatics capabilities 

Possible but costly; detailed sampling is challenging  

Chromatin Made possible by chromatin immunoprecipitation 
but with low precision; costly 

Possible but costly; detailed sampling is challenging 
owing to instability

Proteins, 
metabolites

Mostly solved and capabilities are still improving 
for rare constituents

Possible but costly; detailed sampling is challenging 

Cells Huge diversity of assays is possible but most are 
low throughput. Image-based techniques for 
high throughput are promising  

Many temporally continuous assays. Image-based 
approaches allow some combination of extensive 
and intensive measurement 

Development Low-throughput measures are abundant. 
High-throughput image-based methods are 
possible for small living individuals (embryos and 
Caenorhabditis elegans) and sectioned tissues 

Temporal depth by repeated sampling or 
image-based approaches 

Physiology Huge diversity of assays is possible, but most are 
low throughput, unless based on proteomic or 
metabolomic data

Many temporally continuous assays. Spatial 
sampling is often possible

Morphology Solved in principle with the use of imaging, 
but assays often require extensive sample 
preparation. Post-processing to extract 
and measure features requires specialized 
informatics capability

Intensive sampling of morphological form is 
possible with specialized processing. Temporal 
depth is limited by destructive sampling

Behaviour Possible with continuous observation of video 
of confined or local populations, or for humans, 
self-reporting.  Data extraction from video using 
specialized software or human labour 

Extensive sampling gives intensive coverage.  
Specific aspects of behaviour can be intensively 
measured with data loggers 
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Technology. The first priority of a phenome project would 
be to develop technologies that maximize throughput 
of p and N and substantially lower the cost of doing so. 
Currently, such technology development is often nar-
rowly focused on the needs of a single biological system 
or research programme. We should favour general solu-
tions that can readily be modified for use in different 
taxa. Promising technologies for generalization include 
metabolomics, imaging, microfluidics and nanotech-
nology. Perhaps the most promising recent trend is the 
recruitment of engineers and materials scientists into  
the study of phenotypes, which has resulted, for example, 
in lab-on-a-chip devices that automate measurement and 
specimen handling93,104. Funding through a coordinated 
programme designed to further the goals of phenomics 
could help spur the development of such technologies. 
Given the magnitude of the phenomic challenge and con-
sidering the demands of multi-scale modelling, it is likely 
that we will need to foster entirely new measurement 
technologies based, for example, on nanodevices105.

Data analysis. navigating Hdln data sets is extremely 
challenging. The wider adoption of methods that deal 
with multiple models, prior knowledge and estimation, 
instead of statistical testing is needed. Although spe-
cialists can navigate these issues, most software that is 
widely available and easy to use is not informed by these 
needs. As with technology, adoption of newer analyt-
ics is limited by ignorance of state-of-the-art methods 
and the availability of tools. One important area for new 
analytics is in automating data analysis106. The combina-
torial universe of possible models to investigate quickly 
outstrips human capabilities as additional data dimen-
sions are sampled. Automated techniques that go beyond 
the mere description of patterns will be necessary to  
accelerate nonlinear systems modelling.

Integration. Most concurrent phenotypic studies use 
independent samples of genotypes or individuals, miss-
ing an opportunity to measure the covariances between 
phenotypes that are crucial to building and validating 
causal models of the G–P map. Fragmented scientific 
research is the historical norm. The undeniable successes 
of this entrepreneurial paradigm seem to validate a wide 
variety of institutional, sociological and personal factors 
that preserve this fragmentation. The history of genom-
ics, however, suggests that such fragmentation can be 
suspended and that the potential gains for doing so are 
enormous. The uS national Institutes of Health (nIH) 
supports integrative efforts in medicine through its 
Clinical and Translational Science Awards programme 
(please see Further information for a link).

If we imagine a future in which high-throughput phe-
nomics are practical, how might this accelerate biological 
understanding? First, phenomics could help tighten the 
relationship between experimental measurement and 
modelling. For example, the experimental data needed 
to minimally characterize a single mouse heart72 require 
time-consuming, expensive efforts by highly trained per-
sonnel, including detailed in vivo MRI measurements107; 
mounting of the heart to obtain left ventricle pressure–
volume data108; mounting right ventricle muscle tissue to 
measure force and heat generation, for calcium imaging 
and for patch clamping109; and, finally, fixation and slic-
ing of the heart to obtain structural data110. If a high-
throughput alternative were available, modellers could 
have ready access to the natural range of variation in 
heart structure and function, enabling rapid tests of each 
model. Second, phenomics may open up completely new 
ways of using models to uncover genetic and environ-
mental variation by identifying key parameters. direct 
measurement of such parameters will improve our ability 
to test causal hypotheses suggested by the models,  lead-
ing to rapid gains in our understanding of the G–P map. 
Third, high-capacity phenomics would enable a quanti-
tative understanding of how ageing proceeds, which is 
crucial because age is still the best predictor of both heart 
function and disease111–114, as for many other complex 
diseases. Ageing is manifested in so many different ways 
that a quantitative understanding of an ageing heart will 
demand dramatically more data than understanding 
young and non-diseased hearts60,115.

Conclusion
The genome project has led to gains in basic research 
at least as great as the proponents during the 1980s 
foretold, although the promise for medicine is largely 
unfulfilled. We have discovered a wealth of important 
novel phenomena, including many that could not have 
been found in the 3–5% of the genome that was thought 
to be interesting in 1987. The comprehensive nature 
of genomic data has spawned entirely new disciplines 
that use the availability of genome sequence as a start-
ing point. by identifying phenomics as a discipline in 
its own right, we can accelerate progress in the parts of 
biology and medicine that have benefited only indirectly 
from genomics. We can look forward to the development 
of technology and expertise for high-throughput pheno-
typing that will free most researchers from having to be 
technical wizards or invent novel data analyses to take 
advantage of these data. Phenotypes are what matters 
about organisms; it is difficult to imagine that compre-
hensive phenotyping will not pay benefits at least as great 
as the Human Genome Project.
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